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Abstract

The system of two interacting electrons in one-dimensional harmonic potential or Hooke’s atom

are considered, again. On one hand, it appears as a model for quantum dots in strong confine-

ment regime, and on the other hand, it provides us with a hard test bench for new methods with

the ”space splitting” arising from the one-dimensional Coulomb potential. Here, we complete the

numerous previous studies of the ground state of Hooke’s atom by including the excited states

and dynamics, not considered earlier. With the perturbation theory we reach essentially exact

eigenstate energies and wave functions for the strong confinement regime as novel results. We also

consider external perturbation induced quantum dynamics in a simple separable case. Finally,

we test our novel numerical approach based on real-time path integrals (RTPI) in reproducing the

above. The RTPI turns out to be a straightforward approach with exact account of electronic corre-

lations for solving the eigenstates and dynamics without the conventional restrictions of electronic

structure methods.
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I. INTRODUCTION

The problem of two electrons confined in a harmonic potential, sc. Hooke’s atom, has

been investigated by several authors [1–8]. There are analytical solutions of the ground and

excited states, but only for some specific confinement parameters or oscillator frequencies

[1]. There are also some approximate and numerical approaches to solve the problem, but all

of these are focused on the ground state energy and wave function of the three-dimensional

system. [8–13]

Solution of the problem can be reduced to those of center-of-mass and internal dynamics,

and the latter one, further to radial and angular components. The radial component is the

solution at the positive and negative parts of one-dimensional space, and thus, it turns out to

form the solutions of one-dimensional Hooke’s atom – analytically for the above mentioned

specific set of confinement parameters. These two parts can be combined to form symmetric

and antisymmetric spatial wave functions as singlet and triplet (or bosonic and fermionic)

states, respectively.

However, the one-dimensional Coulomb potential is not trivial to consider, and therefore,

it has been a case of interest since 1959 [14]. It has been argued in many previous works [14–

19], that only the odd wave functions are valid solutions of the Schrödinger equation. More

recent works on one dimensional strongly interacting confined quantum systems [21–26] and

previous works on relativistic and non-relativistic one dimensional Coulomb potential [14–

20, 27, 28] motivate us to revisit the problem and demonstrate how to find solutions for all

eigenstates and all confinement parameters both analytically and numerically.

Oseguera and de Llano [29] have proven that for the attractive one-dimensional Coulomb

potential, the singularity acts as an impenetrable barrier and space becomes divided into

two independent domains. This is called the space splitting effect. Therefore, solutions

for the positive and negative values of the relative coordinates of a two-particle system are

completely independent. In one-dimension, the attractive delta function interaction and

Coulomb interaction both cause the space splitting, too [29].

Due to the space splitting, the relative coordinate wave function of two particles should

vanish at the origin. Extension of the problem to repulsive Coulomb potential is simple. It is

enough to replace −e2 → e2, and again, it can be shown similarly to the attractive Coulomb

interaction, that the amplitude of reflection coefficient for repulsive Coulomb interaction
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equals to one and the singularity acts as an impenetrable barrier[29].

In this study, we complete the numerous earlier studies by presenting solutions from the

perturbation theory (PT) for all confinement parameters, and also, for both the ground

state and excited states dynamics. We assess the accuracy of PT solutions as a function of

confinement and order of PT. Our analytical PT results give better match with the exact

numerical solutions in a strong confinement region as compared with interpolation formula

in Ref.[1].

Furthermore, with a novel numerical approach based on Feynman path integral formalism

in real time (RTPI) [30], we find wave functions, energetics and dynamics of such a strongly

correlated system to confirm the PT results and trends. We also assess the robustness of

RTPI for excited states and dynamics, where it is applied for the first time.

In the next section, we introduce PT and RTPI for the one-dimensional confined charged

particles. In section III, we give the PT and RTPI solutions to the Hooke’s atom and

assess the quality and accuracy by comparing with exact solutions for both eigenstates and

quantum dynamics in an external time-dependent electric field.

II. MODEL AND METHODS

A. Separation of variables

The Hamiltonian of two electrons in a 3D harmonic well is

H =
−~2

2me

∇2
1 +

−~2

2me

∇2
2 +

1

2
meω

2x21 +
1

2
meω

2x22 +
e2

|x1 − x2|
, (1)

where x1 and x2 are the three coordinates of electrons 1 and 2. The relative and center of

mass (CM) motion of the two electrons can be separated by defining new variables

r = x1 − x2

and

R =
x1 + x2

2
.

