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The computational neuroscience field has heavily concentrated on the modeling of

neuronal functions, largely ignoring other brain cells, including one type of glial cell,

the astrocytes. Despite the short history of modeling astrocytic functions, we were

delighted about the hundreds of models developed so far to study the role of astrocytes,

most often in calcium dynamics, synchronization, information transfer, and plasticity

in vitro, but also in vascular events, hyperexcitability, and homeostasis. Our goal here

is to present the state-of-the-art in computational modeling of astrocytes in order to

facilitate better understanding of the functions and dynamics of astrocytes in the brain.

Due to the large number of models, we concentrated on a hundred models that

include biophysical descriptions for calcium signaling and dynamics in astrocytes. We

categorized the models into four groups: single astrocyte models, astrocyte network

models, neuron-astrocyte synapse models, and neuron-astrocyte network models to

ease their use in future modeling projects. We characterized the models based on which

earlier models were used for building the models and which type of biological entities

were described in the astrocyte models. Features of the models were compared and

contrasted so that similarities and differences were more readily apparent. We discovered

that most of the models were basically generated from a small set of previously published

models with small variations. However, neither citations to all the previous models with

similar core structure nor explanations of what was built on top of the previous models

were provided, which made it possible, in some cases, to have the same models

published several times without an explicit intention to make new predictions about the

roles of astrocytes in brain functions. Furthermore, only a few of the models are available

online which makes it difficult to reproduce the simulation results and further develop the

models. Thus, we would like to emphasize that only via reproducible research are we able

to build better computational models for astrocytes, which truly advance science. Our

study is the first to characterize in detail the biophysical and biochemical mechanisms

that have been modeled for astrocytes.

Keywords: astrocyte, astrocyte network, computational model, glia, intracellular calcium, neuron-astrocyte
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1. INTRODUCTION

Astrocytes have traditionally been regarded as glial cells
responsible for the homeostasis and metabolic support for
neurons (Carmignoto and Gómez-Gonzalo, 2010). Current

Abbreviations: 2-AG, 2-arachidonoylglycerol; 5-HT, 5-hydroxytryptamine; 20-

HETE, 20-hydroxyeicosatetraenoic acid; 19 , Electrochemical gradient; γ ,

Fraction of ligand-bound mGluRs; ρ, Ratio of bound to total Glu receptors;

χ , Depletion of ATP stores; ADP, Adenosine diphosphate; ATP, Adenosine

triphosphate; Bi, Immobile buffer concentration; Bm, Mobile buffer concentration;

BK, Voltage and Ca2+-operated K+ channel; c, Constant; c1, Constant; c2,

Constant; Ca2+, Calcium ion; [Ca2+]free, Total free Ca
2+ concentration; CaPKC,

Ca2+-PKC complex; CCE, Capacitive Ca2+ entry; CICR, Ca2+-induced Ca2+

release; Cl−, Chloride ion; cyt, Cytosol; Dcyt, Diffusion in cyt; DER, Diffusion

in ER; Dext, Diffusion in ext; DAG, Diacylglycerol; DIM, Ligand-bound mGluR

dimer; E, Fraction of effective synaptic-like micro-vesicles in extrasynaptic space;

E2, Euclidean distance between the stimulating electrode and individual neuron;

EAAT, Excitatory amino acid transporter; EET, Epoxyeicosatrienoic acid; ER,

Endoplasmic reticulum; ext, Extracellular space (can be also periastrocytic,

perisynaptic, extrasynaptic, or perivascular space); f , Phenomenological variable

modeling events from Ca2+ rise to vesicle release; fPKC, Fraction of active

PKC; G, G protein; Ga, Astrocytic mediator; Gm, Astrocytic mediator; G6P,

GLC 6-phosphate; GABA, Gamma-aminobutyric acid; GAP, Glyceraldehyde 3-

phosphate; GJ, Gap junction; GLC, Glucose; Gln, Glutamine; Glu, Glutamate; Gly,

Glycogen; h, Active fraction of IP3Rs (Li and Rinzel, 1994); H+, Hydrogen ion;

HCO−

3 , Bicarbonate ion; H-H, Hodgkin-Huxley; Home., Homeostasis; Hyper.,

Hyperexcitability; Iast, Modulating current from the astrocyte to the neuron;

Iast,ATP, Modulating current from the astrocyte to the neuron; Iast,Glu, Modulating

current from the astrocyte to the neuron; Iastro, Modulating current from the

astrocyte to the neuron depending on astrocytic Ca2+ (Nadkarni and Jung, 2003);

Isyn, Synaptic current; Inf., Information transfer; IP3, Inositol trisphosphate; IP3R,

IP3 receptor; k, Constant; K+, Potassium ion; KCC1, K+/Cl− cotransporter;

KIR, Inwardly rectifying K+- and voltage-gated K+ channel; LAC, Lactate;

LIF, Leaky integrate-and-fire; mito, Mitochondrial component; mTRPV, Open

probability of TRPV4 channel; MCU,Mitochondrial Ca2+ unitransporter; mGluR,

Metabotropic Glu receptor; N, Neuron; nBK, Open BK channel probability;

Na+, Sodium ion; NADH, Nicotinamide adenine dinucleotide hydrogen;

NCX, Na+/Ca2+ exchanger; NKA, Na+/K+-ATPase; NKCC1, Na+/K+/Cl−

cotransporter; NMDAR, N-methyl-D-aspartate receptor; NO, Nitric oxide; No.,

Number; NT, Neurotransmitter; O1–O3, Opening probabilities of three gates

related to gliotransmitter release; O2, Oxygen; O2,out, O2 level outside the

mitochondrion; ODE, Ordinary differential equation; P, Recovery for K+ in cyt;

P2XR, Ionotropic purinergic ATP receptor; PCr, Phosphocreatine; PDE, Partial

differential equation; PEP, Phosphoenolpyruvate; PIP2, Phosphatidylinositol 4,5-

bisphosphate; PKC, Protein kinace C; Plast., Plasticity; PLC, Phospholipase C;

PLCβ , PLC isotype β ; PLCδ, PLC isotype δ; PMCA, Plasma membrane Ca2+-

ATPase; post, Postsynaptic; ps, Pore-space; PTP, Permeability transition pore; Pyr,

Pyruvate; R, Active fraction of IP3Rs (Höfer et al., 2002); R1–R5, Concentrations of

five vesicle states; Rac, Fraction of IP3Rs that are not inactivated by Ca2+ [marked

as h by Liu and Li (2013a) and q by Liu and Li (2013b), and same equation as

by Allegrini et al. (2009), modified from Li and Rinzel (1994) and Höfer et al.

(2002)]; Rf, Fraction of the readily releasable synaptic-like micro-vesicles inside

the astrocyte; Rin, Fraction of IP3Rs that are not activated by Ca
2+ [marked as h by

(Allegrini et al., 2009) and same equation as by Liu and Li (2013a,b), modified from

Li and Rinzel (1994) and Höfer et al. (2002)]; Rinact, Fraction of Ca2+-inhibited

IP3Rs (Dupont et al., 2011); Rk, Recovery for [K
+]ext (variable that restores [K

+]ext
to the normal level); Rvol/area, Volume-area ratio; RyR, Ryanodine receptor; Sm,

Secondary messenger; SDE, Stochastic differential equation; SERCA, Sarco/ER

Ca2+-ATPase; SIC, NMDAR-dependent slow inward current; SNARE, Soluble N-

ethylmaleimide-sensitive factor attachment protein receptor; SOC, Store-operated

Ca2+ channel; Spon., Spontaneous; syn, Synaptic cleft; Syn. act., Synaptic activity;

Synch., Synchronization; TRP, Transient receptor potential channel; TRPV4, TRP

vanilloid-related channel 4; UTP, Uridine-5′-triphosphate; Vin, Pulse membrane

voltage; Vm, Membrane voltage; Vasc., Vascular; VGCC, Voltage-gated Ca2+

channel; x, Fraction of gliotransmitter resources; y, Fraction of synaptic resources

in the active states; z, Synaptic activation variable; z0, Reference level of z.

evidence indicates that astrocytes support neuronal functions
also in many other ways. Astrocytes are in a close proximity to
a large number of brain synapses (Bushong et al., 2002; Fellin
et al., 2006; Halassa et al., 2007; Oberheim et al., 2009; Freeman,
2010; Volterra et al., 2014; Olude et al., 2015; Cali et al., 2016), and
the astrocytes together with pre- and postsynaptic neurons have
been proposed to form functional tripartite synapses (Araque
et al., 1999). Astrocytes can thus broadly sense and regulate
synaptic activity. A growing body of evidence also suggests that
astrocytes modulate neural circuits and are involved in many
brain functions, perhaps also in cognitive functions and behavior
(Perea et al., 2009; Wang et al., 2009; Halassa and Haydon, 2010;
Henneberger et al., 2010; Suzuki et al., 2011; Araque et al., 2014;
Sibille et al., 2014; Khakh and Sofroniew, 2015; Poskanzer and
Yuste, 2016). Although more and more evidence is accumulating
on the astrocytic modulation of neurotransmission and synaptic
plasticity, in vivo evidence to support that astrocytes are directly
activated by neurotransmission and signal back to neurons to
modulate neurons’ output remains unclear. Particularly, how this
modulation occurs in time and space is unresolved.

