
Noname manuscript No.
(will be inserted by the editor)

Variable Length Instruction Compression on
Transport Triggered Architectures

Timo Viitanen · Janne Helkala ·
Heikki Kultala · Pekka Jääskeläinen ·
Jarmo Takala · Tommi Zetterman ·
Heikki Berg

Received: date / Accepted: date

Abstract The memories used for embedded microprocessor devices consume
a large portion of the system’s power. The power dissipation of the instruc-
tion memory can be reduced by using code compression methods, which may
require the use of variable length instruction formats in the processor. The
power-efficient design of variable length instruction fetch and decode is chal-
lenging for static multiple-issue processors, which aim for low power consump-
tion on embedded platforms. The memory-side power savings using compres-
sion are easily lost on inefficient fetch unit design. We propose an implemen-
tation for instruction template-based compression and two instruction fetch
alternatives for variable length instruction encoding on transport triggered ar-
chitecture, a static multiple-issue exposed data path architecture. With appli-
cations from the CHStone benchmark suite, the compression approach reaches
an average compression ratio of 44% at best. We show that the variable length
fetch designs reduce the number of memory accesses and often allow the use of
a smaller memory component. The proposed compression scheme reduced the
energy consumption of synthesized benchmark processors by 15% and area by
33% on average.

The authors would like to thank Business Finland (funding decisions 40081/14 and
1846/31/2014), Academy of Finland (funding decisions 253087 and 297548), and ARTEMIS
JU under grant agreement no 621439 (ALMARVI).

T. Viitanen · H. Kultala · P. Jääskeläinen · J. Takala
Department of Pervasive Computing
Tampere University of Technology, Finland
E-mail: {timo.2.viitanen, heikki.kultala, pekka.jaaskelainen, jarmo.takala}@tut.fi

J. Helkala
Nokia Networks, Finland
E-mail: janne.helkala@nsn.com

T. Zetterman · H. Berg
Nokia Technologies, Finland
E-mail: {tommi.zetterman, heikki.berg}@nokia.com

2 T. Viitanen et al.

Keywords transport triggered architecture · instruction compression ·
instruction fetch · embedded systems

1 Introduction

Modern systems-on-a-chip are becoming more and more advanced as an in-
creasing amount of CMOS transistors can be fit on a single integrated circuit.
Larger programs can be stored on the on-chip memories of devices, which con-
sume a significant portion of the system’s power and chip area. This makes it
important to focus on reducing the memory size and accesses to reach a better
power consumption level on the whole.

The power consumption of a circuit is divided into two categories: dynamic
power and static power. The majority of the power dissipated in an integrated
circuit is due to dynamic activity: net switching power, internal cell power and
short-circuit power during logic transitions in the transistors [16]. However, the
proportion of static power, i.e. leakage power dissipation is quickly growing
towards half of all power consumed as the deep submicron technology nodes
continue to decrease in size [2].

The program code, which is often stored on on-chip memory for embedded
microprocessors, is an important aspect to consider for power savings. If High
Performance (HP) SRAM is used on the chip, a substantial amount of current
leakage is present [12]. Slower Low Standby Power (LSTP) SRAM can be
used to avoid large leakage, but LSTP memory cells have higher on-currents,
consuming more dynamic power as a trade-off. For either technology used,
reducing the size of the memory via program code compression is beneficial:
HP SRAM leaks less current when the memory module is smaller, while less
dynamic power is used on expensive LSTP memory read-accesses if multiple
instructions can be read per cycle.

Static multiple-issue architectures such as Very Long Instruction Word
(VLIW), Explicitly Parallel Instruction Computing (EPIC) [13] and Transport
Triggered Architecture (TTA) [9] can gain a lot of power savings from program
code compression due to their long and loose instruction formats, which re-
quire large on-chip memories for the program code. The challenge brought by
some code compression approaches, such as instruction template-based com-
pression, is the requirement of variable length instruction fetch and decode
units. They are especially difficult to design power-efficiently on embedded
devices employing static-scheduled data paths, which have fairly simple fetch
and decode hardware as the starting point. If a low-power variable length en-
coding support can be designed for the processor, power can be saved through
sufficient minimum memory size reduction.

We propose an instruction template-based compression method for TTA
processors, which is used for NOP removal, and implement power-efficient
variable length instruction encoding fetch and decode stages required. Two al-
ternative fetch unit designs are synthesized and benchmarked on a 40 nm ASIC
technology for area and power consumption measurements. The efficiency of

Variable Length Instruction Compression on Transport Triggered Architectures 3

Fig. 1: Example TTA processor with 6 interconnection buses. Computational
resources include four arithmetic-logic units (ALU), two multipliers (MUL),
a load-store unit (LSU), a general control unit (GCU), a 64-entry register
file (RF) and 2-entry boolean register file (BOOLRF), and finally an immedi-
ate unit (IMMU). Some resources are paired to form larger ALU+LSU and
ALU+MUL function units. [8]

the code compression is measured by creating custom processors tailored for
the applications in the CHStone [4] test suite and compressing each test pro-
gram’s code for the processors using four and eight different instruction tem-
plates. Feasibility of the implementation is evaluated by comparing the power
consumption of each test’s program memory pre- and post-compression with
CACTI [17] and comparing the savings with the instruction fetch units’ power
consumption. LSTP SRAM cells are used for the program memory power es-
timation as they function at the 600 MHz clock frequency of the synthesized
TTA processor. Finally, the implementations are benchmarked in complete
TTA processors synthesized in a 28nm FD-SOI process technology.

This paper is an extended version of a conference article [8]. Adding to the
original work, this paper includes an algorithm for template customization,
and a more comprehensive evaluation with system-level benchmarks where
the proposed fetch units are integrated into TTA processor test cases.

This paper is structured as follows. Section II is an overview of TTA. Sec-
tion III introduces the compression approach and variable length instruction
encoding. Section IV describes the hardware implementation. In section V, the
proposed method is evaluated in terms of area, compression ratio and power
consumption. Section VI discusses related work. Section VII concludes the
paper.