Now, the Hamiltonian separates as

H = H(r) +H(ℓ) +H(R),
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where H(ℓ) = ℓ(ℓ+ 1)~2/2µr2 is the rotational part. For the rotational ground state of the

relative motion (ℓ = 0) one can rewrite the above hamiltonian as follows

H =
−~2

2µ

d2

dr2
+

1

2
µω2r2 +

e2

|r|
+

−~2

2M
∇2

R +
1

2
Mω2R2, (2)

= H(r) +H(R),

where µ = me/2 andM = 2me are the reduced and the total mass of electrons. If separating

the wave function and total energy as ψ(r, R) = u(r)
r
Φ(R) and Etot = E + ECM, then the

CM motion is simple harmonic oscillation in all three dimensions

−~2

2M

d2

dR2
Φ +

1

2
Mω2R2Φ = ECMΦ, (3)

where ECM = (N + 1/2)~ω and N is non negative integer. Relative motion of the electrons

is harmonic oscillation with the Coulomb interaction as a perturbation in the rotational

ground state (ℓ = 0),

− ~2

2µ
u′′(r) + (

1

2
µω2r2 +

e2

|r|
)u(r) = Eu(r). (4)

The equations (3) and (4) define the dynamics of 1D Hooke’s atom without external fields.

The solutions are bound states with quantized energies and those of the CM are states of

simple harmonic oscillator.

B. Perturbation Theory

In this section we review the PT and its applicability in one dimensional confined quantum

systems with Coulomb potential as the interparticle interaction.

1. Reference states and boundary conditions

The equation (4) remains as the one dimensional Schrödinger equation to be solved.

It would be natural to consider the Coulomb repulsion as perturbation and choose the

harmonic oscillator as the reference system. However, in one-dimensional PT because of

the space spitting effect, we are looking for solutions of relative motion with the boundary

condition and symmetry like those of one-dimensional Hydrogen atom at the origin [14–19]:

u(0) = 0. (5)
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This means that the odd numbered eigenstates of harmonic oscillator (4), only, are ac-

ceptable. Then, the exactly solvable problem with the same boundary condition as one

dimensional Coulomb potential is [31]

− ~2

2µ
ζ ′′n(r) +

1

2
µω2r2ζn(r) = ϵnζn(r). (6)

Where ζn are the eigenstates of one dimensional harmonic potential. The exact solutions

are

ζn(r):=

(
1
4√π

√
ξ
)
exp

(−1
2
ξ2r2

)
Hn(ξr)

√
2nn!

,

ϵn = (n+
1

2
)~ω,

ξ =

√
µω

~
,

n = 1, 3, 5, ...

where Hn are the Hermite polynomials and only odd quantum numbers apply.

The integral solution of equation (4) can be written as [31]

u(r) = −⟨G(r, r′)|δv(r′)|u(r′)⟩, (7)

δv(r′) =
e2

|r′|
, (8)

where G(r, r′) is the Green’s function of equation (6) with the same boundary conditions as

u(r), i.e. equation (5). Using the eigenfunction expansion of Green’s function, we have [31]

un = ζn +
∑
p̸=n

⟨ζp|δv|u⟩
En − ϵp

ζp, (9)

En = ϵn + ⟨ζn|δv|un⟩. (10)

This is normal PT theory with odd numbered eigenstates. The validity condition

(⟨ζn|δv|un⟩ ≪ |En − En±1| ) should also hold [32]. We will discuss this in section III.

C. Path integral approach

Recently, we have presented a novel real-time path integral approach (RTPI) to the

electronic structure calculations and coherent quantum dynamics. It was first tested in case

of a single electron quantum dot [28]. Combined with Monte Carlo sampling of paths, RTPI
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was demonstrated to be a robust first-principles method and relatively simple to use, but

computationally heavy.

Later, it was shown that in case of Hooke’s atom RTPI is capable of incorporating the

electronic correlations exactly within numerical accuracy [31]. Here, we demonstrate finding

the ground state and lowest excited states, and also, dynamics as a response to external

electric fields, for the first time. We analyse the role of relevant approximations, the Monte

Carlo method and numerical parameters.

Thus, the RTPI is a general numerical method for testing the perturbation theoretical

predictions, where analytical data is not available. Simultaneously, we can test the numerical

performance and accuracy of RTPI for finding more complex many-particle wave functions

and quantum phenomena, which are out of reach with the conventional first-principles meth-

ods.