Since the 1990s a variety of experimental techniques and
organisms have been used to study astrocytes. Until 2010 most
of the studies were performed using in vitro cell cultures and
slice preparations. Recently, studies addressing astrocytes’ roles
in brain functions in vivo have accumulated. In short, one could
identify three waves of astrocyte research over the past three
decades, as proposed by Bazargani and Attwell (2016). The
first wave of evidence revealed that neurotransmitter glutamate
increases the astrocytic calcium (Ca2+) concentration in vitro
and this yields to Ca2+ wave propagation between astrocytes
(Cornell-Bell et al., 1990; Charles et al., 1991; Dani et al., 1992;
Newman and Zahs, 1997), which could lead to Ca2+ increase
in the nearby neurons (Nedergaard, 1994; Parpura et al., 1994).
The second wave of evidence showed that pharmacological tools
used to separate astrocytic and neuronal components are not
selective (Parri et al., 2001; Agulhon et al., 2010; Hamilton and
Attwell, 2010). Furthermore, it was speculated that astrocytic
processes close to synapses do not have endoplasmic reticulum
(ER) present and that blocking the inositol trisphosphate (IP3)
receptors (IP3Rs) in the astrocytes has an effect on the astrocytic
Ca2+ but not on the synaptic events (Fiacco et al., 2007; Petravicz
et al., 2008; Agulhon et al., 2010; Patrushev et al., 2013). The
third wave of evidence (Bazargani and Attwell, 2016) led to the
conclusion that the Ca2+ transients in the astrocytic processes
near vascular capillaries (Otsu et al., 2015) and neuronal synapses
(Nimmerjahn et al., 2009) and not in the soma are the key
that needs to be addressed in more detail. In summary, the
challenges in astrocyte research have been the lack of selective
pharmacological tools and the partially contradictory results
obtained in in vivo in contrast to various in vitro preparations.

Although there is partial controversy, which hinders attempts
to explain all findings on astrocytes’ roles in the central nervous
system in an unambiguous way, the majority of data collected
over the past decades strongly suggests that fluctuations in
Ca2+ concentrations in both soma and processes are important
measures of astrocytic activities. Then astrocytic Ca2+ activity
is utilized, in one way or another, by neurons to sense ongoing
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neural activity in closeby or more distant networks. The dynamic,
far-reaching fluctuations, or transients, in astrocytic Ca2+

concentration were also recently recorded in awake behaving
mice in vivo by several independent studies (Ding et al., 2013;
Paukert et al., 2014; Srinivasan et al., 2015). Moreover, astrocytes,
similarly to any other cell in the mammalian body, are known
to express an overwhelming complexity of molecular and cell-
level signaling. The full complexity of the signaling pathways
which control Ca2+ transients and exert their effects in astrocytes
is poorly understood, and the question about their relevance
in awake behaving animals remains unanswered. It is essential
that the research community seeks to systematically characterize
the key signaling mechanisms in astrocytes to understand the
interactions between different systems, including neuronal, glial,
and vascular, in brain circuitry. Astrocytic signaling may provide
a potential, widespreadmechanism for regulating brain functions
and states (Yang et al., 2014; Haim and Rowitch, 2017).

Several factors might be important in orchestrating how
astrocytes exert their functional consequences in the brain.
These include (a) different receptors or other mechanisms that
trigger an increase in Ca2+ concentration in astrocytes, (b)
Ca2+-dependent signaling pathways or other mechanisms that
govern the production and release of different mediators from
astrocytes, and (c) released substances that target other glial
cells, the vascular system, and the neuronal system. The listed
three factors (a–c) operate at different temporal and spatial
scales and depend on the developmental stage of an animal and
on the location of astrocytes. Namely, a substantial amount of
data on a diverse array of receptors to detect neuromodulatory
substances in astrocytes in vitro has been gathered (Backus et al.,
1989; Kimelberg, 1995; Jalonen et al., 1997), and accumulating
evidence is becoming available for in vivo organisms as well
(Beltrán-Castillo et al., 2017). Neuromodulators have previously
been expected to act directly on neurons to alter neural activity
and animal behavior. It is, however, possible that at least part
of the neuromodulation is directed through astrocytes, thus
contributing to the global effects of neurotransmitters (see e.g.,
Ma et al., 2016). Experimental manipulation of astrocytic Ca2+

concentration is not a straightforward practice and can produce
different results depending on the approach and context (for
more detailed discussion, see e.g., Agulhon et al., 2010; Fujita
et al., 2014; Sloan and Barres, 2014). Additional tools, both
experimental and computational, are required to understand
the vast complexity of astrocytic Ca2+ signaling and how it is
decoded to advance functional consequences in the brain.

Several reviews of theoretical and computational models have
already been presented (for a review, see e.g., Jolivet et al., 2010;
Mangia et al., 2011; De Pittà et al., 2012; Fellin et al., 2012; Min
et al., 2012; Volman et al., 2012; Wade et al., 2013; Linne and
Jalonen, 2014; Tewari and Parpura, 2014; De Pittà et al., 2016;
Manninen et al., 2018). We found out in our previous study
(Manninen et al., 2018) that most astrocyte models are based
on the models by De Young and Keizer (1992), Li and Rinzel
(1994), and Höfer et al. (2002), of which the model by Höfer
et al. (2002) is the only one built specifically to describe astrocytic
functions and data obtained from astrocytes. Some of the other
computational astrocyte models that steered the field are the

models by Nadkarni and Jung (2003), Bennett et al. (2005),
Volman et al. (2007), De Pittà et al. (2009a), Postnov et al. (2009),
and Lallouette et al. (2014). However, irreproducible science, as
we have reported in our other studies, is a considerable problem
also among the developers of the astrocyte models (Manninen
et al., 2017, 2018; Rougier et al., 2017). Several other review,
opinion, and commentary articles have addressed the same issue
as well (see e.g., Cannon et al., 2007; De Schutter, 2008; Nordlie
et al., 2009; Crook et al., 2013; Topalidou et al., 2015; McDougal
et al., 2016). We believe that only via reproducible science are we
able to build better computational models for astrocytes and truly
advance science.

This study presents an overview of computational models
for astrocytic functions. We only cover the models that
describe astrocytic Ca2+ signaling by biophysical means. We
first categorize the existing models based on whether they are
describing astrocytes or neuron-astrocyte interactions. We have
previously described some aspects of the astrocyte and neuron-
astrocyte models in our related study (Manninen et al., 2018),
where we listed the details of both the astrocyte and neuron
models in a simplistic, educational manner. In this review, we
characterize in detail the existing models based on what kind of
astrocytic mechanisms have been taken into account. Our study
is expected to help guide future computational studies addressing
the cross-talk between astrocytes and other systems in the brain
and help researchers select suitable models for their research
questions.

2. MATERIALS AND METHODS

In this section, we first outline the basics of astrocyte biology.
The mechanisms presented here are not typically included in
computational neuroscience models and one of our aims is to
carefully assess which of the mechanisms are presently modeled
and how realistically. We then list the computational astrocyte
models, developed by the end of 2017, for our detailed evaluation.
At the end of the section, we give the details howwe characterized
the models.

2.1. Astrocyte Biophysics and Biochemistry
for Modeling of Astroglial Functions
Astrocytes are the most diverse glial cells in the central
nervous system. Astrocytes from different brain regions differ in
morphology, physiology, and expression of genes encoding the
most fundamental proteins responsible for astroglial function. In
general, astrocytes can have a soma, perisynaptic processes which
engulf neuronal synapses and also enclose some extracellular
space, called perisynaptic or extrasynaptic (or sometimes
periastrocytic) space within, and perivascular processes which
connect the astrocyte with blood vessels and enclose some
extracellular space called perivascular space. Below we present
a generic view of some of the most important biophysical
and cellular mechanisms that are shown to underlie important
astrocytic functions (for more information, see also Kettenmann
and Ransom, 2013; Verkhratsky and Butt, 2013).
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2.1.1. Ion Distribution and Ion Channels for Basic

Membrane Excitability
Astroglial cells express all major ion channel types, including
potassium (K+), sodium (Na+), and Ca2+ channels, and
also various types of anion and chloride (Cl−) channels,
water channels (aquaporins), transient receptor potential (TRP)
channels, and non-selective channels. The ion distribution is also
somewhat different from neurons: intracellular concentrations
of K+ and Ca2+ are similar to neurons, but the concentrations
of Na+ and especially Cl− are higher compared to neurons.
Astrocytes have a rather negative resting membrane potential
(around −80 to −90 mV) because of the predominance of
K+ conductance. Electrical depolarization of astroglia does not
produce regenerative action potentials as in neurons.

Ca2+-mediated signals have been proposed to be the main
mediator of communication between astrocytes and other
cellular elements in the brain (Nimmerjahn, 2009; Volterra et al.,
2014; Bazargani and Attwell, 2016). Transient Ca2+ increases
restricted to single cells are called Ca2+ oscillations. In isolated
astrocytes, intracellular Ca2+ oscillations have been shown to
depend mainly on the Ca2+-induced Ca2+ release (CICR) via
IP3Rs from the ER to the cytosol (see e.g., Agulhon et al., 2008).
CICR has been shown to depend on Ca2+ with or without the
influence of IP3. Ca

2+ influx via voltage-gated Ca2+ channels
(VGCCs) and other types of Ca2+ influxes from the extracellular
space have been linked with Ca2+ oscillations as well (Aguado
et al., 2002).