2 Transport Triggered Architecture

TTA is a highly modular exposed-datapath relative of VLIW [1]. The main
benefit of TTA comes from software bypassing operation results as inputs to
other operations without going through the register file (RF). As many as 80%
of RF accesses may be eliminated through bypassing [5]. Since the many-port
RF is a major power sink in a VLIW, this allows significant power savings.

4 T. Viitanen et al.

Fig. 2: Instruction encoding for the example TTA processor, using two instruc-
tion templates. [8]

Figure 1 shows an example TTA processor, comprised of several function units
(FU), two register files and a 6-bus interconnection network.

The original work on TTA proposed various instruction encodings for TTAs
including connection encoding, socket encoding and bus encoding [1]. All con-
temporary TTAs use bus encoding, in which each bus has a corresponding
move slot in the instruction word which contains either a move instruction or
a NOP. A partial bus encoding for the example processor is shown in Fig. 2.
The move instruction consists of a source field, a destination field, and an
optional guard field for predicated execution. Opcodes and RF indices are
encoded in the source and destination fields. Moreover, our TTA processor de-
sign toolset [3] supports long immediate encoding using instruction templates,
which replace some move slots with immediate values. The example encod-
ing has two templates, toggled by a one-bit template field which is located
at the instruction’s MSB. This is the minimal template amount for encoding
the move operations and the long immediate for this particular processor. The
template 0 is a base template which has a move operation for each of the six
buses, while template 1 replaces moves 5 and 6 with a special long immediate
move.

3 Variable Length Instruction Compression

Instruction template-based compression removes a part of information in in-
structions, which can lead to a variable length format. The instruction formats

Variable Length Instruction Compression on Transport Triggered Architectures 5

defined by the templates can be used, e.g., for NOP removal. Superscalar pro-
cessors need to decode each incoming instruction and search for instruction
level parallelism simultaneously, whereas in static architectures the operations
are fetched as a bundle, readily scheduled for function units. The effective de-
sign of fetching, decompressing and decoding remains as the challenge for the
static architectures, as well as the optimal selection of instruction templates
for particular processor configurations.

3.1 Template-Based Compression

Instruction template-based compression approach re-encodes the processor’s
instruction set by adding a template field to the instructions. This template
field is used for defining instruction formats which contain information for only
a subset of the available fields in the architecture’s instruction encoding. On
TTA this compression can be employed by considering the available move slots
in the processor as the information which to include in the different instruction
formats. A template defines which move slots are included in the instruction
format, hence the instruction’s size is also tied to the template. The move slots
that are left out of the selection of a template are implicitly assigned NOPs in
the decoding stage, therefore called NOP slots.

The problem becomes the optimal selection of such instruction templates
that the majority of the NOP operations can be removed from the program
code with a minimal amount of templates, as the hardware complexity and
power usage of the decoder grows with each additional template. There is a
large design space of possible instruction template encodings and their com-
pression ratio depends on the workload. For example, a template which can
encode loads and stores is more efficient for data copying than branch-heavy
control logic.

An example of template selection and NOP removal for a 5-bus TTA is
displayed in Fig. 3. In this example, a large amount of NOPs are seen in four
instructions. Two new instruction formats are assigned to the templates ’10’
and ’11’, which only use the buses A,B and D,E. The rest of the buses in
these two formats are considered as NOP slots. If NOPs are seen in the NOP
slots, they are removed from the instruction. These templates can be used in
three instructions to remove a majority of the NOP operations in the program
code.

As seen in the example above, we merged the template previously used only
for long immediate unit selection to be used for NOP removal as well. This
means that in addition to the necessary base template which defines a move
for each bus, at least one template is required by immediate unit selection if an
immediate FU is available in the machine, reducing the amount of templates
that can be used for NOP removal by 2. Due to the binary representation of
templates in the template field, the amount of templates for each machine is
optimally a power-of-two number.

6 T. Viitanen et al.

Fig. 3: A short program before (left) and after (right) assigning two new in-
struction formats, which define two move slots to be used out of the five in
the processor. Most of the NOP operations are removed by using the shorter
instruction formats in the 2nd, 3rd, and 4th instruction. [8]

The actual use of the templates for compression happens during program
scheduling. Each instruction is attempted to match to the list of defined tem-
plates starting with the template with most NOP slots used, resulting in best
compression. If an instruction can be matched with a NOP slot template,
the given template is assigned to the instruction and the bits for each of the
matched NOP moves are removed by a compressor during program image gen-
eration. The instruction template field is read during run-time in the decoder
and the instruction is pieced back together from the variable length represen-
tation to the processor’s maximum instruction length by inserting the missing
NOP bits to the NOP slots. The complexity of the re-assembly depends on the
amount of slots in the processor, number of templates, maximum instruction
width and the bus widths [10].

In order to simplify the fetch unit, it is useful to constrain instruction
templates to be multiples of a quantum q. The q and maximum instruction size
Imax define the size of the shifter network generated. This q can be increased
from instruction template bit field width ITw +1 to Imax for the least complex
shifter network, but worst decompression ratio of the instruction template
compression. If q equals Imax, the instructions become fixed length. In practice
we use power-of-two values for q and Imax in order to further simplify fetch
logic.

Variable Length Instruction Compression on Transport Triggered Architectures 7

3.2 Template Customization Algorithm

This section describes an algorithm for optimizing instruction template selec-
tion for TTAs based on a given target program. The algorithm first compiles
the program and computes a histogram of NOP patterns found in the machine
code, proceeds to evaluate all possible templates, and selects the template
which gives the best compression ratio. Templates are added in this manner
until an user-set target is reached.