The first and second excited states are calculated with the incoherent propagation path

integral Monte Carlo [30, 33] simulations. The used parameters in atomic units are time

step (t = 0.1), number of walkers (N = 300000) and the walker size ϵ (ϵ2 = 0.005). The

purpose of the last parameter is to reduce the oscillations of the kinetic propagator. This

is done by representing a single walker as a Gaussian function with variance ϵ2 instead of

Dirac delta function [33].

Here, it should be noted that the RTPI simulations are carried out in single-particle co-

ordinates x1 and x2, thus testing the performance of description of the electron correlations.

III. ONE DIMENSIONAL HOOKE’S ATOM

In this section, we discuss the solutions of one dimensional Hooke’s atom within PT and

RTPI. First we consider lowest stationary states, and then, dynamics at the presence of

external time dependent electric field.

A. Stationary eigenstates

1. Ground state

Taut has introduced some exact solutions of 3D Hooke’s atom for certain confinement

parameters [1]. For the relative motion, this means solutions to the following Schrödinger
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equation (Eq. (9) in Ref. [1])

−u
′′(r)

2
+

1

2
ω2r2u(r) +

1

2

1

r
u(r) = Enu(r). (11)

This is equivalent to the Schrödinger equation (4) for a particle with reduced mass (µ = 1)

and 1√
2
electric charge. However, the approach involves finding solutions of two simultaneous

equations, which restricts the answers to some specific values of ω and states.

Out of those we choose ω = 0.5, because the analytical exact solution of the ground state

is available for this value and it is also the largest one in the set of specified values of ω.

In the first order PT, the energy levels as a function of n and ω can be written as

En =

(
2n+

3

2

)
~ω +

e22−2n−1ξ√
π(2n+ 1)!

∫ ∞

−∞

e−(ξx)2H2n+1(ξx)
2

|x|
dx, (12)

n = 0, 1, 2, 3, ...

The first term in equation (12) presents the simple harmonic oscillator energy levels with

odd quantum number. Because of odd Hermite polynomials in the integrand, we are not

worried about the singularity at origin. Thus, the first few energy levels are

E0 = 2e2
√
µω

π~
+

3ω~
2
,

E1 =
5e2

3

√
µω

π~
+

7ω~
2
,

E2 =
89e2

60

√
µω

π~
+

11ω~
2

,

E3 =
381e2

280

√
µω

π~
+

15ω~
2

.

In reference [1] the interpolation method of eigenenergies is also presented. However,

the fitting has been done for the confinement parameters in a narrow region, only. The

maximum value of ω for the ground state is 0.5, and by increasing the number of states, the

corresponding maximum ω decreases. Therefore, the extrapolation results for ground state

are accurate in region ω ≤ 0.5, for the first excited state in region ω ≤ 0.38 and for higher

states this region becomes narrower (cf. table I in [1]).

Rather than analytical exact solutions there are two approximations in reference [1]: the

weak and the strong confinement approximations. As discussed in reference [33], for the

largest confinement parameter (ω = 0.5), the PT gives more accurate results compared to

the weak and strong approximations.
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(a) Ground state energy, n = 0 as a function of ω in

logarithmic scales. The pink cross shows the RTPI

result [33].
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FIG. 1: Comparison of PT and analytical exact total energies (solid black circles) results

in Ref. [1] of Hooke’s atom in atomic units (hartree). The first, second and third order

corrected energies are shown by the dot (red), dot-dash (green) and dash (blue) lines

respectively and all axes are in logarithmic scale.

A comparison between the analytical exact and perturbative solutions for ω ≤ 0.5 are

shown in the figure 1. The difference between these two decreases as n and ω increase, so

the maximum difference appears for the ground state. For small values of ω the PT is less

accurate, because the validity condition for PT (Vnn ≪ |En − En±1|) is violated. We can
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use the average value of kinetic energy as a limit for the validity of PT. In the first order

perturbative approximation, the average kinetic energy of relative motion for the ground

state becomes negative for ω < 4e4µ
9π~3 , which sets a minimum acceptable ω for ground state

in PT.

The ground state wave function and its properties have been discussed in details in

reference [33] already.

2. First two excited states

For the excited states with ω > 0.5, the PT gives accurate results even in the first

order. The accuracy of the PT results has been checked (up to fourth order) comparing the

numerical exact solutions for the one-dimensional Hooke’s atom.