2.1.2. Membrane Transporters for Uptake and

Homeostatic Control of Ions, Neurotransmitters, and

Other Substances
The membrane transporters are particularly important for
astroglia because they control movements of various substances,
including ions, neurotransmitters, and metabolic substrates.
Astroglial transporters include adenosine and adenosine
triphosphate (ATP)-dependent transporters such as the Na+/K+-
ATPase (NKA, also called Na+/K+ pump) and Ca2+-ATPase
[also called Ca2+ pump or plasma membrane Ca2+-ATPase
(PMCA)] on the plasma membrane, in addition to sarco/ER
Ca2+-ATPase (SERCA) located on the ER membrane. They
also contain so-called secondary transporters, such as glutamate
transporters [excitatory amino acid transporters (EAATs)],
gamma-aminobutyric acid (GABA) transporters, glycine
transporters, Na+/Ca2+ exchangers (NCXs), Na+/hydrogen
(H+) exchangers, Na+/bicarbonate (HCO−

3 ) cotransporters,
Na+/K+/Cl− cotransporters (NKCC1), and some others.
Although, for example, glutamate transporters are expressed
by all cell types in the brain, astrocytes are the main cell type
responsible for glutamate uptake. Astrocytes have enzymes that
convert both glutamate and GABA into glutamine. Glutamine
is then released into the extracellular space and taken up by
the presynaptic terminal, and can be converted to glutamate or
GABA.

The NKCC1 cotransporter specifically contributes to the
regulation of extracellular K+ homeostasis in the central
nervous system. During excessive neuronal firing, the local
extracellular K+ concentration can increase markedly and lead

to neural dysfunction. Uptaking extracellular K+, transporting it
intracellularly and releasing to areas with lower concentration are
some of the most important functions of astrocytes. This process
of intracellularly transporting K+ from extracellular areas of high
concentration to areas of low concentration, via active uptake
and release, is called spatial K+ buffering. K+ can also diffuse
in extracellular space which also helps in lowering the local high
concentration. Furthermore, astrocytes also buffer other ions
than K+.

2.1.3. Ionotropic and Metabotropic Receptors for

Sensing the Environment
Astrocytes are able to sense with the help of their receptors local
and more distant environments, including the neural activity
and the synaptically released neurotransmitters, both in in vitro
cell cultures and brain slices as well as in in vivo (Glaum et al.,
1990; Dani et al., 1992; Porter and McCarthy, 1996; Hirase
et al., 2004). Astroglial cells can express the same variety of
receptors as neurons, both ionotropic and metabotropic. These
include glutamate, GABA, glycine, acetylcholine, adrenergic,
serotonin, histamine, cannabinoid, and neuropeptide receptors,
and purinoceptors for adenosine and ATP. For example,
extracellular ATP can bind to astroglial purinergic G-protein
receptors, resulting in IP3-mediated CICR, and, eventually,
release of ATP to the extracellular space.

2.1.4. Release of Transmitters and Modulators
As described above, astroglia are capable of receiving signals from
neurons via membrane receptors and converting the received
information into Ca2+ excitability. The fact that astrocytes could
release extracellular signaling molecules, regulated by this Ca2+

excitability, not only to the vascular system but also to the
neuronal one implies a very active role for astroglia in the brain.
The concept of regulated transmitter/modulator release from
astrocytes to neurons is generally known as gliotransmission
(Parpura et al., 1994; Bezzi and Volterra, 2001), and the released
substances are referred to as gliotransmitters. Most common
gliotransmitters are glutamate, D-serine, and ATP (Parpura
et al., 1994; Parri et al., 2001). Astrocytes are, in general,
thought to release transmitters, and probably also modulators,
by several different mechanisms, which can be broadly divided
into exocytotic release, diffusional release through membrane
pores, and transporter mediated release. It is, however, not
known which of these mechanisms are used in certain astroglial
functions.

These terms “gliotransmission” and “gliotransmitter” may be
somewhat misleading as the very same transmitters are also
released by neurons. Moreover, it is assumed that a mechanism
similar to vesicular release from neuronal synaptic terminals
exists also in astrocytes. Some studies have indeed detected
vesicle-type structures in astrocytes in vitro, and thus it has been
proposed that gliotransmitter release might be purely vesicular.
It is, however, important to bear in mind that the existence of
molecular machinery for packing gliotransmitters into vesicles
and for arranging the vesicles into a readily releasable pool has
not so far been supported by experimental evidence in vivo (see
e.g., Fujita et al., 2014; Sloan and Barres, 2014). More evidence
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on the release mechanism, using improved experimental model
systems and techniques that allow studies at deeper resolution
in physiological conditions, is required (Li et al., 2013; Bazargani
and Attwell, 2016; Fiacco and McCarthy, 2018; Savtchouk and
Volterra, 2018).

In our evaluation of models, we use the term
“gliotransmission” for all biophysical and phenomenological
mechanisms that were modeled to take into account the release
of substances from astrocytes and targeting neurons. The reason
for this is that the term “gliotransmission” is often used in the
original modeling publications.

In addition, glutamate released from astrocytes can activate
extrasynaptic N-methyl-D-aspartate receptor (NMDAR)-
dependent currents, often called NMDAR-dependent slow
inward current (SIC). In modeling studies, SIC is many times
modeled similarly to, for example, the modulating current (Iastro)
presented by Nadkarni and Jung (2003).

2.1.5. Connexin-Based Gap Junction Hemichannels
It is not just neurons that form networks but also astrocytes.
A fundamental difference between neuronal and astroglial
networks is that astrocytes are connected, through gap junctions
composed mainly of connexin 43 hemichannels, to form a
functional cellular syncytium in the central nervous system.
In their open state, these channels are permeable to large
hydrophilic solutes with molecular mass of several hundred
Daltons, and are permeable to small solutes in their closed
state (see e.g., Bao et al., 2007). The gap junction connectivity
is instrumental for astrocytes’ functions, including generation
of Ca2+ waves, water transport, K+ buffering, and control of
vascular system, and is one of the most important mechanisms
to be modeled in astrocyte networks.

Three different pathways have been discovered so far to induce
Ca2+ waves in astroglial networks. The first route depends on
the transfer of IP3 via gap junctions (Giaume and Venance,
1998). Transported IP3 via gap junctions triggers CICR in
the coupled astrocytes and induces Ca2+ wave propagation in
astroglial syncytium. The second route to induce Ca2+ waves
depends on the extracellular diffusion of ATP (see e.g., Newman
and Zahs, 1997; Guthrie et al., 1999 and section 2.1.4). The
third route has been shown to depend on extracellularly applied
potassium chloride, causing, among others, a pathophysiological
phenomenon called cortical spreading depression (Peters et al.,
2003). The regulation of gap junction communication within
the astroglial syncytium is a complex process and is intensively
studied.

Most of the above described biophysical and biochemical
mechanisms have been modeled in some detail in astrocytes.
Below we address altogether 106 models developed until the end
of 2017 and describe their capacity to represent the dynamics of
astrocyte biophysics and biochemistry.

2.2. Selection of Models
The number of computational astrocyte models has increased
over the past couple of years. This increase in the number
of models does not, however, solely reflect the vast amount
of experimental data that is currently presented for astrocytes

and for their roles in brain functions and the regulation of
the neuronal system. Several focused reviews of computational
astrocyte and neuron-astrocyte models have appeared during
the last few years (see e.g., Jolivet et al., 2010; Mangia et al.,
2011; De Pittà et al., 2012; Fellin et al., 2012; Min et al., 2012;
Volman et al., 2012; Wade et al., 2013; Linne and Jalonen, 2014;
Tewari and Parpura, 2014; De Pittà et al., 2016; Manninen et al.,
2018); of which our study (Manninen et al., 2018) is the most
comprehensive evaluation of more than 60 models published
by the end of 2014. In the present study, we characterize in
more detail the biophysical and biochemical components of
astrocytes that were taken into account in the astrocyte and
neuron-astrocyte interaction models published by the end of
2017.

Table 1 presents altogether 106 astrocyte models. As in our
other study (Manninen et al., 2018), we here limited our
evaluation of models to astrocytic signal transduction pathways
that were defined using several characteristics. First, models
were able to include pre- and postsynaptic neuron models as
part of the whole models. Second, part of intracellular signaling
in the astrocytes was explicitly modeled, thus models were
required to include (biophysical) mechanisms for astrocytic Ca2+

dynamics. We considered in the present study only models
where astrocytic Ca2+ signaling was described by a differential
equation that was a function of time and at least one of the
other astrocytic variables, for example IP3. Third, astrocytic Ca

2+

affected some signaling variables or other intracellular signals
in the astrocytes. Models which described Ca2+ dynamics but
were not explicitly made for astrocytes were excluded from the
present study. Moreover, models that mainly concentrated on
describing ionic homeostasis, such as regulation of extracellular
K+ ions, were also excluded from the evaluation unless they
incorporated astrocytic Ca2+ signaling. These strict criteria were
needed because of the large number of models.