Algorithm 1 Template Customization

1: program ← compile(test program)
2: Initialize slot histogram[2num buses] to 0.
3: for all instuctions in program do
4: slot histogram[slotMask(instruction)] ++
5: end for
6: Initialize instruction sizes[2num buses] to full instruction size.
7: for tmpl= 1 to target nof templates do
8: best pattern ← 0
9: best template size ← 0

10: best program size ← ∞
11: for pattern = 0 to 2num buses − 1 do
12: template size ← computeTemplateSize(pattern);
13: program size ← 0
14: for pattern2 = 0 to 2num buses − 1 do
15: n ← slot histogram[pattern2]
16: if (pattern ∧ ¬pattern2) = 0 then
17: program size + = n ×min(instruction sizes[pattern2], template size)
18: else
19: program size + = n × instruction sizes[pattern2];
20: end if
21: end for
22: if program size < best program size then
23: best pattern ← pattern
24: best template size ← template size
25: best program size ← program size
26: end if
27: end for
28: for pattern2 = 0 to 2num buses − 1 do
29: if (best pattern ∧ ¬pattern2) = 0 then
30: instruction sizes[pattern2] ← best template size
31: end if
32: end for
33: end for

On line 4, the function slotMask constructs a binary number whose bit-
pattern corresponds to active move slots. Bits corresponding to NOP slots are
set to 0. On line 12, the function computeTemplateSize computes how many
bits are needed to encode a template with the given NOP pattern, rounded
up to the next multiple of the user-defined quantum. The bitwise logic on line
16 tests whether the template described by the bitmask pattern can encode an

8 T. Viitanen et al.

instruction with the mask pattern2. Multiple target programs can be supported
by computing a weighted average of their NOP pattern histograms.

The algorithm has an unfavorable complexity class O(2b) with respect to
the number of transport buses b in the target architecture, but with most
practical TTAs, the exponent is small enough that compiling the test programs
takes more time than the iteration. For example, the 256-bit test processor in
this paper has 14 buses, and optimization for 6 templates completes in ca. 20
seconds, while compilation accounts for > 90% of the total runtime. However,
some proposed TTAs have significantly larger bus counts. For example, the
processor of Shahabuddin et al. [15] has 30 buses and, extrapolating roughly,
would take more than a week to optimize. With TTAs of more than ca. 20
buses, a method with better asymptotic complexity is desirable.

3.3 Variable Length Instruction Encoding

Variable length instruction encoding’s main purpose is to encode some in-
structions in a smaller amount of bits than others to save memory required to
represent the program. This immediately introduces a problem: since instruc-
tions become tightly packed in the memory, they might no longer be aligned
at the beginning of memory words for convenient fetching and execution.

The incoming instructions must be found from the memory words being
fetched and expanded back to the full instruction length before decoding. In
order to be able to splice the bit patterns into decipherable instructions while
guaranteeing continuous execution, a buffer is required in the fetch unit. The
design of this buffer is crucial, because its complexity can grow rapidly on the
logic level if an inefficient implementation is used, consuming more dynamic
power than is saved by the reduced instruction bits. The decoder’s complexity
must be taken into account as well, as its size will increase undesirably unless
constraints are set on the design.

Finally, a method for handling random access support is required, i.e. how
to execute control flow operations such as jump or call, which require finding
an instruction to execute from the misaligned memory. Especially the execu-
tion of calls is complicated, because the return address of the program flow
must be recorded. In a fixed length instruction architecture, saving the return
address is as simple as saving the program counter’s value, because each in-
struction is neatly aligned in the memory. In a variable length fetch design,
there’s an unknown amount of instructions with unknown sizes remaining in
the buffer when a call is detected. A pure hardware solution to return address
calculation requires knowing which memory address each instruction comes
from, the track-keeping of which bloats the hardware.

We investigated two alternative fetch units to estimate the power consump-
tion of different buffer architectures: ring buffer fetch and shift register fetch.
The fetch units are capable of continuous instruction splicing from the mem-
ory words and both handle the execution of jump instructions. On-hardware
return address calculation was implemented for the former design. Due to the

Variable Length Instruction Compression on Transport Triggered Architectures 9

additional complexity from recording the return addresses, we found out that
it is easier to implement function calls and their return stack completely in
software, therefore, the shift register design was designed without a call oper-
ation.

Our solution for random access support on TTA is addressed partially
by the compiler and partially inside the fetch unit. Jumps are supported by
aligning all control flow operation targets in the program code at memory
addresses. This means that the code is divided into blocks which are mostly
misaligned due to variable length instructions, but occasionally aligned again
at the locations of jump targets. An issue with jump target alignment is that
the instruction prior to an aligned instruction may contain redundant infor-
mation, padding bits, which are not to be executed. In our implementation,
we append a padding indication bit to the MSB-end of each instruction, indi-
cating whether the current instruction contains padding bits in the memory
word after the actual instruction bits. This bit is ’1’ if padding bits exist.

4 Implementation of Hardware Unit

The major changes to TTA processor micro architecture required for variable
length instruction support are in the decoder and the fetch units. The changes
in the decoder are generated per-processor according to NOP instruction tem-
plates. The decoder contains a look-up table -based re-assembly network for
the instruction template decompression.

The names of the two fetch alternatives, Ring Buffer (RB) and Shift Reg-
ister (SR), describe how the fetch unit handles the incoming memory words.
RB uses a multiplexer network which targets different parts of the buffer for
writing and reading. SR uses a shifter network to store and consume the in-
structions in the buffer in a First In First Out manner. The former is a mini-
malist approach that has a buffer width of only 2Imax, while the latter’s buffer
width is 3Imax and has more relaxed control logic.

The RB fetch unit’s basic buffer structure during execution is displayed in
Fig. 4. It was designed based on the constraint that without needing to stall
during execution, a minimum buffer width of 2Imax is required for continuous
instruction fetching. Its internal logic cycles a Read Pointer (RP) to point
at the MSB of the current instruction being read from the buffer, and Write
Pointer (WP) to define whether the next memory word is to be assigned to the
upper or lower half of the buffer. The granularity of the RP and the complexity
of the internal multiplexer structure are directly affected by the minimum
instruction size q. The content of the buffer is stored in a variable and rotated
each cycle by a rot r function with RP + 1 amount to align the instruction
being read to the buffer’s MSB for output. The rot r operation is needed when
the content inside the buffer becomes misaligned, causing instructions to wrap
around from the LSBs of the buffer to the MSBs.