Figure 2 shows the relative errors between the first order PT and the numerical exact

solution eigenenergies for the ω ≥ 0.5 . As seen, even in the first order PT the relative errors

reduce rapidly for excited states. The relative error for the ground state is around 5% and

for states with n ≥ 3, the relative errors are less than 1%.
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FIG. 2: The relative errors (EPT − Eexact-numeric)/Eexact-numeric for the eigenenergies

n = 1, ..., 8 of Hooke’s atom

(ω = 0.5 (blue circles), 0.7 (brown squares), 0.9 (green lozenges), 2.0 (red triangles) ). The

PT results in this figure are of the first order.

We can compare the PT results for the first excited state of the relative motion with the

analytical exact solution for ω = 2
5.26137

. This ω has been chosen, because the analytical
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FIG. 3: a: Comparison between the analytical exact solution (solid black line) and

different order PT results for the first excited state wave function of relative motion

(ω = 2
5.26137

). u
(n)
PT,1 represent the nth-order corrections in PT. The first, second and third

order corrections are respectively shown by the dot (red), dot-dash (green) and dash (blue)

lines. The relative error increase around the node and tail of the exact solution, where the

wave function tends to zero. The horizontal axes represent relative distance between

electrons in atomic units i.e. bohr radius.

exact solution for the first excited state is available [1]. The analytical exact solution wave

function for this frequency is [1]

u1,exact = Nr exp(−ω
2
r2)

(
r3 − 36(r + 4)r2ω + 12r2 + 72r + 144

)
, (13)

where N is normalization constant.

Comparison between the exact solution and PT solutions are given in figure (3). As expected,

the first order PT has larger deviation from the exact solution, compared with the second

and third order PT. Figure (3b), shows the relative error between different order PT wave

functions and exact solution.

The table I shows the results for the expectation values of Coulomb potential (Vc), relative

motion harmonic potential (VH,r) and relative motion kinetic energy (Tr). The total energy

is the ECM,0 + E0. The expectation values have been calculated directly from normalised
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TABLE I: Expectation values of kinetic and potential energies of the first excited state in

PT (ω = 2
5.26137

) calculated directly from normalized wave functions. Comparison between

the exact and PT wave functions is given in Fig(3).

Exact value 1st order PT 2nd order PT 3th order PT

Vc 0.3521 0.3638 0.3452 0.3508

VH,r 0.7671 0.7276 0.7832 0.7807

Tr 0.5912 0.6217 0.5845 0.5807

Total Energy 1.9006 1.9032 1.9030 1.9024

wavefunctions. The RTPI energetics is in good match with the exact energies (and PT,

where the analytical exact results are not available), but there is a systematic error where

the electrons are close to each other (r → 0) or when their separation is large. The former is

due to the improved Trotter kernel approximation [28] with smaller error near the singular

potential with finite time step. The latter is mostly caused by the small density of the Monte

Carlo grid in that region and that error can be made smaller by increasing the number of

walkers [30, 33].

The first two excited states are combinations of the CM and relative motion ground states

and first excited states. The first (second) excited state is a combination of the ground state

of relative motion (CM) and excited state of CM (relative motion).

For the excited states, the results are reported for the ω = 1
2
, because the analytical exact

solution for the ground state is available for this frequency [1], and the results can also be

compared with the previous work on RTPI [33]. Using the Virial theorem for one dimensional

harmonic oscillator, we have [32]

< TCM >=< VH,CM >= (n+
1

2
)
~ω
2

(14)

TCM is kinetic energy of center of mass motion and VH,CM = 1
2
Mω2R2 is the CM harmonic

potential. Here, for n = 1 this gives 3/8 = 0.375. Table II shows the RTPI, PT and

analytical exact values (where available) for kinetic and potential energies of Hooke’s atom.

As one can see the results are in agreement with exact solution results.

The energetics of the second excited state is shown in the table III. Clearly, for the second

excited state the average of Tr (relative motion kinetic energy), TCM and VH,CM from RTPI
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FIG. 4: A snapshot of the wave function from the converged RTPI simulation with

∆t = 0.1, N = 300000 and ω = 0.5 (blue walkers). Red line is an envelope curve from the

3rd order PT (c.f. figure (3 a), ω ≃ 0.38) in (a) and exact solution from equation (3) in (b)

fitted to the data. All the figures are in atomic units.

simulation are not well-fitted to the exact and PT results. This can be explained by the

shape of the wave function. As one can see from figure 4, the RTPI predicts wider wave

function comparing to the exact and PT. Wider wave function has smaller kinetic energy,

and for the harmonic confinement, it gives larger potential energy. However, the total value

of the eigenenergy and potential energy are in agreement with data from PT. Therefore, the

different contributions balance each other in such way that the total quantities approach the

correct values.