2.3. Characteristics of Models
We first categorized and tabulated the existing models based
on whether they were describing single astrocytes, astrocyte
networks, neuron-astrocyte synapses, or neuron-astrocyte
networks. Next, we categorized the models further to see which
older models were used as references. Most of the astrocyte
models utilized the Ca2+ dynamics models by De Young and
Keizer (1992) and Li and Rinzel (1994), or a modification of
them, even though these two models were not made to describe
astrocytic behavior (Manninen et al., 2018). Thus, the details
of these models (De Young and Keizer, 1992; Li and Rinzel,
1994) were not listed. Models are in alphabetical order, first are
models that used the models by De Young and Keizer (1992) and
Li and Rinzel (1994) as references, second are the models that
used the model by Höfer et al. (2002) as reference, third are the
models that combined all three models (De Young and Keizer,
1992; Li and Rinzel, 1994; Höfer et al., 2002), and last are models
that were based on some other models, such as the models by
Sneyd et al. (1994), Keener and Sneyd (1998, 2009), and Houart
et al. (1999) (see section 3). It is worth noting that most of the
above-mentioned models have adapted CICR model presented
by Bezprozvanny et al. (1991) as basis of their models.
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TABLE 1 | List of astrocyte and neuron-astrocyte models published each year.

Year Models No.

1995 Roth et al., 1995 1

2002 Höfer et al., 2002 1

2003 Nadkarni and Jung, 2003 1

2004 Goto et al., 2004; Nadkarni and Jung, 2004 2

2005 Bellinger, 2005; Bennett et al., 2005; Larter and Craig, 2005; Nadkarni and Jung, 2005 4

2006 Bennett et al., 2006; Iacobas et al., 2006; Stamatakis and Mantzaris, 2006; Ullah et al., 2006 4

2007 Di Garbo et al., 2007; Gibson et al., 2007; Nadkarni and Jung, 2007; Postnov et al., 2007; Stamatakis and Mantzaris, 2007; Volman et al., 2007 6

2008 Bennett et al., 2008a,b; Gibson et al., 2008; Lavrentovich and Hemkin, 2008; Nadkarni et al., 2008; Silchenko and Tass, 2008 6

2009 Allegrini et al., 2009; De Pittà et al., 2009a,b; Di Garbo, 2009; Kang and Othmer, 2009; Kazantsev, 2009; Postnov et al., 2009; Zeng et al., 2009 8

2010 Edwards and Gibson, 2010; Ghosh et al., 2010; Goldberg et al., 2010; Skupin et al., 2010; Sotero and Martínez-Cancino, 2010 5

2011 Amiri et al., 2011a,b; DiNuzzo et al., 2011; Dupont et al., 2011; Farr and David, 2011; Matrosov and Kazantsev, 2011; Riera et al., 2011a,b; Toivari

et al., 2011; Valenza et al., 2011; Wade et al., 2011; Wei and Shuai, 2011

12

2012 Amiri et al., 2012a,b,c; Chander and Chakravarthy, 2012; Li et al., 2012; Tewari and Majumdar, 2012a,b; Wade et al., 2012; Witthoft and Karniadakis,

2012

9

2013 Amiri et al., 2013a,b; Diekman et al., 2013; Hadfield et al., 2013; Liu and Li, 2013a,b; MacDonald and Silva, 2013; Tang et al., 2013; Tewari and

Parpura, 2013; Witthoft et al., 2013

10

2014 Lallouette et al., 2014; López-Caamal et al., 2014; Montaseri and Yazdanpanah, 2014; Wallach et al., 2014 4

2015 Komin et al., 2015; Mesiti et al., 2015a,b; Naeem et al., 2015; Nazari et al., 2015a,b,c; Soleimani et al., 2015; Yang and Yeo, 2015 9

2016 Amiri et al., 2016; De Pittà and Brunel, 2016; Haghiri et al., 2016; Hayati et al., 2016; Li et al., 2016a,b,c; Liu et al., 2016; Oku et al., 2016; Tang et al.,

2016

10

2017 Chan et al., 2017; Guo et al., 2017; Haghiri et al., 2017; Handy et al., 2017; Li et al., 2017; Nazari et al., 2017; Oschmann et al., 2017; Taheri et al.,

2017; Tang et al., 2017

9

2018 Ding et al., 2018; Karimi et al., 2018; Kenny et al., 2018; Liu et al., 2018; Yao et al., 2018 5

All 106

Models are ordered alphabetically for each year of publication. Altogether 106 models have been published by the end of 2017. For chosen criteria, see section 2.2.

Next, we characterized the models based on what type of
signaling events were modeled in astrocytes. We listed for each
model the number of astrocytes modeled, input used for the
astrocytic module, astrocytic variables described by differential
equations, and astrocytic Ca2+ fluxes related to cytosolic Ca2+.
It is important to note that neurotransmitters were not named
here as astrocytic variables but in some models they were
used as inputs to the astrocyte models [e.g., synaptic glutamate
([Glu]syn) or neurotransmitter (NT)]. By contrast, we listed
gliotransmitters as astrocytic variables if they were modeled with
a differential equation. As the exact mechanisms of astrocytic
signaling that regulate exocytosis and release of molecular
substances from astrocytes are still largely unknown, most of the
models used phenomenological descriptions of gliotransmitters
or other substances released. Proposed gliotransmitters included,
for example, glutamate ([Glu]ext) and ATP ([ATP]ext). Note
the difference between [Glu]syn and [Glu]ext, the former
meaning the neurotransmitter glutamate released from the
presynaptic neuron and the latter meaning the gliotransmitter
glutamate released from the astrocyte. Other examples of
strategies for modeling gliotransmission or similar exocytotic or
modulating signaling mechanisms from astrocytes to neurons
included modeling currents depending on astrocytic Ca2+

(Iastro, Nadkarni and Jung, 2003) and several other types of
currents depending, for example, on astrocytic mediator (Gm,
Iast, Postnov et al., 2007, 2009), or modeling phenomenological

gating variable (f , Volman et al., 2007). In addition, we listed
diffusion of astrocytic variables either in the cytosol, ER, or
extracellular space. In the present study, we did not catalog
the transfer of molecules or ions between intracellular space
and extracellular space under the attribute “diffusion,” but
we listed, for example, different Ca2+ related fluxes over the
plasma membrane under “Ca2+ fluxes.” We chose to list gap
junction signaling between astrocytes which is an important,
fundamental form of intercellular signaling directly from the
intracellular space of one cell to the intracellular space of another
cell. We did not incorporate gap junctions under the attribute
“diffusion,” but only included it in the attribute “gap junction.”
IP3 and Ca2+ are examples of second messengers that are able
to pass through gap junctions. The last items we listed were
the output of the astrocytic module and experimentally shown
event that the model was finetuned to capture [Ca2+ dynamics
(Ca2+), homeostasis (Home.), vascular (Vasc.), synchronization
(Synch.), information transfer (Inf.), plasticity (Plast.), and
hyperexcitability (Hyper.)] for each model. To get a general idea
of how these different mechanisms can be modeled, see, for
example, books by Keener and Sneyd (2009) and Dupont et al.
(2016).

Sometimes the authors of the publications used incorrect
terminology when explaining their model components. As an
example, Silchenko and Tass (2008), Zeng et al. (2009), Sotero and
Martínez-Cancino (2010), Dupont et al. (2011), Li et al. (2012),
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and Ding et al. (2018) presented one Ca2+ flux as a leak from
cytosol into extracellular space in their study.We named it here as
Ca2+ efflux because Ca2+ leak flux via astrocytic cell membrane
is normally used for a flux from extracellular space into cytosol,
thus from the larger Ca2+ concentration in the extracellular space
toward the smaller Ca2+ concentration in the cytosol. Goto et al.
(2004) named the direction of fluxes incorrectly for CICR, ER
leak flux, and ER pump (that we assumed to be SERCA) in their
text, but in their equations the direction of fluxes were marked
correctly for CICR and leak and again incorrectly for ER pump.
Yao et al. (2018) also marked the signs incorrectly for some of
the fluxes. Directions of the CICR and ER leak flux should be
from the ER to the cytosol, and SERCA pump from the cytosol
to the ER. Often the authors of the modeling publications did
not name their Ca2+ pump on the membrane of ER as SERCA
pump, but since the very same equation was used for SERCA
pump by other authors, we marked it as SERCA pump for all the
authors, except for the model by Guo et al. (2017) because they
pointed out that their pump was ATP-independent. Naming of
the variable h, taken from the model by Li and Rinzel (1994), was
also presented in a contradictory manner by several authors. The
very same variable h was given alternative explanations, some of
them having completely opposite meanings, or no explanation
at all. We decided to name h in this work as active fraction of
IP3Rs. Authors did not always state clearly how many astrocytes
were modeled. In these cases we marked it as n/a. Some authors
named gliotransmitters in their work as neurotransmitters (see
e.g., Stamatakis and Mantzaris, 2006). We tried our best to give
as correct a view of the models as possible.