Because of the buffer’s limited size, need for uninterrupted execution and
the memory read latency of one cycle, the implementation needs to check

10 T. Viitanen et al.

Fig. 4: The structure of the ring buffer fetch unit for Imax = 2q. An instruction
has been written to the MSB register on the previous cycle and is currently
being read out of the buffer, indicated by the RP. WP is assigning the next
memory word to the LSB register. The RB’s contents are rotated with a rot r -
function by RP +1 for output. Other possible RP locations are defined by the
q. The data goes directly to fetch output port from the buffer. [8]

whether the current instruction pointed by RP is large enough to free the
buffer half targeted by WP for the next cycle. The size of the variable length
instruction is decoded with the help of a look-up table during the same cycle as
an instruction is read out to determine buffer fullness, next RP calculation and
WP selection. Due to RB’s minimal size, the cycle-accurate internal control
logic becomes complicated. The WP and RP synchronization after a control
flow instruction ultimately required the use of one stall cycle to simplify the
control logic and to flush the buffer.

The shift register design was created to simplify the internal logic of the
fetch unit and to address the RB’s stall cycle. The buffer width was increased
by one instruction to 3Imax to alleviate the need for complex control logic,
using the data in port of the unit as one of the buffer slots. The wider buffer
simplifies checking buffer fullness and reduces the critical path inside the fetch
unit, allowing higher clock frequencies to be reached. However, an extra reg-
ister with the width of Imax is required at the output, as otherwise data in
would be routed directly to data out, disrupting the processor’s pipeline.

An example of the SR unit is displayed in Fig. 5. The memory words are
always read to the LSB-end of the buffer. Instead of a RP, the SR tracks the
current instruction to be forwarded with a Shift Amount (SA) value. This can
be imagined as a virtual RP with the conversion: SA = Imax − (RP + 1). For
output, the entire buffer’s contents are stored into a variable which is shifted
left by SA, aligning the current instruction pointed by RP to MSB.

Every cycle the buffer’s contents are shifted left by Imax bits, and every
cycle an instruction is consumed from the buffer. If only instructions with the

Variable Length Instruction Compression on Transport Triggered Architectures 11

Fig. 5: The shift register fetch structure for Imax = 2q. An instruction is seen in
the data in port and treated as a part of the buffer. The incoming instruction
is Imax length and is shifted left to the MSB for output, indicated by the SA
value, which is calculated from a virtual RP value. Other possible SA amounts
are defined by the q. The data propagates through a data out register before
output. [8]

size of Imax are written in and read out, the buffer stays at equilibrium. The
buffer begins to fill up when smaller instructions are written in, with the RP
approaching the left side of the buffer. When an instruction the size of Imax

would no longer fit in, the fetching is stalled and instructions are read out
from the buffer until an instruction the size of Imax fits to the buffer again.

5 Evaluation

Two TTA processors with Imax of 128 and 256 bits were customized for a
subset of the CHStone test suite to measure the compression efficiency of two
different instruction template compression configurations with four and eight
templates. In these configurations, two and six templates were used for NOP
removal, respectively. The power consumption of the program memory was es-
timated with web-based CACTI 5.3 (rev 174) pre- and post-compression. The
power consumption of the two fetch designs were measured with three differ-
ent quanta using synthetic tests to scope out the worst case power dissipation.
Additionally, the used chip area of the designs are provided.

5.1 Compression Efficiency

We used the CHStone C-based high-level synthesis test bench for measuring
the compression ratio of the instruction template-based compression. A TTA
machine with an Imax of 256 was customized for the benchmarks. We started
with a 6-issue VLIW equivalent processor architecture and reduced it by com-
bining rarely used buses until a 256-bit instruction length was reached. This

12 T. Viitanen et al.

adpcm aes blowfish gsm jpeg motion sha average
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

30.14%
32.63%

30.21%

36.30%

42.61%
39.96%

29.41%

34.47%

15.11%

27.21%

18.45%

24.05% 25.78%
21.78%

15.85%

21.18%

Space saving
Space saving with 6 templates Space saving with 2 templates

CHStone test name

Sp
ac

e
sa

ve
d

(a) 128-bit TTA

adpcm aes blowfish gsm jpeg motion sha average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

45.41%

37.27%

46.52%

40.24%

56.40%

45.96%

37.15%

44.14%

33.46% 33.79%
36.69%

30.92%

43.57%

34.78%

22.37%

33.66%

Space saving
Space saving with 6 templates Space saving with 2 templates

CHStone test name

Sp
ac

e
sa

ve
d

(b) 256-bit TTA

Fig. 6: Compression ratios in the CHStone benchmark.

process is described in more detail in [18]. The benchmark programs’ uncom-
pressed sizes were in the range of 14–50 KB, with the exception of the large
jpeg test which was approximately 376 KB.

We created instruction templates using the algorithm described in Sec-
tion 3.2. The whole CHStone testbench was used as the target workload. For
the machine with 2 NOP templates, we set q to 64, and the algorithm pro-
duced two short templates of lengths 64 and 128. For the machine with 6 NOP
templates, we reduced q to 32, resulting in a range of templates between 32
and 192 bits, two of which encode a 32-bit long immediate.

When compiling the test programs, we used a compiler pass which attempts
to reschedule instructions to utilize available instruction templates better [10].
This improved compression ratios by 2-3%.

Resulting compression ratios are shown in Fig. 6. The 2-template TTA
reached an average ratio of 33% and a maximum of 43%, and the 6-template
TTA improved to an average of 44% and a maximum of 56%. Some ratios are
lower than in [8], which appears to be due to a newer version of the compiler
generating up to 16% more compact baseline code, which has fewer NOPs to
compress.

