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Received: date / Accepted: date

Abstract Especially in programmable processors, en-

ergy consumption of integrated memories can become a

limiting design factor due to thermal dissipation power

constraints and limited battery capacity. Consequently,

contemporary improvement efforts on memory tech-

nologies are focusing more on the energy-efficiency as-

pects, which has resulted in biased CMOS SRAM cells

that increase energy efficiency by favoring one logical

value over another.

In this paper, xor-masking, a method for exploit-

ing such contemporary low power SRAM memories is

proposed to improve the energy-efficiency of instruction

fetching. Xor-masking utilizes static program analysis

statistics to produce optimal encoding masks to reduce

the occurrence of the more energy consuming instruc-

tion bit values in the fetched instructions. The method

is evaluated on LatticeMico32, a small RISC core popu-

lar in ultra low power designs, and on a wide instruction

word high performance low power DSP. Compared to

the previous “bus invert” technique typically used with

similar SRAMs, the proposed method reduces instruc-

tion read energy consumption of the LatticeMico32 by

up to 13% and 38% on the DSP core.
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1 Introduction

The Internet of Things (IoT) [1] era has lead to many

modern devices that are wireless, intelligent and wear-

able. Small devices that can communicate wirelessly,

process data and operate for extended periods of time

without external power source create challenges for bat-

tery lifetime and processor technologies. The increased

level of intelligence in devices often translates to in-

creased battery consumption due to the additional re-

quired digital logic. Moreover, the Thermal Dissipation

Power (TDP) becomes an issue in modern compute

devices [2] with extremely small physical form factor

limiting the size of cooling devices. It is now com-

mon that all the logic on a circuit cannot be switched

on simultaneously in order to prevent malfunctions or

failures. Since battery technology limits the maximum

use time when not connected to an external power

source, energy-efficient and low-power operation is of-

ten a mandatory requirement.

With advances in process technology, compute de-

vices get smaller. Concurrently, the amount of data

being processed is growing, making power consumption

of memories a critical aspect in ultra-low-power com-

pute devices. On-chip memories can consume up to half

of total power in CPU-based digital designs [3,4]. In or-

der to keep memories up to speed with other system

components, new technologies are researched. Possible

replacements for SRAM include Spin-Transfer Torque

RAM (STT-RAM) [5], hybrid Non-Volatile Memo-

ries (NVMs) [6] and Embedded DRAM (eDRAM).

However, these technologies are not yet mature for wide

adoption due to having challenges in cost, durability, or

variability control. They are also dedicated-process [7]

technologies, where the fabrication process used for rest
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of the logic needs to be modified significantly, increasing

design time and cost.

According to ISSCC [8], SRAM is still the most

widely used technology for fast on-chip instruction and

data memories and caches. However, while a replace-

ment technology has not yet emerged, there is room for

incremental improvement within SRAM designs. One

such aspect is that normal, “symmetric” SRAM cells do

not optimize the structure toward storing either high or

low logic values found in instruction and program data.

This bias can be exploited by designing memory cells in

an asymmetric fashion, where power consumption is re-

duced when holding, writing or reading one logic value

compared to the other. Such asymmetric cells have been

designed and fabricated for memories and caches [9–12].

Information from statistical analysis of the data to be

stored in such biased memories can be used to maxi-

mize the preferred values in memory using additional

data encoding, leading to reductions in program power

and energy consumption.

In this paper, an asymmetric SRAM designed and

fabricated by Mori et al. [11] is taken under closer in-

spection. They implemented a chip on a 28 nm Fully

Depleted Silicon On Insulator (FD-SOI) [13] technol-

ogy, containing 8T memory cells, where reading the log-

ical value ’1’ results in a lower energy consumption in

comparison to value ’0’. The SRAM was studied as an

energy efficient data memory for image processors. Im-

age data were stored in the memory, so that dark pixels

contain more ’0’s and bright pixels contain more ’1’s. To

reduce the total energy consumption in data memory,

the authors added a majority voting logic to increase

the amount of logical ones stored, and thus reduced

read energy in their proposed memory. Compared to

a standard 28nm FD-SOI SRAM of the same size, an

87% reduction in write energy and 52% reduction in

read energy were reported.

In this article, we show that this type of asymmet-

ric SRAM can be succesfully exploited also for program

instruction memories in processor cores by utilizing of-

fline program binary analysis, while only adding a very

small hardware overhead. This paper extends our pre-

vious work [14] with the following main additions:

1. Analysis, implementation and evaluation of a scheme

using multiple xor-masks instead of only a single

one,

2. new heuristics for finding a mask set, and

3. evaluation of xor-masking on a wide-instruction

word core, in addition to the small LM32 core.

The paper is organized as follows. Section 2 reviews

previous methods for low-power instruction and data

encoding. Section 3 introduces the proposed method. It

is evaluated and compared to a previous state-of-the-art

low-power encoding in Section 4. Section 5 concludes

the paper.

2 Related Work

Majority of the previous work on low-power encoding

has focused on reducing instruction address bus power

and program data bus power. Existing methods can be

divided into static and dynamic methods, depending on

when the encoding is done. Static encoding is performed

during program compile time, while dynamic is done on

the fly at runtime, requiring additional hardware.

Bus-invert encoding [15] was introduced by Stan

and Burleson in 1995 as a method to reduce power con-

sumption in off-chip data buses. This has been extended

in later work by further dividing the buses [16,17]. The

bus-invert method dynamically encodes data based on

consequtive data words. If the number of toggling bits

between two consecutive data words (also known as the

Hamming distance) is more than half, the data word is

inverted with a logical NOT operation. In addition, a

toggle bit is added to the data to indicate whether to in-

vert the data at the other end or not. This is performed

by logic connected to the memory block, at the end

of the bus. At the end consuming the data (typically

a load-store unit or an instruction fetch reading from

memory), depending on the toggle bit, logical NOT is

performed again to restore the original word. The ob-

vious drawbacks of the method are the required extra

bit and the power and area overhead of the logic.