Most of the astrocyte models presented here are based on
ordinary differential equations (ODEs), modeling well-stirred
astrocytes (see e.g., Nadkarni and Jung, 2003; Ullah et al., 2006;
Volman et al., 2007; De Pittà et al., 2009a; Goldberg et al.,
2010; Dupont et al., 2011; Valenza et al., 2011; Amiri et al.,
2012a; Wade et al., 2012; Hadfield et al., 2013; Tang et al.,
2013; Lallouette et al., 2014; Wallach et al., 2014; Li et al.,
2016a; Chan et al., 2017; Guo et al., 2017; Handy et al., 2017;
Taheri et al., 2017). These models make the assumption that
chemical species have the same concentrations throughout the
entire volume of the astrocyte, which can also be called as
average concentrations. However, it has been shown that the
concentration of certain chemical species, such as Ca2+, can
vary drastically in different parts of the cell (see e.g., Thul, 2014;
Dupont et al., 2016), and several models took into account the
spatiality by modeling diffusion of at least some of the chemical
species in astrocytes using partial differential equations (PDEs,
see e.g., Roth et al., 1995; Höfer et al., 2002; Bennett et al.,
2008a; Gibson et al., 2008; Allegrini et al., 2009; Kang and
Othmer, 2009; Edwards and Gibson, 2010; Wei and Shuai, 2011;
Li et al., 2012; López-Caamal et al., 2014; Mesiti et al., 2015a; Yao
et al., 2018). Some models took a simpler approach to spatiality
by modeling ODEs combined with fluxes between different
astrocytic compartments, such as cytosol and ER (see e.g., Larter
and Craig, 2005; Di Garbo et al., 2007; Postnov et al., 2007;
Lavrentovich and Hemkin, 2008; Di Garbo, 2009; Zeng et al.,
2009; Amiri et al., 2011a; DiNuzzo et al., 2011; Farr and David,
2011; Oschmann et al., 2017; Kenny et al., 2018). In addition of

modeling Ca2+ fluxes between ER and cytosol, Silchenko and
Tass (2008) modeled free diffusion of extracellular glutamate
as a flux. It seems that most of the authors implemented their
ODE and PDE models using some programming language, but
a few times, for example, XPPAUT (Ermentrout, 2002) was
named as the simulation tool used. Because of the stochastic
nature of cellular processes (see e.g., Rao et al., 2002; Raser
and O’Shea, 2005; Ribrault et al., 2011) and oscillations (see
e.g., Perc et al., 2008; Skupin et al., 2008), different stochastic
methods have been developed for both reaction and reaction-
diffusion systems. These stochastic methods can be divided into
discrete and continuous-state stochastic methods. Some discrete-
state reaction-diffusion simulation tools can track each molecule
individually in a certain volume with Brownian dynamics
combined with a Monte Carlo procedure for reaction events
(see e.g., Stiles and Bartol, 2001; Kerr et al., 2008; Andrews
et al., 2010). On the other hand, the discrete-state Gillespie
stochastic simulation algorithm (Gillespie, 1976, 1977) and τ -
leap method (Gillespie, 2001) can be used to model both reaction
and reaction-diffusion systems. A few simulation tools already
exist for reaction-diffusion systems using these methods (see
e.g., Wils and De Schutter, 2009; Oliveira et al., 2010; Hepburn
et al., 2012). In addition, continuous-state chemical Langevin
equation (Gillespie, 2000) and several other stochastic differential
equations (SDEs, see e.g., Shuai and Jung, 2002; Manninen
et al., 2006a,b) have been developed for reactions to ease the
computational burden of discrete-state stochastic methods. A
few simulation tools providing hybrid approaches also exist
and they combine either deterministic and stochastic methods
or different stochastic methods (see e.g., Salis et al., 2006;
Lecca et al., 2017). Of the above-named methods, most realistic
simulations are provided by the discrete-state stochastic reaction-
diffusion methods, but none of the covered astrocyte models
used these stochastic methods or available simulation tools for
both reactions and diffusion for the same variable. However,
four models combined stochastic reactions with deterministic
diffusion in the astrocytes. Skupin et al. (2010) and Komin et al.
(2015) modeled with the Gillespie algorithm the detailed IP3R
model by De Young and Keizer (1992), had PDEs for Ca2+ and
mobile buffers, and ODEs for immobile buffers. Postnov et al.
(2009) modeled diffusion of extracellular glutamate and ATP
as fluxes, had an SDE for astrocytic Ca2+ with fluxes between
ER and cytosol, and ODEs for the rest. MacDonald and Silva
(2013) had a PDE for extracellular ATP, an SDE for astrocytic
IP3, and ODEs for the rest. In addition, a few studies modeling
just reactions and not diffusion used stochastic methods (SDEs
or Gillespie algorithm) at least for some of the variables (see e.g.,
Nadkarni et al., 2008; Postnov et al., 2009; Sotero and Martínez-
Cancino, 2010; Riera et al., 2011a,b; Toivari et al., 2011; Tewari
andMajumdar, 2012a,b; Liu and Li, 2013a; Tang et al., 2016; Ding
et al., 2018).

3. RESULTS

Previous studies in experimental and computational cell biology
fields have guided the development of computational models
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for astrocytes and their interactions with neurons. Most of the
firstly developed astrocyte models were relatively simplistic but
they were gradually expanded to cover astrocytic regulation of a
variety of phenomena and cells in the nervous system. Next, we
will present the computational models for astrocytes in section
3.1 and the computational models that include bidirectional
signaling between neurons and astrocytes in section 3.2.

3.1. Computational Astrocyte Models
The early phase of model development concentrated more on
single astrocytes and astrocyte-astrocyte communication.Wewill
go through the single astrocyte models in section 3.1.1 and the
astrocyte network models in section 3.1.2.

3.1.1. Single Astrocyte Models
Half of the single astrocyte models were so-called generic,
meaning that they did not describe astrocytes in any specific
anatomical brain location. Others, however, were specified to
model astrocytes in the cerebrum (Farr andDavid, 2011;Witthoft
and Karniadakis, 2012), cerebral cortex (Diekman et al., 2013;
Witthoft et al., 2013; Mesiti et al., 2015b; Kenny et al., 2018),
cortex (De Pittà et al., 2009b; Toivari et al., 2011), hippocampus
(Riera et al., 2011a,b; Chander and Chakravarthy, 2012), as
well as the visual cortex (Gibson et al., 2007; Bennett et al.,
2008b) and somatosensory cortex (Bennett et al., 2008b; Taheri
et al., 2017). One third of the single astrocyte models took into
account neurotransmitters in a simplistic way just as a stimulus,
having either the neurotransmitter as a constant, step function,
or something similar (see e.g., Larter and Craig, 2005; Gibson
et al., 2007; Bennett et al., 2008b; De Pittà et al., 2009a; Dupont
et al., 2011; Toivari et al., 2011; Witthoft and Karniadakis, 2012;
Hadfield et al., 2013; Witthoft et al., 2013; Kenny et al., 2018).
Only two models (Chander and Chakravarthy, 2012; Oschmann
et al., 2017) actually modeled the amount of neurotransmitter
with a differential equation. The stimulus to the astrocyte
model by Oschmann et al. (2017) was taken from the model
by Tsodyks and Markram (1997). In addition, Mesiti et al.
(2015b) modeled the presynaptic neuron. We included these
three models (Chander and Chakravarthy, 2012; Mesiti et al.,
2015b; Oschmann et al., 2017) under single astrocyte models,
because these models did not have bidirectional communication
between astrocytes and neurons. The characteristics of single
astrocyte models can be found in Table 2.

Most of the single astrocyte models studied Ca2+ oscillations,
of which a few models specifically focused on modeling only
spontaneous Ca2+ oscillations (see Table 2). All the other models
had components for CICR and SERCA pump except the model
by Montaseri and Yazdanpanah (2014). Furthermore, all the
other models except the models by López-Caamal et al. (2014)
and Montaseri and Yazdanpanah (2014) modeled leak from the
ER into the cytosol. Half of the models had influx of Ca2+

from outside of the astrocyte or efflux of Ca2+ to outside of the
astrocyte. About one third of the models took into account Ca2+

buffers and astrocytic release of signaling molecules. None of the
models had gap junctions, because these were single astrocyte
models. Thus, these models had similar core structure with
small variations. As an example, six modeled capacitive Ca2+

entry (CCE) which is mediated via store-operated Ca2+ (SOC)

channels (Riera et al., 2011a,b; Toivari et al., 2011; Handy et al.,
2017; Taheri et al., 2017; Ding et al., 2018) and two modeled
VGCCs (Zeng et al., 2009; Ding et al., 2018), as well as one
had Ca2+ flux via ryanodine receptors (RyRs) (López-Caamal
et al., 2014) and three had Ca2+ influx via TRP vanilloid-related
channel 4 (TRPV4) (Witthoft and Karniadakis, 2012; Witthoft
et al., 2013; Kenny et al., 2018). Only Diekman et al. (2013) and
Komin et al. (2015)modeledmitochondrial Ca2+ unitransporters
(MCUs). Two modeled mitochondrial NCX (Diekman et al.,
2013; Komin et al., 2015) and one modeled NCX via plasma
membrane (Oschmann et al., 2017). Skupin et al. (2010), Komin
et al. (2015), and Ding et al. (2018) used detailed IP3R model by
De Young and Keizer (1992). Six models had diffusion either in
the cytosol, in the ER, or in the extracellular space (Roth et al.,
1995; Gibson et al., 2007; Bennett et al., 2008b; Skupin et al., 2010;
López-Caamal et al., 2014; Komin et al., 2015).