Variable Length Instruction Compression on Transport Triggered Architectures 13

5.2 Program Memory Power Consumption

The power consumption of the program memory when assuming the componen
is scaled down to the minimum required by the program at hand was estimated
with CACTI before and after instruction template compression. ITRS-LSTP
was chosen for the SRAM transistor type, interconnect projection type was
set to conservative and wire outside of mat as semi-global. Technology node
used was 40 nm and temperature was set to 300K for all measurements. The
number of bits read out per cycle was matched with the memory width, i.e.,
the full instruction length of 256 bits. One read/write port was used. For the
estimation, SRAM size was set to exactly the size of the program, which is
unrealistic as SRAM is typically not manufactured in arbitrary sizes, but gives
an estimate of power savings achieved by the instruction template compression.
Finally, the total dynamic read power per read port Pdyn is calculated with

Pdyn =
Edyn

tclk
= Edynfclk (1)

where Edyn is the dynamic energy per read port estimated by CACTI and fclk
is the clock frequency of 600 MHz for the SRAM, which is the target frequency
used in the synthesis of the fetch units. tclk is the cycle time of the 600 MHz
clock. Since LSTP SRAM cells were used in the measurements, the portion
of leakage power was much less than 0.1% of the total power consumed and
could be left out of consideration. The overhead of the instruction template bits
and padding bits required by the proposed TTA’s variable length instruction
format are taken into account in the results, while their effect is minimal (<
1%).

The power savings per CHStone benchmark are presented in Fig. 7. The
difference between 2 and 6 instruction templates used for the NOP removal is
also visible in the power results: 6 templates covered much more of the NOP
moves, allowing much better compression ratio and smaller SRAM memory
size. In order to compensate for the jpeg test results, where the benchmark
contains a significantly larger instruction count, a geometric mean of the power
saved in all the tests is presented: 4.74 mW with six instruction templates and
3.91 mW with just two instruction templates. The power saved was not linear
with the amount of bytes reduced from the program code, because the size of
the program memory affects the consumption, especially when power of two
values are crossed. Despite approximately 21 KB was saved in the aes test with
six templates, only 3.45 mW less power was consumed, while 6.42 mW of power
was saved in the blowfish test with 13 KB memory reduction. As examples,
the program code for aes could be fitted on a 32 KB memory instead of 64 KB
after compression, and blowfish on 16 KB instead of 32 KB.

Since SRAM memory is typically not manufactured in arbitrary sizes, the
power saved when switching to a half smaller memory size was estimated
with CACTI with the same parameters as for instruction compression. These
results are presented in Fig. 8. The chart shows that a considerable saving
is seen each time when a reduction is possible, until 16 KB. This highlights

14 T. Viitanen et al.

adpcm aes blowfish gsm jpeg motion sha average
0

2

4

6

8

10

3.25

0.86
1.46

3.28

9.23

2.71

0.64

2.15

1.26
0.70 0.64 0.54

5.93

0.47 0.26
0.80

Total power saved by memory size reduction
Power saved with 6 templates Power saved with 2 templates

CHStone test name

Po
w

e
r

sa
ve

d
(m

W
)

(a) 128-bit TTA

adpcm aes blowfish gsm jpeg motion sha average
0

4

8

12

16

20

24

28

7.28

3.86

6.63

2.87

24.13

3.79 2.93

5.45

2.38
3.61

5.75

2.20

16.67

2.81
1.13

3.44

Total power saved by memory size reduction
Power saved with 6 templates Power saved with 2 templates

CHStone test name

Po
w

e
r

sa
ve

d
(m

W
)

(b) 256-bit TTA

Fig. 7: Power saved with instruction template compression, using 2 and 6
instruction templates.

that a good amount of power can be saved even if the program image does
not compress significantly, but if it compresses sufficiently to fit on a smaller
memory module.

5.3 Fetch Unit Power Consumption

The original and the two alternative fetch designs were synthesized on a 40 nm
standard cell technology, using quanta of 2, 32, and 128 bits. The target clock
speed was set to 600 MHz and each variable length design variant was sub-
jected to three synthetic test cases, which explored the units’ worst case power
consumption. The three test cases consisted of a varying degree of Imax = 256-
bit and quantum (q) length instructions: Either all q-length, all Imax-length
or alternating Imax- and q-length instructions.

The test result with the highest power consumption for each design variant
is displayed in Fig. 9. In most cases, the worst power consumption was seen
when the fetch unit had to repeatedly fetch and handle q-length instructions, as
its internal multiplexer and shifter structures had to operate on bits. The best

Variable Length Instruction Compression on Transport Triggered Architectures 15

512KB 256KB 128KB 64KB 32KB 16KB
0

5

10

15

20

25

17,39

20,86

8,36
6,51 7,11

3,60

Memory type

P
ow

e
r

sa
ve

d
 (

m
W

)

Fig. 8: Memory power saved when LSTP SRAM memory size is reduced by
half. [8]

Fixed length RB q128 RB q32 RB q2 SR q128 SR q32 SR q2
0

2

4

6

8

10

12

1.02

4.52
4.99

6.14

4.86

8.81
9.49

Design variant

To
ta

l
po

w
er

 c
on

su
m

p
ti

on
 (

m
W

)

Fig. 9: Fetch units’ total power consumption with quanta (q) of 2, 32 and 128
bits, showing worst case test results. [8]

results are seen with a q of 128 bits, which is half of the maximum instruction
length. On the ring buffer design, the other q-values follow closely, while the
power consumption grows rapidly on the SR design.

At best, the variable length fetch unit requires 3.50 mW of extra power to
operate at worst case, when the q of 128 bits is used. However, a much better
compression ratio is seen with a q of 32 bits, which is the quantum used in
the instruction template compression results of this paper. The SR approach
for a q of 32 consumes more power than would be saved with 6 instruction
templates on average, unless a reduction from a 128 KB memory or larger to a
smaller category can be made. The ring buffer is much more efficient, reaching
the break-even of average power savings when just two instruction templates
are used for compression.

As long as a SRAM memory power saving of approximately 4.0 mW or
more is reached with compression, the variable length ring buffer fetch’s usage
is favorable. These results do not include the overhead from the instruction
template decompression which is integrated in the decoder unit, which most
likely consumes some more dynamic power to re-assemble the decompressed
instructions. This can be projected to be a fairly efficient operation, as it is a

16 T. Viitanen et al.

Fixed length RB q128 RB q32 RB q2 SR q128 SR q32 SR q2
0

5

10

15

20

25

30

35

40

45

4.5

23.9 24.9 26.3
23.9

31.6

39.8

Design variant

D
es

ig
n
 a

re
a

(k
ilo

ga
te

s)

Fig. 10: Fetch units’ area in kilogates with quanta (q) of 2, 32, and 128 bits,
using target clock speed of 600 MHz. [8]

multiplexer network which is simplified by choosing a reasonably large q and
using few instruction templates.