Petrov and Orailoglu [18] proposed a static method

where the instruction data bus was encoded with 16

possible data transformation operations. The transfor-

mations were selected using an exhaustive search by

considering two consecutive instruction words in con-

junction. The encoded words were written into instruc-

tion memory when loading the program, and the trans-

formations were communicated to the processor’s de-

code unit either at the start of a program, or before

application hot-spots, such as loops. The performance

of the method depends on frequent execution of the

loops and small basic block sizes. Energy consumption

is reduced due to the reduction in off-chip and on-chip

bus toggling. However, the energy overhead of the ad-

ditional implemented decoding logic was not analyzed

and it is not clear if this overhead would counter the

acquired savings. Moreover, the effect of on-chip bus en-

ergy reduction could be very small in a typical scenario,

where the on-chip SRAM is close to the consumer.

Su et al. [19] used Gray coding and Cold schedul-

ing to reduce the instruction address bus bit switch-

ing activity. Gray coding exploits the spatial locality
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Fig. 1: Calculating the Hamming distance of successive

words for bus-inverting. Left-most bits are toggle bits.

The two words are XORed and the number of ’1’ bits

in the resulting word is counted to make the toggle

decision.

found in memory accesses. That is, instructions are of-

ten fetched from consecutive memory addresses. These

instructions can be reordered so that sequential ad-

dresses are located in Gray coded addresses, reduc-

ing the instruction address bus toggling. The authors

combined Cold scheduling, a compiler energy reduction

techique to schedule instructions depending on their rel-

ative energy, with Gray coding.

Musoll et al. [20] introduced working zone encoding

based on the observation that programs usually operate

on repeating sets of addresses (working zones). Similar

to Gray coding, this allows the address bus toggling to

be reduced. An identifier is given to each working zone

and these combined with address offsets are signaled to

the instruction control logic to indicate which working

zone to use. The drawback of this method can be heavy

hardware overhead, since the decoding and encoding

algorithms are quite complex.

Benini et al. [21] created custom encoder and de-

coder logic for a given processor by analyzing instruc-

tion address traces. The authors claim that the method

is generic and can be applied to various processors.

However, the method showed little savings in total en-

ergy when taking into account the energy overhead of

the additional encoding and decoding logic.

Yang et al. [22] noticed that certain data values on

program data buses constituted a majority of the val-

ues on the buses. By exploiting this, they proposed a

frequent-value encoding, where each end of the data bus

had an identical codebook. If a value to be transmitted

was found in the codebook, it was transported as an

index of the codebook, otherwise as it was.

The previous work can be summarized as follows.

Instruction memory power consumption optimizations

mostly concentrate on address bus power reduction and,

in particular, minimizing its toggling activity. Many of

the reviewed methods focus on reducing off-chip data

bus energy, while disregarding the energy overhead of

the extra encoding and decoding logic. In contempo-

rary compute devices, the instruction data bus energy

consumption might not be so relevant due to instruc-

tion memories or caches integrated close to the con-
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Fig. 2: Flow of the proposed encoding method. Stages

and files for the proposed method are in bold italics.

sumer, the instruction fetch unit. In addition, L1 in-

struction cache miss rates in typical processor systems

are low [23], indicating that when fetching from L2

cache to L1 cache, the bus energy consumption would

not benefit much from encoding. It is very important

to consider the energy and area overhead of the added

logic due to required encoding and decoding. A complex

implementation can nullify the benefits gained.

Compared to previous solutions, the proposed

method, xor-masking, is able to statistically analyze in-

dividual bit positions from instruction execution during

compile-time, resulting in a low-power encoding with

minimal additional dynamic decoding logic.

3 Proposed Method

Many of the existing bus encoding algorithms concen-

trate on instruction address bus and program data bus

encoding, where they aim to reduce the toggling activ-

ity. The proposed method instead tries to maximize the

occurrence of one logical value over the other. For the

instruction address bus, the existing approaches exploit

the fact that instruction addresses are often accessed

in a sequential order, where techniques such as Gray

coding the addresses can help. The fetched instruction

data, on the other hand, is usually less coherent [17] –

the individual bits do not typically correlate with the

instruction word fetched on the previous cycle.

The proposed method, xor-masking, analyzes sta-

tistical information about instruction memory accesses

for individual programs by statically determining one

or more optimal xor-masks to encode the instructions

in each particular program to maximize the appearance

of the desired logical value. However, the methods for

controlling the use of the masks require careful design

to avoid diminishing the benefits from the masking.

The Hamming distance for two words of data is the

number of bits toggled in the successive words. It can

be calculated by taking the logical XOR between the

words, and counting the ’1’ bits of the result. An ex-

ample is presented in Fig. 1. Here the previous (top)
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Fig. 3: Forming the xor-mask for an example instruction

word trace. If the total amount of ’0’s for a given bit

index is more than half (here three) of total bits for

that index, it is xor-masked with a ’1’.

word has been inverted and we calculate the Hamming

distance to the next word, including the added bit. In

this case, we would invert the next (bottom) word, since

the Hamming distance is greater than half of the word

length. Counting the bits can be done with majority

voters. Their implementation cost depends on the width

of the data, and the type of the voter [24]. A word is de-

coded by XORing it with its added bit. For their SRAM

circuit [11], Mori et al., modified the original bus-invert

method by not minimizing the amount of toggles, but

maximizing the amount of ’1’s instead. This approach

corresponds to calculating the Hamming distance with

the other word constantly being all ’1’s. This simplified

the logic, since the previous data value was not com-

pared to the current one, thus saving a register and

a logical XOR between the words. They used this en-

coding for general data. In this paper, this method is

referred to as Majority Voter Encoding (MVE).