The first models developed in this category were the models
by Roth et al. (1995) and Larter and Craig (2005). Roth et al.
(1995) extended the model by Li and Rinzel (1994) by adding
Ca2+ diffusion in the cytosol and ER. They also divided their
cell to alternating active and passive compartments. In passive
compartments, Ca2+ signal propagated by diffusion, whereas
in active compartments there were also additional Ca2+ fluxes
propagating the signal. Roth et al. (1995) showed with their
model that different parts of the astrocyte, such as the ER
membrane, produced different frequencies of Ca2+ oscillations if
the diffusion constant had a value close to the physiological range.
If the diffusion constant had unphysiologically high value, then
the different parts of the astrocyte all oscillated with the same
frequency.

Larter and Craig (2005) presented the only model in this
category that included a differential equation for extracellular
glutamate ([Glu]ext). Their equation for extracellular glutamate
included the rate of glutamate vesicle release from the astrocyte,
the input glutamate rate arriving from nearly synapses, and
two terms describing the rates of glutamate uptake by neurons
and astrocytes. Larter and Craig (2005) tested their model
by setting the extracellular glutamate to zero during the
simulations (meaning both glutamate release from the astrocyte
and glutamate arriving from the nearby synapses were zero)
and showed that the astrocytic Ca2+ was not oscillating in this
case. They further tested their model when the astrocyte was not
releasing glutamate, but they still had the input glutamate rate
arriving from nearly synapses. In this case, the astrocytic Ca2+

was oscillating. They also tested how the number of glutamate
in the astrocytic vesicles affected the model behavior. They
showed that when increasing the number of glutamate in the
astrocytic vesicles, the Ca2+ oscillations transformed into Ca2+

bursting oscillations. Thus, their message was that the presence of
glutamate, but not the positive astrocytic glutamate feedback, was
required for astrocytic Ca2+ oscillations. In addition, the positive
glutamate feedback process made it possible for the astrocyte to
have bursting oscillations when the input glutamate rate arriving
from nearby synapses had low values.

Only six of the single astrocyte models had K+ concentration
modeled in the perisynaptic space, perivascular space [in Table 2

called as extracellular space (ext)], or intracellular space of the
astrocyte. These are marked in Table 2 as [K+]N, [K

+]ext, and
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[K+], respectively. The model by Diekman et al. (2013) had the
most simple K+ model, they modeled only astrocytic K+ that
depended on NKA. Oschmann et al. (2017) modeled both the
astrocytic and extracellular K+ concentrations. The astrocytic K+

concentration depended on three transmembrane transporters;
glutamate transporter, NKA, and NCX. The extracellular K+

concentration was a function of astrocytic K+ concentration. Farr
and David (2011) and Witthoft and Karniadakis (2012) modeled
the K+ concentration both in the perisynaptic space [named as
synaptic cleft and synaptic space by Farr and David (2011) and
Witthoft and Karniadakis (2012)] and in the perivascular space.
They both used the same simple model for the K+ concentration
in the perisynaptic space. K+ was released from the neurons
into the perisynaptic space and removed from the perisynaptic
space via the astrocytic NKA (Farr and David, 2011). However,
Witthoft and Karniadakis (2012) named the removal so that it
included both astrocytic NKA and astrocytic inwardly rectifying
K+- and voltage-gated K+ (KIR) channel. Farr and David (2011)
and Witthoft and Karniadakis (2012) also used the same simple
model for the K+ concentration in the perivascular space. The K+

concentration in the perivascular space depended on astrocytic
voltage- and Ca2+-operated K+ (BK) channels and smooth
muscle cell’s KIR channels. They also had a K+-dependent decay
term in the perivascular space. Witthoft et al. (2013) modeled
in more detail the K+ concentration in the perisynaptic space
(named as synaptic space by Witthoft et al., 2013), intracellular
space of the astrocyte, and perivascular space. In the model by
Witthoft et al. (2013), the K+ concentration in the perisynaptic
space depended on K+ released from the neurons and removed
via the astrocytic NKCC1 and NKA, in addition to (bidirectional)
astrocytic KIR channels and a decay term. The astrocytic K+

concentration depended on K+ entering from the perisynaptic
space via NKA and NKCC1, in addition to astrocytic KIR
channels on the perisynaptic side as well as astrocytic BK and
KIR channels on the perivascular side of the astrocyte. The
equation also had a decay term. The K+ concentration in the
perivascular space depended on astrocytic BK and KIR channels
as well as arteriolar KIR channels and a decay term. Kenny et al.
(2018) modeled the K+ concentration in the perisynaptic space
(named as synaptic cleft by Kenny et al., 2018), intracellular
space of the astrocyte, perivascular space, intracellular space of
the smooth muscle cell, and extracellular space. In the model by
Kenny et al. (2018), the K+ concentration in the perisynaptic
space depended on K+ released from the neuron and removed
via the astrocytic K+/Cl− cotransporter (KCC1), NKCC1, and
NKA, in addition to K+ diffusion between extracellular space
and perisynaptic space as well as astrocytic K+ channels. The
astrocytic K+ concentration depended on K+ entering from the
perisynaptic space via KCC1, NKCC1, and NKA, in addition
to K+ channels on the perisynaptic side and BK channels on
the perivascular side of the astrocyte. The K+ concentration in
the perivascular space depended on astrocytic BK channels and
smoothmuscle cell’s KIR channels. In conclusion, only the model
by Witthoft et al. (2013) took into account spatial K+ buffering.

Some of the most recent models developed in this category
were the models by Komin et al. (2015), Handy et al. (2017),
and Taheri et al. (2017). Komin et al. (2015) presented two

models, a reaction-diffusion model and a reaction model. With
both models they tested if the temperature-dependent SERCA
activity was the reason for the differences in Ca2+ activity. They
showed that their reaction-diffusion model behaved similarly to
the experimental data, thus increased SERCA activity (higher
temperature) led to decreased Ca2+ activity. On the other hand,
their reaction model showed the opposite. Thus, they claimed
that spatiality was needed to be taken into account to get
biologically correct results. However, since the core models were
different in the reaction-diffusion and reaction models, it would
be interesting to see how the results would look like if the same
core model was tested with and without diffusion.

Handy et al. (2017) and Taheri et al. (2017) used the same
model but explored somewhat different parameter spaces. They
studied the role of SOC channels as well as the PMCA and SERCA
pumps in Ca2+ activity. They specifically tested which form the
Ca2+ response had with different parameter values of the channel
and pumps (single peak, multiple peaks, plateau, or long-lasting
response). They found out that SOC channels were necessary for
plateau and long-lasting responses as well as for stable oscillations
with multiple peaks. Stable oscillations disappeared when the
SERCA pump was partially blocked, but plateau and long-lasting
responses were still present. The likelihood of having multiple
peaks increased when the PMCA pump was blocked. Taheri
et al. (2017) also did Ca2+ imaging on cortical astrocytes in
mice. They applied ATP on acute brain slices and recorded
the Ca2+ responses from different subcompartments of the
astrocytes, from soma as well as from large and short processes,
and categorized the results into four different types of responses
named above. Their conclusion was that the variability mainly
stemmed from differences in IP3 dynamics and Ca2+ fluxes via
SOC channels. To take into account the experimental variability
between the different subcompartments, Taheri et al. (2017) ran
simulations with different parameter values of the SOC channel
and the PMCA and SERCA pumps together with the input IP3
kinetics. Next, they chose the parameter subspaces that matched
their experimental data the best. Their simulations suggested that
the soma had higher PMCA and lower SERCA flux rates as well
as shorter rise duration for the IP3 transient than the small and
large processes.

3.1.2. Astrocyte Network Models
Half of the astrocyte network models were so-called generic.
Others, however, were specified to model astrocytes in the
cerebrum (Iacobas et al., 2006; Ghosh et al., 2010), cortex
(Goldberg et al., 2010; Wallach et al., 2014), neocortex (Li et al.,
2012), visual cortex and somatosensory cortex (Bennett et al.,
2008a), hippocampus (Goto et al., 2004; Ullah et al., 2006), retina
(Edwards and Gibson, 2010), spinal cord (Bennett et al., 2006;
Gibson et al., 2008), as well as the striatum (Höfer et al., 2002).
One fourth of the astrocyte network models took into account
neurotransmitters in a simplistic way just as a stimulus, having
either the glutamate as a constant, step function, or something
similar (see e.g., Goto et al., 2004; Ullah et al., 2006; Bennett
et al., 2008a; Kang and Othmer, 2009; MacDonald and Silva,
2013). Only Wallach et al. (2014) actually modeled the amount
of neurotransmitter glutamate with a differential equation. The
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stimulus to the astrocytemodel byWallach et al. (2014) was taken
from the model by Tsodyks and Markram (1997). We included
this model under astrocyte models because this model was not
bidirectional between astrocytes and neurons. The characteristics
of astrocyte network models can be found in Table 3.