5.4 Chip Area

The area of each of the fetch designs was collected from the 40 nm standard
cell synthesis results and is presented in Fig. 10 in kilogates. The fetch designs
were synthesized successfully for the performance range of 500–1000 MHz.

A similar trend is seen in the area as in the power consumption: the SR
designs with a small q grow rapidly, while the ring buffer stays more compact
even when q is increased. Worth noting is that SR design’s area exploded when
the maximum instruction length of a power of two value− 1 was used, while
the ring buffer’s area followed a linear trend with maximum instruction size
increase. It is interesting to note that at their simplest form at q of 128, the
ring buffer and SR are of similar size. This implies that the extra logic the
ring buffer requires to function roughly equals the extra logic required by the
SR design’s buffer, which is one instruction longer. Finally, with the least logic
generated from a q of 128 bits, both of the new designs are 431% larger than
the original fetch design, which only handles fixed length instructions.

5.5 System Benchmark

The previous synthetic benchmarks characterize the proposed fetch units in
general terms, but excludes some dynamic behavior which may have a large
effect on the power consumption of a complete system. For one example, the
power consumption of the instruction decoder varies depending on the runtime
mixture of templates it has to expand into full instructions. On the other hand,

Variable Length Instruction Compression on Transport Triggered Architectures 17

if many of the executed instructions use small templates, the processor needs
fewer memory accesses to fetch them, reducing SRAM power.

In order to gauge the relative importance of these dynamic effects, we per-
formed synthesis and power estimation of processors with different memory
sizes and fetch units. The processors were synthesized on a 28nm FD-SOI
process technology using Synopsys Design Compiler. We used operating con-
ditions of 1V, 25C, and typical resistance-capacitance models. Basic power op-
timizations are enabled, including clock gating and poly-bias, which replaces
multi-Vth optimization in the target process. Design Compiler is run in a topo-
graphical mode, which provides estimates of wire delays and clock tree power
consumption. Clock frequency is constrained to 1GHz, except for the cases
with very large memories, which are set to 0.8GHz.

We concentrate on the 128-bit wide instruction processor, since the 256-bit
processor rarely achieves good utilization with this benchmark: there is only
an average performance penalty of 10%. The processor is synthesized with the
two proposed fetch options and a baseline fetch without variable-length coding.
Each option is synthesized with several instruction memory sizes, so that each
benchmark program can be run on the smallest memory that can accommodate
it, rounded to the next power of two. A memory compiler which prioritizes,
in order of decreasing importance, density, speed, leakage power and dynamic
power, is used to generate SRAM blocks of sizes 128x512, 128x1024, 128x2048
and 128x4096. The jpeg test requires more memory than the largest block, so
in this case the memory is constructed in RTL from multiple blocks and a
multiplexer. The compiler produces timing and power models which are used
in simulation. Data memory is not included in synthesis, since it is unaffected
by the choice of instruction compression.

Power estimation is based on switching activity recorded from RTL sim-
ulation of the CHStone benchmark on Mentor Modelsim. The tests blowfish,
jpeg and sha have long runtimes, so we simulate them for only 105 clock cycles.
Instruction-level simulation shows that the utilization profile of computational
resources after this period is similar to a complete run. The shorter tests are
run until completion.

Results are shown in Table 1 and in Figure 11. Our memory components
have an approx. 50% higher dynamic power than estimated with CACTI for
32nm, balanced by a one-third smaller area and a shorter access time. This
is likely due to design tradeoffs in the memory compiler, which favors density
at the cost of dynamic power. Another factor is that our simulated dynamic
activity may differ from the statistical model in CACTI that does not account
for the switching activity of real application execution. As a result, the instruc-
tion memory dominates the power profile of each processor. Since compressed
programs have fewer instruction memory accesses, compression gives 5-9%
power savings even in the aes and blowfish tests, where the instruction mem-
ory cannot be shrunk since the program size does not fall past a power-of-two
boundary.

The RB and SR designs both reduce instruction SRAM power by an aver-
age of 32% and area by an average of 30%, resulting in overall power savings

18 T. Viitanen et al.

b
as

e rb sr

b
as

e rb sr

b
as

e rb sr

b
as

e rb sr

b
as

e rb sr

b
as

e rb sr

b
as

e rb sr

b
as

e rb sr

ADPCM AES Blowfish GSM JPEG Mo�on SHA Average

0

5

10

15

20

25

30

35

Instruc�on SRAM Fetch Decoder Core

Po
w

er
 (

m
W

)

Fig. 11: Power estimation results with different fetch units on the 128-bit TTA
and the CHStone benchmark.

of 16.9% and an area reduction of 32%. However, the shift register incurs a
considerable power penalty in the instruction fetch. Due to stalls on jump
instructions, the circular buffer design incurs a slowdown of 0.7-4.1%. Con-
sequently, the shift register design may be preferable in performance-critical
applications. Taking the slowdown into account, the average energy savings
per program run for the RB design are 14.6%. In the jpeg case, instruction
compression allowed the ring buffer design to reach a higher clock frequency
than the baseline. Howerer, this is likely an unrealistic scenario, since a mem-
ory of this size would be accessed through a cache hierarchy.

In order to improve confidence in the synthesis results, we took two of the
designs through a rudimentary place and route flow in Synopsys IC Compiler
and ran power estimation with the sha case. We targeted an utilization of
70% and used congestion-placed routing. The total power of each design was
approx. 5% higher after routing and clock tree synthesis. Figure 12 shows plots
of the routed designs with the design hierarchy highlighted.