Encoding words in this manner is not ideal for re-

ducing the power consumption when the SRAM is used

as an instruction memory. We have found that methods

utilizing statistical instruction analysis can be used to

increase the number of the low read-energy logic values

in the memory. This paper concentrates on single and

multiple mask scenarios, where the required additional

hardware logic is minimized.

Like the static instruction transformation of Petrov

and Orailoglu [18], the proposed method conveys ap-

plication-specific information to the processor. In our

case, this information is reduced to a compact xor-mask,

which is used to decode the encoded words during the

instruction fetch stage. Encoding the words incurs no

additional hardware logic, since the encoding is per-

formed offline as a compilation pass over the instruction

bit image. As a side effect of an encoding that aims to

maximize one logical value over another, the proposed

method often reduces bit toggling between successive

instruction words. Considering a multi-level instruction

clk

0

1

n . . .

mask_reg

decoded_instr[n-1]

nnew_mask

instr[n]

mask_load

instr[0]

decoded_instr[1]

instr[2]

instr[0]

decoded_instr[0]

instr[1]

instr[0]

Fig. 4: Implementation of the decoding logic. The first

word after reset is read in as a new mask. Mask is active,

if first bit in instruction is logic ’1’. Instructions are

decoded by XORing them with the mask.

memory hierarchy, this reduced toggling can save addi-

tional energy since off-chip buses can consume notable

amounts of energy.

Decoding the words is done by performing a log-

ical XOR between the mask word and each encoded

word. In addition to incurring extremely little addi-

tional logic, this allows easy implementation of the

method to existing architectures. Fig. 4 depicts the

logic required.

The update of the xor-mask can be integrated with

the program image, so that after reset the first instruc-

tion address holds the xor-mask. This is fetched and

treated as a mask word which is stored to the mask

register. After this, the succeeding words are treated

normally as instructions. For even easier integration

with program compilers, the mask word and a jump

to reset address can be placed to the last addresses in

instruction memory to avoid relocating the program in-

structions.

3.1 Single Xor-Mask

The simpler alternative includes only a single xor-mask

for the whole program. For optimizing the selection of

a single xor-mask, we propose to use static analysis

enhanced with execution profiling data from a typical

program run. The analysis (see Fig. 2) starts by tak-

ing the instruction memory bit image of the optimized

program. An instruction address trace with an unmod-

ified instruction memory image is produced by simu-

lating the targeted program using typical input data.

Then, for each bit index, the total amount of logical

’1’s and ’0’s weighted according to execution count is

calculated. The mathematical presentation for this is

shown in Eq. 1.

ai =

C∑
c=1

bc,i, bc,i ∈ {0, 1} (1)
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An instruction trace is iterated over each cycle c, and

C is the total amount of instructions, and bc,i is ith bit

of the instruction at cycle c. ai gives the average logic

value of the ith instruction bit for an execution trace.

This process is also illustrated in Fig. 3. If the amount

of ’0’s is greater than half of total bits in the word, a ’1’

is assigned to that index of a xor-mask that is applied

to the instruction word. This is described in Eq. 2.

mi = ’1’ if ai > 0.5 else ’0’ (2)

The xor-mask is optimized for each program separately.

For the memory examined in this paper, logic ’1’ reads

are preferred for low energy. However, the method can

equally efficiently be applied to cases, where logic ’0’ is

the preferred value.

3.2 Multiple Xor-Masks

To utilize multiple xor-masks, consideration is required

for the switching granularity, mask storing/fetching,

number of masks, and controlling the use of different

masks.

3.2.1 Mask Switching Granularity

The use of a single xor-mask per program allows mini-

mal decoding hardware overhead. However, this results

in too coarse granularity when the program’s instruc-

tion mix differs greatly across the hot basic blocks in

the loaded program. For finer granularity, multiple se-

lectable xor-masks can be used.

Theoretically, the best granularity in terms of min-

imizing instruction word read energy consumption oc-

curs when each instruction has an individual mask that

causes all the read bits to be flipped to the desired value.

However, this would in the worst case require as many

masks as there are instructions. For coarser granularity,

groups of instructions withing the program should be

masked with a single mask.

Basic Block Level Granularity Program basic blocks [23]

are sections of code that execute in a sequential manner

from start to end. There can be branches only to the

beginning of the basic block, or from the end. Thus,

they offer sequences of instructions that are grouped

together naturally with a feasible point of switching

the mask in the beginning of the block. When changing

the mask only at the start of each basic block, there

is no risk of accidentally decoding words with wrong

masks. Thus, basic block level granularity is a logical

choice for exploiting multiple masks.

Loop Level Granularity Programs typically consume

most of their time in loops. Especially embedded ap-

plications tend to spend 90 percent of their execution

time in only 10 percent of the code. This is known as

the 90-10 rule. Of those 10 percent, approximately 85

percent are inner loops [25]. Of course, this depends

highly on the nature of the program. This motivates

masking a subset of program code, loops.

3.2.2 Mask Storing and Fetching

One possible storage scheme is storing the masks di-

rectly in the instruction memory. Since the masks have

the same width as the instruction words and instruc-

tion memory depth may not need to be increased due

to program length, this can be a convenient solution.