All the astrocyte network models studied Ca2+ waves and
few models specifically addressed spontaneous Ca2+ waves and
vascular events (see Table 3). All the models except the model by
Iacobas et al. (2006) had the components for all three; CICR, leak
from the ER into the cytosol, and the SERCA pump. About one
fourth of the models took into account Ca2+ buffering. About
one third of the models had either influx of Ca2+ from outside
of the astrocyte or efflux of Ca2+ to outside of the astrocyte,
or both. About half of the models took into account astrocytic
release of signaling molecules. Thus, the models had equations
mostly for extracellular ATP, but one considered equations for
extracellular glutamate (Bellinger, 2005). However, none of the
models presented a detailed mechanistic description of how the
release occurs. More than half of the models took into account
diffusion, and, especially, almost half of the models studied the
ATP diffusion in the extracellular space. Three quarters of the
astrocyte network models had gap junctions for IP3 but some
models had them also for Ca2+. Thus, these models had similar
core structure with small variations. As an example, Li et al.
(2012) were the only ones that modeled K+ concentration, both
in astrocytic and extracellular spaces, and VGCCs. Goto et al.
(2004) were the only ones to use the detailed IP3R model by
De Young and Keizer (1992). Höfer et al. (2002), Bellinger (2005),
Ullah et al. (2006), Kazantsev (2009), Ghosh et al. (2010), and
Matrosov and Kazantsev (2011) modeled CCE.

The first model developed in this category was the model
by Höfer et al. (2002). Höfer et al. (2002) showed with their
two-dimensional (19 × 19) astrocyte network model that IP3
permeability in gap junctions was a more important factor in
intercellular Ca2+ waves than Ca2+ permeability. When blocking
the IP3 permeability, intercellular Ca2+ wave propagation was
prevented. However, intercellular Ca2+ wave propagation was
not prevented when the Ca2+ permeability was blocked. In the
model by Höfer et al. (2002), the IP3 concentration depended
on two distinct production terms via phospholipase C (PLC),
one corresponding to PLC isotype β (PLCβ) and the other to
PLC isotype δ (PLCδ). Höfer et al. (2002) showed that PLCδ was
needed to be modeled to get the downstream cells to respond to
the stimulus with a Ca2+ increase.

Two of the newest models developed in this category were
the models by Lallouette et al. (2014) and Wallach et al. (2014).
Lallouette et al. (2014) simplified the astrocyte network model
by Goldberg et al. (2010) to be able to simulate the function of
a three-dimensional (11 × 11 × 11) astrocyte network. With
this network of more than a thousand astrocytes, Lallouette
et al. (2014) studied how the variability in the topology of gap-
junction coupled astrocytes affected the intercellular Ca2+ wave
propagation. They tested five different coupling rules and found
out that these different coupling rules can be used to reproduce
the variation in the experimental data. They showed that
dense connectivity or having long-distance gap-junction coupled
astrocytes reduced the intercellular Ca2+ wave propagation.

Wallach et al. (2014) continued the previous study by stimulating
astrocyte network by Tsodyks and Markram (1997) model.
In the present study, the model by Wallach et al. (2014) is
listed in the category of astrocyte network models because
the astrocytes did not have an effect on the neuron. Wallach
et al. (2014) demonstrated through experimental and simulation
studies that there was a threshold stimulation frequency when
astrocytes started to respond with Ca2+ oscillations. However,
this threshold frequency was different for different astrocytes and
it increased with the number of astrocytes coupled.

3.2. Computational Neuron-Astrocyte
Models
In recent years, bidirectional neuron-astrocyte communication
has been the focus of much research in the field of neuroscience.
Most of the existing neuron-astrocyte models concentrated on
astrocytic Ca2+ dynamics affected by glutamate in the synaptic
cleft, and reciprocal neuron-astrocyte signaling. Many of the
models were presented without a specific biological or disease-
related question, and the focus was on combining existingmodels
into a new construction, or adding the authors’ own model
components to previously published models. Next, we will go
through neuron-astrocyte synapse models in section 3.2.1 and
neuron-astrocyte network models in section 3.2.2.

3.2.1. Neuron-Astrocyte Synapse Models
Neuron-astrocyte synapse models include models which have
only one astrocyte and one to multiple synapses. Of the models
covered in our study, about half of the neuron-astrocyte synapse
models were found to be so-called generic models, in other
words they were developed with no specific brain area or cell in
mind. Others, however, were specified tomodel neuron-astrocyte
synapses in the cortex or neocortex (Nadkarni and Jung, 2003,
2004; Di Garbo et al., 2007; Volman et al., 2007; DiNuzzo et al.,
2011; Valenza et al., 2011; Nazari et al., 2015b, 2017; Amiri et al.,
2016; Li et al., 2017), hippocampus (Nadkarni and Jung, 2005,
2007; Nadkarni et al., 2008; Tewari andMajumdar, 2012a,b; Tang
et al., 2013, 2016; Tewari and Parpura, 2013; Li et al., 2016b),
thalamocortical networks (Amiri et al., 2011a), or brainstem
(Oku et al., 2016).

The modeling approaches for neurons varied depending on
the author. Half of the studied publications utilized relatively
complex biophysical neuron models, namely Hodgkin and
Huxley (1952) model (Nadkarni and Jung, 2003; Sotero and
Martínez-Cancino, 2010; Tewari and Majumdar, 2012a,b; Tang
et al., 2013, 2016; Guo et al., 2017; Li et al., 2017), Traub et al.
(1991) model or its derivative Pinsky and Rinzel (1994) model
(Nadkarni and Jung, 2004, 2005, 2007; Silchenko and Tass, 2008;
Tewari and Parpura, 2013; Li et al., 2016a,b), or Olufsen et al.
(2003) model (Di Garbo et al., 2007; Di Garbo, 2009). Simpler
phenomenological models used in the studied publications were
the FitzHugh-Nagumo (FitzHugh, 1961) model (Postnov et al.,
2007), leaky integrate-and-fire (LIF, Gerstner and Kistler, 2002)
model (Wade et al., 2011, 2012; Amiri et al., 2016; De Pittà and
Brunel, 2016; Nazari et al., 2017; Liu et al., 2018), Izhikevich
(2007) model (Valenza et al., 2011; Nazari et al., 2015a,b,c),
Morris and Lecar (1981) model or its derivatives (Volman et al.,
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2007; Amiri et al., 2011b, 2013b), and Suffczynski et al. (2004)
neuronal population model (Amiri et al., 2011a). The released
neurotransmitter was modeled explicitly by Nadkarni and Jung
(2005, 2007), Volman et al. (2007), Nadkarni et al. (2008),
Silchenko and Tass (2008), Amiri et al. (2011b, 2013b), Wade
et al. (2011), Tewari and Majumdar (2012a,b), Tang et al. (2013,
2016), Tewari and Parpura (2013), Nazari et al. (2015a,b,c),
De Pittà and Brunel (2016), and Li et al. (2017), however not
necessarily with a differential equation. Other models utilized,
for example, phenomenological transfer functions between
neuronal events and astrocytic IP3 concentration. Several models
had increased astrocytic IP3 concentration after the neuronal
membrane potential increased over some threshold (marked in
Table 4 as Vm,N → [IP3]). The details of the neuron-astrocyte
synapse models can be found in Table 4.

The neuron-astrocyte synapse models were developed to
explain many different biological events as can be seen in
Table 4. Examples of the studied phenomena included Ca2+

dynamics, plasticity, hyperexcitability, information transfer,
synchronization, and vascular events. All the other models except
the models by Oku et al. (2016) and Guo et al. (2017) had
all astrocytic components for CICR, leak from the ER into the
cytosol, and the SERCA pump. About one third of the models
had influx of Ca2+ from outside of the astrocyte and efflux of
Ca2+ to outside of the astrocyte. The models had neither gap
junction signaling because these models had only one astrocyte
nor buffers. Thus, these models had similar core structure with
small variations. As an example, two modeled CCE (Di Garbo
et al., 2007; Di Garbo, 2009) and one modeled efflux via the
PMCA pump and NCX (DiNuzzo et al., 2011) as well as diffusion
(Silchenko and Tass, 2008).

The first model developed in this category was the model by
Nadkarni and Jung (2003). Nadkarni and Jung (2003) studied
Ca2+ oscillations with a model consisting of a single astrocyte
and single Hodgkin-Huxley type neuron. The astrocyte model
was based on the model by Li and Rinzel (1994) but they
added a differential equation for IP3. When the membrane
potential of the neuron was higher than certain threshold, IP3
concentration was increased in the astrocyte. The model also
included a degradation of IP3. The membrane potential of
the neuron depended on additional inward current (Iastro) that
depended on astrocytic Ca2+. Nadkarni and Jung (2003) showed
that with higher rate of IP3 production, the astrocytic Ca2+

concentration was higher. In addition, with large enough rate of
IP3 production, the neuron oscillated spontaneously without any
external stimulus. Their hypothesis was that a higher expression
of metabotropic glutamate receptors (mGluRs) and the resulting
spontaneous oscillations caused epilepsy.