B. Dynamics at the presence of external transient field

Time evolution of the stationary states has been successfully simulated using RTPI in

Ref. [33] already. As expected, there appears as change in the phase of the wave function

only. To test the time evolution of Hooke’s atom, a short time pulse of spatially constant

electric field (linear in space and Gaussian in time) has been considered as a perturbation.

We have chosen the external potential as

U(x, t) =
U0√
πα

x exp(−(t− t0)
2

α
), (15)

12



TABLE II: The first excited state (ω = 0.5) and its expectation values. The first excited

state is the combination of first excited state of CM and ground state of relative motion.

The expectation values of Tr
* and TCM

∗ are calculated directly from normalized wave

functions. Potential energy† = Vc + VH,r + VH,CM and its components are calculated as

RTPI output and Total Energy‡ been calculated (independent from potential and kinetic

energies), directly from the wave function’s phase in RTPI.

Exact value RTPI 1st order PT 2nd order PT 3th order PT

Vc 0.4474 0.4530(4) † 0.4354 0.4443 0.4466

VH,r 0.5131 0.5117(1) † 0.5161 0.5218 0.5181

Tr 0.2894 0.2870(9) * 0.3028 0.2847 0.2861

VH,CM 0.375 0.3722(1) † 0.375 0.375 0.375

TCM 0.375 0.3765(15) * 0.375 0.375 0.375

Potential Energy 1.3355 1.3369(3) * 1.3265 1.3412 1.3397

Total Energy 2 1.9969(6) ‡ 2.0043 2.0010 2.0009

where U0 = 1, α = 0.1 and t0 = 1 (in atomic units).

In the presence of this external electric field, the Hamiltonian of the system becomes as

H =
−~2

2me

∇2
1 +

−~2

2me

∇2
2 +

1

2
meω

2x21 +
1

2
meω

2x22 +
e2

|x1 − x2|
+ U(x1, t) + U(x2, t)

= H(r) +H(R) + 2U(R, t)

= H(r) +H(R) + f(t)R,

where f(t) = 2√
πα

exp(− (t−t0)2

α
).

1. Exact Solution

As expected the spatially constant electric field does not change the internal motion and

its effects appear only in CM motion. Therefore, in this subsection, we just discuss the CM

motion. However, the RTPI solves the unseparated total wave function in single-particle

coordinates again, and its results are presented at next subsection.

The Heisenberg equation of motion simplified into two coupled partial differential equa-
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TABLE III: The second excited state and it’s properties as Table II (c.f. figure 4). The

second excited state is combination of the CM ground state and first excited state of

relative motion. Analytical exact values for this state are not available. The accuracy of

the PT has been checked for the closest confinement parameter in figure (3a) and table I.

Exact value RTPI 1st order PT 2nd order PT 3th order PT

Vc - 0.4234(9)† 0.4233 0.4074 0.4119

VH,r - 0.9811(9)† 0.9530 1.0074 1.0043

Tr - 0.786(4) * 0.8159 0.7771 0.7753

VH,CM 0.125 0.1620(3) † 0.125 0.125 0.125

TCM 0.125 0.0986(7) * 0.125 0.125 0.125

Potential Energy - 1.5665(6) * 1.5013 1.5399 1.5413

Total Energy - 2.4331(2)‡ 2.4423 2.4420 2.4417

tions (PDE) can be written as

d

dt
⟨R⟩ = ⟨PCM⟩

M
(16)

d

dt
⟨PCM⟩ = −(Mω2⟨R⟩+ f(t)),

where PCM is center of mass momentum. To find the average potential energy, we need

⟨R2⟩, which is found from the following coupled PDEs

d

dt
⟨R2⟩ = 2

M
(
⟨P 2

CM⟩
M

−Mω2⟨R2⟩ − f(t)⟨R⟩) (17)

d

dt
⟨P 2

CM⟩ = −2Mω2(
⟨P 2

CM⟩
M

−Mω2⟨R2⟩ − f(t)⟨R⟩)− 2
d

dt
⟨f(t)PCM⟩.

Solution for ⟨R⟩ and ⟨PCM⟩, give us the average of the potential energies as a function of

time. Figure (5) shows the average of the total potential energy as a function of time.