. . .
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instr[n]
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=
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Fig. 5: An implementation of decoding logic using mul-

tiple masks.
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However, this masking scheme increases the program

execution time, since a stall is required when reading

a mask from the instruction memory. Furthermore, the

mask changing has to be identified somehow. In this

scheme, there is no advantage in limiting the number

of possible masks, as a new mask needs to be read in

the beginning of each basic block in any case.

If loop level granularity is utilized for mask switch-

ing, a loop-specific mask could be used when executing

the loop and a generic one otherwise. This mask could

then be changed when entering the loop and when ex-

iting it, possibly incurring only a small overhead in ex-

ecution time and control energy in contrast to the in-

struction energy reduction. This scheme requires the

instruction set of the architecture to have room for a

custom instruction to indicate that the next instruction

word is a new mask.

In this loop-specific masking scheme, a total of four

instruction words are added to a loop. Two words are

added before the loop: one to indicate that the next

word is a mask for the loop and immediately after it the

mask itself. When leaving the loop, this is repeated, but

now the mask is the generic mask to be used outside

loops. The instruction word indicating the mask change

is architecture-dependent and is limited by the available

bit combinations in the instruction set architecture.

In another scheme, the masks could be stored in

the data memory of the processor. This could result in

a smaller overhead in execution time, since a new mask

could be fetched concurrently with the next instruction.

For this paper we evaluated a scheme where a num-

ber of masks are stored in mask registers in the instruc-

tion fetch component of the processor core. Storing the

masks is done during reset, and during execution, mask

changes are indicated by mask control bits added to

each instruction word. This approach allows the mask-

ing of the words to be performed as a post-pass after

the compiler’s code generation. Each basic block’s first

control bits indicate the mask to be used, even if it is

equal to the previous one. For the rest of the block’s in-

structions, a no-mask-change bit sequence is used. The

amount of control bits nmbits, can be calculated with

Eq. 3

nmbits = dlog2(m)e, m > 3, (3)

where m is the amount of masks. In our approach, there

are m sequences that include m − 2 sequences for ba-

sic blocks whose energy can be reduced the most, one

sequence indicating a generic mask for the rest of the

basic blocks, and a no-mask-change sequence.

A hardware implementation using multiple masks is

illustrated in Fig. 5. In this case, logic ’1’ is the preferred

value in terms of least SRAM read energy consumption.

<n> <1> <n
mbits

>

instruction toggle 
bit

mask 
control

Fig. 6: For the use of xor-masks, our implementation

adds a toggle bit and mask control bits to the instruc-

tion word.

A mask change is indicated by nmbits Most Significant

Bits (MSBs) of the current instruction word. When all

MSB bits are ones, the last set mask is used. This im-

plementation adds the mask control to the instruction

words as depicted in Fig. 6. For the sake of clarity, the

toggle bit and mask control bits are moved to the MSB

indexes as opposed to the toggle bit being in the LSB

end in the single xor-mask implementation. The nth bit

is now the toggle bit.

In order to support pre-emptive multitasking or

other hard interrupts, xor-masking requires additional

hardware support for saving and restoring the masks

during a context switch. This was left as a future work.

3.2.3 Multiple Mask Search Algorithm

Finding the best masks per program is not trivial. Ex-

haustive search eventually produces the optimal masks,

but for an n-bit instruction word, there are 2n cases to

search. For a 32-bit instruction word, this already be-

comes unfeasible with the current computer technology.

Our proposed method for finding multiple masks per

program is depicted in Algorithm 1. On lines 1–3, a

single xor-mask is searched for each basic block. Next,

absolute energy reduction for each block is calculated

and the blocks are sorted by the most energy reduced.

This sorting is described in Algorithm 2. The best m−2

blocks and their masks are assigned on line 6. For the

rest of the blocks, a single generic mask is now searched

and assigned on line 7. This is the same as finding a

single mask for the whole program, but now the already

assigned blocks are not included. Execution amounts of

each basic block were counted on line 4 and are now

used to sort the control word sequences on line 8. To

minimize the energy consumption, the most executed

block is assigned the least energy consuming sequence

and so forth.

The generic mask may not be optimal for each of the

blocks using it. The energy consumption can in some

cases benefit from using the already assigned m − 2

masks. Therefore, on lines 9–21, we next try each of the

assigned masks for each of the blocks that the generic

mask was previously assigned to. After the possible re-



Instruction Fetch Energy Reduction with Biased SRAMs 7

assignment of these blocks, the generic mask is again

searched on line 22 for the remaining blocks, since the

previous one may not be optimal anymore. This may,

however, still result in the previous generic mask. Fi-

nally, the input data is masked and returned along with

the corresponding control words and masks.

Algorithm 1 Multiple mask search
Input: user-defined number of masks m, number of basic
blocks numBlocks, execution trace
Output: controlWords, maskedData, masks

1: for each basic block do
2: Find mask by statistical analysis of trace
3: end for
4: Count executions for each basic block from trace
5: Sort masks by block energy reduction (Algorithm. 2)
6: Assign m masks for m−2 blocks with best energy reduc-

tion
7: Find and assign genericMask for rest of blocks
8: Assign controlWords according to block executions
9: for each numBlocks−(m−2) basic block in energy-sorted

blocks do
10: bestReduction = reduction(genericMask)
11: bestMask = genericMask
12: for each mask in m− 2 best masks do
13: if reduction(mask) > bestReduction then
14: bestReduction = reduction(mask)
15: bestMask = mask
16: end if
17: end for
18: if bestReduction < reduction(genericMask) then
19: Assign bestMask to basic block
20: end if
21: end for
22: Find new genericMask for rest of blocks
23: Mask data in basic blocks
24: return controlWords, maskedData, masks

Control bit sequences add to the instruction read en-

ergy. To minimize the control bit energy overhead, dif-

ferent sequences are sorted by their execution amounts.