6 Related Work

Program code compression has been vastly researched and eventually adopted
in many instruction set architectures. Similarly, variable length instructions
are used in many architectures such as ARM Thumb [14], EPIC[13] and x86,
not only for NOP-removal, but also for executing other instructions of varying
sizes. Some papers introducing new compression methods based on variable
length instruction encoding list impressive compression ratios, but do not show
either performance, area, or power consumption results, such as in [11].

Variable Length Instruction Compression on Transport Triggered Architectures 19

ADPCM AES
base rb sr base rb sr

Power(mW)
SRAM 17.90 11.32 11.25 17.91 14.19 14.21
Fetch unit 0.65 1.71 3.97 0.70 1.86 3.93
Decoder 0.76 1.04 1.10 0.91 1.19 1.25
Core 3.40 3.67 3.92 3.86 4.34 4.71
Total 22.70 17.73 20.24 23.37 21.58 24.10
Power diff. -21.9% -10.8% -7.7% 3.1%
Energy diff. -20.2% -10.8% -5.6% 3.1%
Stall rate 0.0% 2.1% 0.0% 0.0% 2.3% 0.0%
Access rate 100.0% 71.3% 70.7% 100.0% 78.4% 78.1%
Memory size (kB) 32 16 16 32 32 32

BLOWFISH GSM
base rb sr base rb sr

Power(mW)
SRAM 15.68 11.91 11.91 17.90 10.95 10.74
Fetch unit 0.64 1.79 3.93 0.67 1.82 4.21
Decoder 0.83 1.06 1.11 0.81 1.08 1.17
Core 4.14 4.46 4.68 5.77 6.74 7.12
Total 21.28 19.22 21.62 25.15 20.60 23.23
Power diff. -9.7% 1.6% -18.1% -7.6%
Energy diff. -9.0% 1.6% -14.7% -7.6%
Stall rate 0.0% 0.8% 0.0% 0.0% 4.1% 0.0%
Access rate 100.0% 75.2% 75.0% 100.0% 68.9% 67.3%
Memory size (kB) 16 16 16 32 16 16

JPEG MOTION
base rb sr base rb sr

Power(mW)
SRAM 29.01 19.94 19.52 15.67 8.91 8.86
Fetch unit 0.64 1.65 3.34 0.61 1.60 3.81
Decoder 0.79 0.96 0.92 0.71 0.95 0.97
Core 2.94 3.17 3.62 2.92 2.87 3.06
Total 33.38 25.72 27.40 19.91 14.33 16.69
Power diff. -23.0% -17.9% -28.0% -16.2%
Energy diff. -19.1% -17.9% -25.8% -16.2%
Stall rate 0.0% 5.1% 0.0% 0.0% 3.1% 0.0%
Access rate 100.0% 69.0% 67.7% 100.0% 60.8% 60.1%
Memory size (kB) 256 128 128 16 8 8

SHA Average
base rb sr base rb sr

Power(mW)
SRAM 15.69 11.29 11.29 18.54 12.64 12.12
Fetch unit 0.68 1.82 4.31 0.66 1.75 3.93
Decoder 0.88 1.18 1.21 0.81 1.07 1.10
Core 5.80 6.42 6.85 4.12 4.52 4.85
Total 23.04 20.70 23.66 24.12 19.98 21.87
Power diff. -10.1% 2.7% -16.9% -6.5%
Energy diff. -8.1% 2.7% -14.6% -6.5%
Stall rate 0.0% 2.3% 0.0% 0.0% 2.8% 0.0%
Access rate 100.0% 77.2% 76.7% 100.0% 71.5% 70.8%
Memory size (kB) 16 8 8

Table 1: Synthesis and power estimation results.

20 T. Viitanen et al.

Fig. 12: Processor designs after routing: baseline fetch with 1024-word memory
(left) and RB fetch with 512-word memory (right). The RB design has a
prominent fetch unit (red), but takes up less area overall.

Heikkinen evaluated instruction template-based compression in [7,6]. The
compression was performed with 2–32 templates on DSP tests with different
processor configurations. In his benchmarks, the designs consumed more power
than saved, despite a compression ratio of 46,5% was reached with maximum
templates for the processors. The results in this paper are more favorable for
several reasons: The quantum in [6] is limited to 16 bits, while we explored
the effect of quanta of 2, 32, and 128 bits, which are all power of two factors
of the selected maximum instruction length of 256 bits. The two processor
configurations in [6] had instruction widths of 127, and 192 bits, which are
not a power of two, causing more complex hardware structures to be generated
in synthesis. Also both of the fetch designs in this work contained less registers
due to more optimized design.

A very similar instruction template-based compression is used in EPIC[13],
where two variable length encoding schemes can be used to eliminate NOPs
from the program code: MultiTemplate and VariOp. In addition, EPIC’s fixed
length MultiOp instruction format contains a field for how many full NOP
instructions are to be issued after the current instruction, allowing instructions
which contain only null data transports to be omitted completely from the
program code. MultiTemplate instruction format involves the use of templates,
each of which defines a subset of function units to target with the operations of
the variable length instruction. The rest of the FUs are implicitly provided with
a NOP. The VariOp instruction format is different, as it permits any subset
of operation slots to be included within any instruction up to the maximum
FU amount. Each operation is explicitly targeted to a FU and the remaining
empty operation fields are implicitly filled with NOPs on a per instruction
basis.

7 Conclusion

This paper proposed a solution for compressing NOP instructions on TTA
architectures using a variable length instruction encoding approach and in-
struction template-based compression. The compression reduces the required

Variable Length Instruction Compression on Transport Triggered Architectures 21

SRAM memory size required for the program code, lowering the total power
consumption of the processor. Two instruction fetch designs were proposed:
the ring buffer and shift register buffer. The former is a more minimalist de-
sign with a buffer of two maximum length instructions. The latter uses one
more buffer slot to reduce the control logic complexity and reach a better clock
frequency for the processor. A simple template customization algorithm was
also proposed.