2. Coherent RTPI simulation

In the time domain simulations, the ground state is affected by Gaussian shape pulse

discussed above. As can be seen from the potential energies in figure 5 the walkers size ϵ

affects the results much more than in incoherent propagation. Too large ϵ cuts out higher

energy states and results in incorrect energies (blue line) and too small ϵ increases in the
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dot line ϵ2 = 0.005 and green dash line ϵ2 = 0.0005. The black solid line represents the

exact solution.

incidental numerical error from the kinetic energy part of propagator (green line). That is

expected as it cuts out higher energy states, which are not present in the simulation of lower

eigenstates but contribute to the real time evolution. For the real-time dynamics ϵ must be

chosen smaller than that for the optimal incoherent propagation [30, 33]. There is a delay

in the system response to such an ultrafast transient process. It is due to the inertia of

electrons. After the external pulse the total energy is conserved and the electrons remain in

harmonic oscillation.

Figure (6) shows the different interaction contributions in the potential energy. As expected,

the Coulomb interaction remains unchanged during the time evolution, and the effects of

the external electric field just appear in a short time interval.

3. Fourier transformation and time evolution

After the external pulse, the Hamiltonian of the system returns to its initial time in-

dependent form, but the wave function remains as a superposition of eigenstates of the
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FIG. 6: Contributions to the potential energy in atomic units from Coulombic (black solid

line), harmonic (red dot line) and external potential (blue dash line) effects from one MC

simulation with N = 100000 and ϵ2 = 0.005.

unperturbed system,

Ψ(r, R, t) =
∑

ciψi(r, R)e
−ı

Eit

~ ,

where ci depends on the matrix elements of the external potential. Therefore, the Fourier

transform of Ψ is a sum of Dirac delta functions located at Ei. In practice, one can perform

the Fourier transform by collecting finite samples of the wave function at different times and

coordinates. Here the PT is used to find the time evolution for illustration of the approach.

In the absence of analytical solutions RTPI can be used to find the wave function time

evolution.

Figure 7 shows the Fast Fourier Transformation (FFT) of the one dimensional Hooke’s

atom after applying the U(x, t) + U(x2, t) as the external potential. We choose a nonlinear

perturbation x+ x2 because it has non-zero matrix elements for the first few excited states.

The sampling rate is 100 (atomic units) and total integration time is 46 (atomic units).

From figure 7, the eigenenergies are located at {1.5, 2.0, 2.43, 2.5, 2.93, 3.45}. Here we used

Ψ(1, 1, t) as the input in FFT.
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FIG. 7: Fast Fourier Transformation (fft) of time dependent wave function of the one

dimensional Hooke’s atom. Peaks are located at 1.5, 2.0, 2.43, 2.5, 2.93, 3.45. The small

peaks at the end of energy axis come from numerical error.

IV. CONCLUSIONS

Hooke’s atom has served as a well-defined model system, but also, as a challenging prob-

lem for decades [1-20]. In addition to analytical approaches [1-8] numerical calculations

have been published [1-14] and the specific challenges have arisen from the one-dimensional

case and Coulomb space splitting, in particular [15-27]. All of these studies, however, have

considered the ground state, only.

In this study we have been able to complete these numerous studies by including the

excited states and dynamics induced by an external potential. We have show hown per-

turbation theory (PT) provides an accurate approach in the strong confinement regime,

ω > 0.5, and in particular, the real-time path integral approach (RTPI) with Monte Carlo

simulation is a general and robust simulation tool [28,31] for confined quantum systems. It

should be mentioned here that similar studies could be carried out for other atoms with

exact analytical solutions [34–36].

We have demonstrated that PT is accurate enough, even for higher excited states.

This means that PT is probably suitable for studying the properties the strongly one-
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dimensionally confined many body or few-body quantum systems [21-26]. Unlike earlier

analytical results, as described in section III, PT is applicable for all confinement parame-

ters and eigenstates.

With the RTPI, the improved Trotter kernel is shown to be useful with large enough

number of Monte Carlo walkers, in cases where exact propagator are not available. We find

that the accuracy and stability of RTPI are tunable with the number of Monte Carlo walkers

and the real time step size. Regarding ground states, the computational cost of RTPI is

significantly higher than that of Diffusion Monte Carlo. However, one of the advantages

of RTPI is that it provides one with the wave function explicitly, and thus, the evaluation

of local multiplicative expectation values becomes straightforward. Moreover, as RTPI is

capable of locating the nodal surfaces of excited states, it can be used to find the nodal

surfaces in a diffusion Monte Carlo simulation of the excited states.
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