The result is used to determine the order of masks in

the mask register. The indexing should be done so, that

the occurrence of the preferred logical value in the index

field is largest in the most executed instruction/block,

and smallest in the least executed instruction/block.

As mask change control sequences only occur at the

beginning of each basic block, the no-mask-change se-

quence is assigned the least energy-consuming bit se-

quence, since all the rest of the instructions in the block

use it. That is, all bits are of the favoured value. The

control bit sequences for the generic mask and the best

masks are then sorted and assigned.

Algorithm 2 Basic block sorting by energy reduction
Input: basic blocks, execution amounts executions for each
basic block, masks, energy zeroEnergy for reading a zero,
energy oneEnergy for reading a one
Output: basic blocks sorted in descending order of energy
reduction

1: for each block in blocks do
2: for each instruction in block do
3: blockEnergy += ones*oneEnergy*executions
4: blockEnergy += zeroes*zeroEnergy*executions
5: end for
6: mask block
7: for each instruction in masked block do
8: maskedEnergy += ones*oneEnergy*executions
9: maskedEnergy += zeroes*zeroEnergy*executions

10: end for
11: reductions[i] = blockEnergy-maskedEnergy
12: sort reductions
13: return basic blocks sorted by energy reduction
14: end for

4 Evaluation

Xor-masking was evaluated on two architectures. The

first is LatticeMico32 [26] RISC architecture. It is an

interesting choice for evaluation due to its open licens-

ing agreement, freely available program compiler and

generation of RTL code, and its use in a number of pub-

lications and projects [27,28]. Detailed specifications of

the evaluated processor are listed in Table 1. The eval-

uation platform was a minimal setup, where instruc-

tion and data memories were scaled to be large enough

to accommodate all of the individual bechmark pro-

gram instructions and data at a time. The benchmark

programs were chosen to represent typical applications

in microcontrollers in low-power scenarios. The bench-

marks are listed in Table 2.

Secondly, xor-masking was evaluated on a larger low

power high performance DSP core designed by the au-

thors for an Image Signal Processing (ISP) use case [29]

and features a wide instruction word architecture. This

core was implemented with TTA-based Co-design En-

vironment (TCE) [30], a software toolset for design and

programming of programmable processors based on the

Transport Triggered Architecture (TTA) model. TTAs

Table 1: LatticeMico32 features.

Clock frequency 18.2MHz
Instruction set architecture RISC
Instruction width 32 bits
Instruction memory On-chip SRAM, 32kB
Data memory On-chip SRAM, 400kB

Dedicated hardware

Hardware multiply unit
Hardware divide unit

Pipelined barrel shifter
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Table 2: LatticeMico32 benchmark programs.

Suite Programs

CHStone [32]
adpcm, aes, blowfish,
gsm, jpeg, mips, sha

DSPStone [33] matrix
Coremark [34] coremark

exploit instruction-level parallelism found in programs

by using a wide instruction word. They can also lever-

age Single Instruction Multiple Data (SIMD) opera-

tions. These qualities make them highly applicable to

signal processing purposes. Xor-masking is applied to

the DSP core to demonstrate the effectiveness of the

method not only on RISC architecture, but also on sig-

nal processing cores.

Although the TTA core was designed for ISP pur-

poses, it performed well with Software Defined Ra-

dio (SDR) programs with only minor modifications to

the interconnect network and using a larger program

data memory. The benchmark programs used were two

SDR-specific programs, Layered ORthogonal lattice De-

tector (LORD) [31] and Minimum Mean Square Error

(MMSE). They are used in modern wireless telecom-

munication, specifically in Multiple-In, Multiple-Out

(MIMO) channel detection.

The energy consumption was evaluated by calcu-

lating energy costs for reading a single ’1’ and ’0’

based on the previously published measurements for

the original SRAM [11]. In the original 64kB SRAM,

for a 16-bit word, energy consumption for reading all

’0’s and reading all ’1’s was 1440 fJ/cycle and 148.5

fJ/cycle, respectively. To calculate read energy per bit,

these were divided by 16 resulting in 90.00 fJ/cycle and

9.28 fJ/cycle for the cost of reading a single ’1’ bit and

a ’0’ bit, respectively. Next, instruction address traces

for the benchmark programs were produced from Mod-

elsim simulations. Using the calculated read energies,

instruction traces and instruction memory bit images

encoded according to each of the two methods, the

total SRAM energy consumption for each benchmark

program was calculated.

Considering the write energy consumption is rele-

vant especially for designs including dynamic instruc-

tion caches. Cache misses translate to writing cache

lines. However, the difference in energy reduction for

writing all ’0’s and all ’1’s to the referred SRAM, com-

pared to a regular SRAM, was reported as negligible,

1%.

The proposed method does not affect the time of

replacing cache lines compared to the referred method.

In this sense, write energy evaluation is not interesting,

since the difference between the proposed method and

the reference method is not significant.
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fir
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sha

80.00%

85.00%

90.00%

95.00%

100.00%

XOR logic
SRAM

In
st

r. 
M

e
m

o
ry

 E
n

e
rg

y 
co

n
su

m
p

tio
n

 (
n

o
rm

a
liz

e
d

)

Fig. 7: Proposed method’s instruction memory energy

consumption for benchmark programs, normalized to

the corresponding consumptions with MVE.

If both the instruction memory and the instruction

cache are implemented with the referred SRAM tech-

nology, the total energy reduction depends on the com-

bined energy consumption of the two. In this case, the

decoding logic would be implemented after the instruc-

tion cache.