The compression achieved 44% program size reduction on average with
6 NOP removal templates and 37% reduction with 2 templates. The fetch
designs consume an extra 3.50 mW of power at minimum on a TTA processor
with 256-bit maximum instruction length. Even though the savings from the
template compression do not always directly surpass the extra power consumed
by the fetch unit in our benchmark suite, the target program can often be fitted
on a half smaller memory module after compression. For SRAM memory sizes
between 32–512 KB and beyond, this reduction is sufficient to get benefit from
the variable length architecture.

In benchmarks on complete processor cores, the ring buffer design saved
energy even in cases where it was not possible to shrink the memory module,
by reducing the number of memory accesses, as multiple instructions could
be fetched with a single access. In the cases where the memory module could
be shrunk, savings were more substantial. Even a small, high-density memory
is comparable in area to the benchmarked processor, therefore, the potential
area savings are significant. On average, the ring buffer design saved 14.6% of
core energy. The shift register design gave less consistent energy savings, but
may be preferable in performance-critical designs since it does not incur stall
cycles on jumps.

As future work we are investigating compiler techniques to take better
advantage of the NOP templates. It would also be interesting to combine the
variable-length instruction compression with a small L0 instruction cache or
a loop buffer for further power savings.

References

1. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. Wiley (1997)
2. Deepaksubramanyan, B. S. and Nun̋ez, A.: Analysis of subthreshold leakage reduction

in CMOS digital circuits. In: Proc. Midwest Symp. Circ. Syst., pp. 1400–1404. Montreal,
QC (2007). DOI 10.1109/MWSCAS.2007.4488809

3. Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C., J.Takala, Martinez, J.: Cus-
tomized exposed datapath soft-core design flow with compiler support. In: Proc. Int.
Conf. Field Programmable Logic and Applications, pp. 217–222. Milan, Italy (2010).
DOI 10.1109/FPL.2010.51

4. Hara, Y., Tomiyama, H., Honda, S., Takada, H.: Proposal and quantitative analysis of
the CHStone benchmark program suite for practical C-based high-level synthesis. J.
Inf. Process. 17, 242–254 (2009). DOI 10.2197/ipsjjip.17.242

5. He, Y., She, D., Mesman, B., Corporaal, H.: MOVE-Pro: A low power and high code
density TTA architecture. In: Proc. Int. Conf. Embedded Comput. Syst.: Architectures,
Modeling and Simulation, pp. 294–301. Samos, Greece (2011)

6. Heikkinen, J.: Program compression in long instruction word application-specific
instruction-set processors. Ph.D. thesis, Tampere Univ. Tech., Finland (2007)

22 T. Viitanen et al.

7. Heikkinen, J., Takala, J., Corporaal, H.: Dictionary-based program compression on cus-
tomizable processor architectures. Microprocessors and Microsystems 2, 139–153 (2009)

8. Helkala, J., Viitanen, T., Kultala, H., Jääskeläinen, P., Takala, J., Zetterman, T., Berg,
H.: Variable length instruction compression on Transport Triggered Architectures. In:
Proc. Int. Conf. Embedded Comput. Syst.: Architectures, Modeling and Simulation, pp.
149–155. Samos, Greece (2014)

9. Jääskeläinen, P., Guzma, V., Cilio, A., Takala, J.: Codesign toolset for application-
specific instruction-set processors. In: Proc. SPIE Multimedia on Mobile Devices, pp.
65,070X–1 – 65,070X–11. San Jose, USA (2007)

10. Kultala, H., Viitanen, T., Jääskeläinen, P., Helkala, J., Takala, J.: Compiler optimiza-
tions for code density of variable length instructions. In: Proc. IEEE Workshop on
Signal Processing Systems, pp. 1–6. Belfast, UK (2014)

11. Pan, H., Asanović, K.: Heads and tails: A variable-length instruction format supporting
parallel fetch and decode. In: Proc. Int. Conf. Compilers Arch. Synthesis for Embedded
Syst., pp. 168–175. Atlanta, Georgia (2001). DOI 10.1145/502217.502244

12. Pilo, H., Adams, C.A., Arsovski, I., Houle, R.M., Lamphier, S.M., Lee, M.M., Pavlik,
F.M., Sambatur, S.N., Seferagic, A., Wu, R., Younus, M.I.: A 64Mb SRAM in 22nm
SOI technology featuring fine-granularity power gating and low-energy power-supply-
partition techniques for 37% leakage reduction. In: Proc. IEEE Int. Solid-State
Circ. Conf. Digest Tech. Papers, pp. 322–323. San Francisco, USA (2013). DOI
http://dx.doi.org/10.1109/ISSCC.2013.6487753

13. Schlansker, M.S., Rau, B.R.: EPIC: An architecture for instruction-level parallel pro-
cessors. Tech. rep., Hewlett-Packard (2000)

14. Segars, S., Clarke, K., Goudge, L.: Embedded control problems, thumb, and the
ARM7TDMI. IEEE Micro 15(5), 22–30 (1995). DOI 10.1109/40.464580

15. Shahabuddin, S., Janhunen, J., Bayramoglu, M.F., Juntti, M., Ghazi, A., Silvén, O.:
Design of a unified transport triggered processor for LDPC/turbo decoder. In: Proc. Int.
Conf. Embedded Comput. Syst.: Architectures, Modeling and Simulation, pp. 288–295.
IEEE (2013)

16. Sheng, L., Ahn, J.H., Strong, R., Brockman, J., Tullsen, D., Jouppi, N.: McPAT: An
integrated power, area, and timing modeling framework for multicore and manycore
architectures. In: Proceedings of Annual International Symposium on Microarchitecture,
pp. 469–480. New York, USA (2009)

17. Thoziyoor, S., Ahn, J.H., Monchiero, M., Brockman, J.B., Jouppi, N.P.: A compre-
hensive memory modeling tool and its application to the design and analysis of future
memory hierarchies. In: Proc. ACM/IEEE Int. Symp. Comp. Arch., pp. 51–62. Beijing,
China (2008)

18. Viitanen, T., Kultala, H., Jaaskelainen, P., Takala, J.: Heuristics for greedy transport
triggered architecture interconnect exploration. In: Proc. Int. Conf. Compilers, Archi-
tecture and Synthesis for Embedded Systems, pp. 1–7 (2014)