In the case of the proposed method, the results also

include the energy consumed by the majority logic pro-

posed with the referred SRAM technology. In our case,

this majority logic is not used and instead, the decod-

ing logic would be implemented in the instruction fetch

unit. This overhead is present in our energy numbers

for the proposed method. The improvement in energy

consumption of our proposed method compared to the

referred method would, therefore, be better than the

results presented in this paper. However, this overhead

is difficult to estimate, since the authors did not re-

port the majority logic energy consumption individu-

ally, but rather the overall SRAM’s. Moreover, the ma-

jority logic relies on a pull-down network and a sense

amplifier. However, regardless of this overhead, our pro-

posed method still achieves lower energy consumption

in all 11 benchmark programs on the LatticeMico 32

and both benchmarks on the DSP core.

4.1 LatticeMico32 Results

Energy consumption normalized to MVE for the bench-

mark programs is presented in Fig. 7. As is expected,

the energy consumption depends on the dynamic in-

struction mix in each of the benchmarks. The more

there are instructions resembling each other on the bit

level, the more the proposed method can save energy.

The worst case is when the occurrence of ’1’ and ’0’

at each bit position is exactly the same. In this case,

inverting the bit index results in no savings in energy.
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Fig. 8: Comparison of total CPU energy for MVE and

the proposed method. Normalized to the level of CPU

with unencoded instructions in SRAM.

The energy overhead of the added logic is small

compared to the overall energy, on average 1.0% of the

SRAM energy. The best energy reduction, 13.3%, was

achieved in matrix benchmark and the lowest reduc-

tion, 1.5%, in coremark. On average, the reduction was

6.2%.

In order to estimate the CPU total energy consump-

tion, the described LatticeMico32 was synthesized on

a 28nm ASIC standard cell technology. The instruc-

tion memory consumed 37.7% of the total energy after

synthesis for this particular implementation. Using this

number, the effect on the total CPU energy was calcu-

lated. This is presented in Fig. 8. The largest total en-

ergy reduction, 24.8%, was achieved with fir. In matrix,

total CPU energy consumption was 5.0% less compared

to MVE. On average, this reduction was 2.4%.

The reduction in bit switching activity is compared

to the majority-voter-encoded words, and the results

are presented in Table 3. Both of the encoding meth-

ods add a toggle bit to the unencoded words, increasing

the total amount of bits read. The proposed method re-

duces the bit switching activity in all but three bench-

mark programs compared to the MVE. The reductions

are small and in the best case 3.3%. In a realistic im-

plementation in an ultra-low-power IoT device, off-chip

memory would be unlikely to be used for storing in-

structions and the effect in energy reduction for an on-

chip bus would be negligible. The decoding logic size

for LM32 was 377 equivalent NAND2 gates with the

single mask scheme.

With the proposed multiple xor-mask scheme, LM32

results for the implementation presented in this paper

are depicted in Fig. 9. X-axis values are the number of

masks used, and translate to x − 1 basic blocks with

the best energy reductions masked and a generic mask

for the rest of the blocks. Y-axis is the reduction com-

pared to using a single xor-mask. Some benchmark

Table 3: Bit switching activity.

Benchmark MVE Proposed
∆(%)

adpcm 764 000 3.3
aes 413 000 -0.3
blowfish 6 257 000 0.1
coremark 4 798 000 -0.7
matrix 2 996 000 0.0
fir 5 000 -1.4
gsm 231 000 0.4
jpeg 25 016 000 1.0
lsm 8 000 0.2
mips 213 000 1.1
sha 5 819 000 2.9

programs have less basic blocks than the maximum X-

value, hence the missing values in some of the lines.

Negative values indicate, that the overhead of mask-

ing was not beneficial to the energy consumption, but

instead increased it.

In two benchmark programs, matrix and mips, the

reduction over a single xor-mask is notable, 8-9% with

3 and 14 masks. Rest of the programs either gained

small reductions in energy (up to 1.6% in jpeg), or

did not benefit from multiple masks (at best 1.2% de-

crease in fir). Depending on the benchmark, the bene-

fit of multiple masks is reduced in steps as the number

of masks surpasses a power of two. At these points,

this is expected, since the number of control bits is

increased. Some benchmarks show more sporadic be-

haviour, which seems to result from re-assigning the

generic mask as described in Algorithm 1.

4.2 DSP Core Results

For the DSP core, the instruction memory energy con-

sumption is reduced by 38.1% in LORD and 38.4% in

MMSE. This is illustrated in Fig. 10a. As listed in Ta-

ble 4, both of the the benchmarks have a high propor-

tion of No Operations (NOPs) of all instructions, 74.6%

in LORD and 69.6% in MMSE. When searching for the

masks, the instruction slots in basic blocks that mainly

contain NOPs heavily affect the mask. In the case of

the DSP core, the instruction set encoding is such that

NOP encodings naturally contain mostly non-preferred

Table 4: DSP core benchmark programs.

Benchmark Instructions
Basic
blocks

NOPs
per all
instruc-

tions
LORD 975 36 74.6
MMSE 1136 16 69.6
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Fig. 9: LatticeMico32 instruction memory energy reduction as a function of number of masks. Improvement over

xor-masking with a single mask. Positive numbers indicate a reduction in energy consumption.

bit values, reducing energy consumption notably. Area

overhead of xor-masking with a single mask was 1544

equivalent NAND2 gates.

For the DSP core, results of using multiple masks

are shown in Fig. 10b. The energy reductions compared

to using only one mask are small, less than 1% in all

cases. This is due to the high proportion of NOPs. Be-

cause of the NOPs, many of the different basic blocks’

masks are very similar. In this case, using multiple

masks does not provide energy reductions. The control

bit overhead is still added, however, since the amount

of control bits per word is small compared to the in-

struction words, and the control bits mostly contain

the preferred values, the added energy consumption is

quite small.

If the NOPs do not dominate the mask search, the

efficiency of xor-masking when using multiple masks

and our proposed implementation seems to depend on

the distribution of energy per basic block. If the energy

is distributed evenly among all basic blocks, overhead

from the mask control seems to counter the benefit of

masking. If the best basic blocks consume majority of

the total energy, using multiple masks seems more ben-

eficial.

4.3 On the Optimality of the Proposed Method

Theoretical best-case scenario for any given instruction

trace occurs, when all bits in the trace are of the pre-

ferred value. To estimate the remaining energy saving

potential of our proposed technique on the two cores,

we calculated the instruction memory energy consump-

tion for each benchmark when all bits in its trace are

of the less energy consuming logic value. Because using

multiple masks only brought significant improvements

in two benchmarks, this evaluation was done using a

single mask per benchmark.

Comparison to energy consumption achieved with

the proposed method per benchmark is presented in
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(b) DSP core instruction memory energy reduction as a function of
number of masks. Positive numbers indicate a reduction in energy con-
sumption.

Fig. 10: Energy reduction with xor-masking for DSP core.

Fig. 11. For LM32, coremark was closest to its mini-

mum, consuming 17% more energy. Worst benchmark

was matrix, consuming 164% more energy. On aver-

age, the 11 benchmarks consumed 61% more energy

compared to the minimum. The DSP core consumed

94% and 92% more energy with LORD and MMSE, re-

spectively. On average they consumed 93% more energy

than the minimum.

This suggests that there is still potential for fur-

ther energy savings. However, additional improvements

depend on the instruction mixes of the benchmark pro-

grams. If the instructions utilized by a benchmark differ

greatly on the bit-level, it is hard to gain additional re-

ductions in energy.
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Fig. 11: Increase in energy consumption of benchmark

programs compared to the optimal case.

4.4 Limitations in Evaluation

As the results obtained with xor-masking are depen-

dent on the program execution and individual instruc-

tions, programs whose control flow is data-dependent

can perform worse with other input values than the

ones that were used to form the xor-masks. In cyclic

applications, where the amount of loop iterations is

not known at compile-time, it is difficult to conclude

the optimal masks. Estimating these worst-case scenar-

ios shares similar issues with Worst-Case Execution-

Time (WCET) analysis [35]: if the amount of loop it-

erations is not constrained or the program execution

time depends on the input data, it is very hard to ac-

curately estimate the WCET. In our case, this leads

to estimating the worst-case energy consumption being

difficult.

4.5 Estimation of Loop Masking

In this evaluation, we consider loops with exit points

only at the end of the loop found in the LM32 bench-

marks. This is to simplify the mask changing by only

allowing it at entering and exiting the loop and, there-

fore, avoid accidentally decoding instructions with the

wrong mask.

In order to estimate the savings, a mask was searched

for each loop similar to the multiple mask case, but us-

ing only one control bit to indicate whether a word

in memory is masked or not. Then, a generic mask

was searched for the rest of the instructions. The cal-

culated results are presented in Table 5. The energy

consumption is compared to the single xor-mask case.

The largest energy savings were reached in lms, fir and
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Table 5: Energy reduction with only loops masked.

Benchmark
Avg.
loop

length

Avg.
loop

execu-
tions

Loop
cycles

per
total

cycles
(%)

Energy
reduc-

tion
(%)

adpcm 2.2 95.7 0.3 0.8
aes 2.3 124.6 0.6 1.0
blowfish 2.6 187.4 0.1 0.1
coremark 3.3 33.0 0.0 0.0
matrix 5.0 2769.0 4.5 0.4
fir 5.0 101.0 71.8 1.8
gsm 2.8 123.2 1.3 -0.6
jpeg 2.5 7912.6 0.7 1.5
lms 5.0 101.0 47.8 3.8
mips 5.0 70.0 1.5 0.2
sha 3.7 52.7 0.0 0.0

jpeg enchmarks, 3.8%, 1.8% and 1.5%, respectively.

Overall, the savings were small. The saving depends

somewhat on loop lengths and number of iterations,

but more on the amount of cycles executed inside loops

compared to the overall cycles.

4.6 Impact on Memory Size

The masking schemes introduced in this paper each

have a different effect on the instruction memory size.

When using a single mask per program, the effect is

minimal: if a mask is stored as a first instruction in the

memory, the memory size only increases by one. In the

multi-mask scheme, a mask is required for each basic

block in a program and the instruction memory size is

increased by the amount of basic blocks. For the loop

masking scheme described in this paper, changing the

mask for a loop requires four extra instructions. Thus,

for the loop masking scheme the memory size overhead

is obtained by multiplying the amount of loops by four.

For the multi-mask and loop masking scheme applied to

LM32, the effect on memory size is presented in Table 6.

The relative memory size increase in multi-mask scheme

depends on the amount of basic blocks in a program in

relation to its original instruction amount. The largest

overhead, 26.9%, was incurred in coremark, which had

624 basic blocks in relation to 2320 instructions. This

is explained due to coremark being quite program con-

trol oriented. Fir and lms had the smallest overhead,

3.2% and 3.3% respectively. The loop masking scheme

incurred only slight memory size overheads, with a max-

imum of 2.3% in adpcm and a minimum of 0.5% in lms

and mips. This is due to the scheme only selecting loops

that only have exit points in the end. Therefore, the

Table 6: Impact on LM32 instruction memory size when

using multiple xor-masks.

Benchmark num. multi-mask loop masking
instructions ∆(%) ∆(%)

adpcm 2949 +6.4 +2.3
aes 4212 +10.0 +1.1
blowfish 2306 +6.5 +1.2
coremark 2320 +26.9 +1.0
matrix 603 +9.8 +0.7
fir 472 +3.2 +0.8
gsm 1912 +13.0 +1.0
jpeg 4308 +12.7 +0.7
lms 764 +3.3 +0.5
mips 819 +7.8 +0.5
sha 1638 +7.5 +0.7

amount of loops that a mask is applied to is typically

small.

5 Conclusions

Energy consumption of on-chip and off-chip memo-

ries offers optimization opportunities in pervasive com-

pute devices. In this paper, a novel statistical method,

xor-masking, was proposed to reduce the instruction

fetch energy consumption in asymmetric SRAM tech-

nologies. The proposed method was evaluated on Lat-

ticeMico32 RISC soft-core with 11 benchmark pro-

grams, and a wide instruction word architecture DSP

core with two typical programs for software defined

radio use.

Including the energy overhead of the decoding logic,

the proposed method consumes up to 13% less energy

compared to the state-of-the-art majority voter encod-

ing on the same SRAM. The total CPU energy reduc-

tion is up to 5% compared to majority voter encoding.

The energy consumption with the proposed method

was smaller in all benchmark programs compared to

the majority-voter-encoding. In addition, the proposed

method reduces instruction data bus toggling up to

3.3% compared to the referred method. When using

multiple masks, there were notable energy savings of

7-9% compared to the single xor-mask scheme in two

benchmarks, and minor improvements in majority of

the benchmarks. Instruction memory read energy re-

duction for the DSP core was 38.4% in the best case

when using one mask.

Future work involves researching methods for ap-

plying xor-masking to dynamically linked code, system

calls and context switches. Different schemes, imple-

mentation and its logic overhead need to be carefully

considered.



Instruction Fetch Energy Reduction with Biased SRAMs 13

6 Acknowledgments

The authors would like to thank the TUT Graduate

School, Academy of Finland (project PLC), Finnish

Funding Agency for Technology and Innovation (project

”Parallel Acceleration 3”, funding decision 1134/31/2015),

and ARTEMIS JU under grant agreement no 621439

(ALMARVI).

References

1. Luigi Atzori, Antonio Iera, and Giacomo Morabito. The
internet of things: A survey. Computer Networks, 54(15),
2010.

2. M. Taylor. Is dark silicon useful?: Harnessing the four
horsemen of the coming dark silicon apocalypse. In Pro-
ceedings of the 49th Annual Design Automation Confer-
ence, June 3-7 2012.

3. D. Bol, J. De Vos, C. Hocquet, F. Botman, F. Durvaux,
S. Boyd, D. Flandre, and J. Legat. SleepWalker: A 25-
MHz 0.4-V Sub-mm2 7- µm2 µW/MHz microcontroller
in 65-nm LP/GP CMOS for low-carbon wireless sensor
nodes. IEEE Journal of Solid-State Circuits, 48(1), Jan.
2013.

4. A. Carroll and G. Heiser. An analysis of power consump-
tion in a smartphone. In Proceedings of the USENIX
Annual Technical Conference, Boston, MA, June 23-25
2010.

5. X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta,
A. Raghunathan, and K. Roy. Spin-transfer torque de-
vices for logic and memory: Prospects and perspectives.
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 35(1), Jan 2016.

6. J. Hu, C.J. Xue, Q. Zhuge, WC. Tseng, and E.H.-M.
Sha. Towards energy efficient hybrid on-chip scratch pad
memory with non-volatile memory. In Design, Automa-
tion Test in Europe Conference Exhibition, Mar. 14-18
2011.

7. L. Benini, A. Macii, and M. Poncino. Energy-aware de-
sign of embedded memories: A survey of technologies,
architectures, and optimization techniques. Transactions
on Embedded Computing Systems, 2(1), Feb. 2003.

8. ISSCC: ISSCC 2016 tech trends, Feb. 2016.
http://isscc.org.

9. N. Azizi and F.N. Najm. An asymmetric SRAM cell
to lower gate leakage. In Proceedings of the 5th In-
ternational Symposium on Quality Electronic Design,
Hangzhou, China, Mar. 15-16 2004.

10. M. Imani, S. Patil, and T.S. Rosing. Hierarchical design
of robust and low data dependent FinFET based SRAM
array. In Proceedings of the International Symposium on
Nanoscale Architectures, Boston, MA, July 8-10 2015.

11. H. Mori, T. Nakagawa, Y. Kitahara, Y. Kawamoto,
K. Takagi, S. Yoshimoto, S. Izumi, K. Nii, H. Kawaguchi,
and M. Yoshimoto. A 298-fJ/writecycle 650-fJ/readcycle
8T three-port SRAM in 28-nm FD-SOI process technol-
ogy for image processor. In Proceedings of the IEEE Cus-
tom Integrated Circuits Conference, San Jose, CA, Sep.
28-30 2015.

12. A. Teman, A. Mordakhay, J. Mezhibovsky, and A. Fish.
A 40-nm sub-threshold 5T SRAM bit cell with improved
read and write stability. IEEE Transactions on Circuits
and Systems II: Express Briefs, 59(12), Dec. 2012.

13. K. K. Young. Short-channel effect in fully depleted soi
mosfets. IEEE Transactions on Electron Devices, 36(2),
Feb 1989.

14. J. Multanen, T. Viitanen, P. Jääskeläinen, and J. Takala.
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