As the exact mechanisms of signaling from astrocytes to
neurons are still largely unknown or controversial, most of the
models had phenomenological descriptions of gliotransmitter
release. About one third of the models took into account
gliotransmitter release with equations for extracellular glutamate
(see Table 4). Other models used phenomenological transfer
functions to relay the effect of gliotransmission to the target
synaptic terminal (Iastro, part of Iast, f , and Gm). Only a few of
the studied models had detailed astrocytic vesicle release model,
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namely the models by Silchenko and Tass (2008), Tewari and
Majumdar (2012a,b), and Tewari and Parpura (2013). Silchenko
and Tass (2008) modeled five vesicle states which represented
different stages in the transmitter vesicle cycle. The rate of
prefusion complex formation depended on astrocytic Ca2+

concentration which was modeled by two steps. In the first step,
they simplified the equation where Ca2+ activated Ca2+-binding
soluble N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) proteins by assuming that the concentration
of activated SNARE-proteins was considered stationary. In the
second step, they simplified the equation for the fusion of vesicles
leading to an irreversible exocytosis of glutamate. However,
Silchenko and Tass (2008) did not provide all the details
of the model which makes the reuse of the model difficult.
The models by Tewari and Majumdar (2012a,b) and Tewari
and Parpura (2013) assumed, based on experimental data on
cultured hippocampal astrocytes, that the binding of three Ca2+

ions was required for gliotransmitter release. The fusion and
recycling process of the synaptic-like micro-vesicle was modeled
using two differential equations that both depended on the
probability that the synaptic-like micro-vesicle was ready to
be released. In addition to these more detailed vesicle release
models, De Pittà and Brunel (2016) modeled astrocytic glutamate
exocytosis in a phenomenological way with just a few equations.
They assumed that a fraction of gliotransmitter resources was
available for release at any time. Then, every time astrocytic
Ca2+ increased beyond a certain threshold, the fraction of readily
releasable astrocytic glutamate resources was released into the
periastrocytic space.

Two of the newest models were provided by Li et al. (2016a,
2017). However, these studies contained, to the best of our
understanding, fundamental errors in the biological terminology.
Basically, the model by Li et al. (2016a) was the same as presented
by Nadkarni and Jung (2004), but the neuronal membrane
potential depended on astrocytic glutamate, as presented by
Postnov et al. (2009), instead of astrocytic Ca2+, as presented by
Nadkarni and Jung (2004). Li et al. (2017) developed a GABA-
activated astrocyte model (which they, misleadingly, termed
GABAergic). The model by Li et al. (2017) is similar to the model
by Li et al. (2016a), but Li et al. (2017) added a more complex
differential equation for IP3 by taking into account both the
GABA released by the interneuron and glutamate released by the
astrocyte, somewhat similarly to Ullah et al. (2006), Nadkarni and
Jung (2005), Volman et al. (2007), and others. The differential
equations for the extracellular glutamate released by the astrocyte
had similar forms as the IP3 equations and were somewhat
similar to the equation by Wade et al. (2012). Li et al. (2016a)
showed how a higher equilibrium concentration of extracellular
glutamate or glutamate degradation time constant predicted
a higher neuronal firing frequency and existence of epileptic
seizures. Li et al. (2017), on the other hand, presented using
their GABA-activated astrocyte model (misleadingly termed
GABAergic) that after a 0.5 s long GABA stimulation, astrocytic
Ca2+ oscillations were long-lasting. After combining the GABA-
activated astrocyte model (misleadingly termed GABAergic) and
a neuronal seizure model, they concluded that in this model,
the astrocyte, through stimulating pyramidal neurons and thus

increasing excitatory activity, prevented the transition from
seizure activity into a normal firing activity state, which GABA
alone was capable of inducing by inhibiting pyramidal neuron
activity.

3.2.2. Neuron-Astrocyte Network Models
Neuron-astrocyte network models include models that have
several astrocytes in addition to neurons. Half of the neuron-
astrocyte network models were so-called generic models. Others,
however, were specified to model neuron-astrocyte interactions
in the cortex (Allegrini et al., 2009; Liu and Li, 2013a; Chan et al.,
2017; Tang et al., 2017; Yao et al., 2018), hippocampus (Amiri
et al., 2012a, 2013a; Mesiti et al., 2015a; Li et al., 2016c), spinal
cord (Yang and Yeo, 2015), or thalamocortical networks (Amiri
et al., 2012b,c).

The modeling strategies for neurons varied depending on the
author. Three of the studied publications utilized Hodgkin and
Huxley (1952) model (Liu and Li, 2013b; Li et al., 2016c; Yao
et al., 2018) and one utilized Traub et al. (1991) model’s derivative
Pinsky and Rinzel (1994) model (Mesiti et al., 2015a). Simpler
phenomenological models used in the studied publications were
the FitzHugh-Nagumo (FitzHugh, 1961) model (Postnov et al.,
2009; Hayati et al., 2016), LIF (Gerstner and Kistler, 2002) model
(Liu and Li, 2013a; Naeem et al., 2015), Izhikevich (2007) model
(Allegrini et al., 2009; Haghiri et al., 2016, 2017; Tang et al., 2017),
Morris and Lecar (1981) model or its derivatives (Amiri et al.,
2012a, 2013a; Chan et al., 2017), and Suffczynski et al. (2004)
neuronal population model (Amiri et al., 2012b,c). The released
neurotransmitter was modeled explicitly by Amiri et al. (2012a,
2013a), Liu and Li (2013a), Yang and Yeo (2015), Li et al. (2016c),
and Yao et al. (2018). Other models utilized phenomenological
transfer functions between the neurotransmitter and astrocytic
IP3 concentration. The details of the neuron-astrocyte network
models can be found in Table 5.

The neuron-astrocyte network models were developed to
explain many different biological events as can be seen in
Table 5. Examples included Ca2+ dynamics, synchronization,
information transfer, plasticity, and hyperexcitability. All the
other models except the model by Allegrini et al. (2009) had
components for all three; CICR, leak from the ER into the cytosol,
and the SERCA pump. More than half of the models had influx
of Ca2+ from outside of the astrocyte and efflux of Ca2+ to
outside of the astrocyte. About one third of the models took
into account gliotransmitter release by modeling extracellular
glutamate, and few were also modeling extracellular ATP. Other
models used phenomenological transfer functions to relay the
effect of gliotransmission to the target synaptic terminal (Iastro,
Isyn, part of Iast, and Gm). None of the studied models had a
detailed astrocytic vesicle release model. Most of the models had
gap junction signaling for IP3, and some also for Ca2+. Thus,
these models had a similar core structure with small variations.
As an example, only Yao et al. (2018) modeled buffering as well as
astrocytic and extracellular K+. Diffusion was taken into account
in the models by Allegrini et al. (2009), Postnov et al. (2009),
Mesiti et al. (2015a), Yang and Yeo (2015), Li et al. (2016c), and
Yao et al. (2018). Yao et al. (2018) presented one of the available
models for cortical spreading depression.
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One of the first models developed in this category was the
two-dimensional model by Postnov et al. (2009). They studied
how different lengths of stimulus affected astrocytic Ca2+ and
showed how short stimulus of less than 100 s did not induce Ca2+

wave propagation. However, a longer stimulus of 320 s showed
Ca2+ wave propagation for a short distance and a stimulus of
about 2,000 s showed Ca2+ wave propagation along the astrocyte
network. They also tested how Ca2+ wave propagation was
affected by different noise levels added to the model. They found
out that the stronger the noise, themore accelerated was the Ca2+

wave propagation. With the largest noise level they tested, they
found out that the spatially synchronized behavior was destroyed,
and the model started to behave irregularly.

A few publications presented simplification of model
complexity. Simplification is, in general, used to reduce the
model order to allow cost-effective computation yet preserving
the major, key dynamical behavior of the model. Soleimani et al.
(2015), Haghiri et al. (2016, 2017), and Hayati et al. (2016)
presented the original and simplified versions of the earlier
published models by Postnov et al. (2007, 2009). However, most
of the reduced astrocyte models were not detailed enough based
on our criteria in section 2.2. In the future, it is important to
put more emphasis on the model order reduction of the complex
neuron-astrocyte interaction models to be able to simulate the
behavior of large networks biologically more accurately (see e.g.,
Lehtimäki et al., 2017).

One of the newest models was the model by Chan et al. (2017).
Their neuron-astrocyte network model was able to generate
ultra-slow neuronal oscillatory activity patterns with frequencies
less than 0.01 Hz, recorded by high-density microelectrode
arrays and examined using methods reflecting conventional EEG
analysis rather than conventional microelectrode array analysis.
Their model showed that the frequency of these neuronal
oscillations depended on the astrocytic Ca2+ oscillations. These
astrocytic Ca2+ oscillations depended on the properties of
IP3Rs and lasted from a few seconds to minutes. The results
of Chan et al. (2017) also suggested that astrocytes preferred
asynchronous neuronal firing to synchronous neuronal firing.

3.3. Model Evolution
Figure 1 shows how the computational astrocyte and neuron-
astrocyte models have evolved from each other (see also,
Manninen et al., 2018). We realized that several similar or
exactly the same models have been published without clearly
explaining the similarity and without including citations to the
other, earlier published similar models. This is both negligent
and unethical. The very rules of science should be that every
publication includes a description of what has been done before
and what has been done now on top of the previously published
publications. We have tried our best to give here as complete
a picture as possible. The starting point of an arrow represents
the model which was used as a reference by the latter model
indicated as the arrowhead. Weminimized the number of arrows
so that the minimum number of arrows are pointing to the
arrowheads. This means basically that all the previous models
in the same chain of arrows might have been used to built the
model in the arrowheads, but of course not all of them probably
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FIGURE 1 | Evolution of astrocyte and neuron-astrocyte models published from 1995 to 2017. The starting point of an arrow represents the model which was used

as a reference by the latter model indicated as the arrowhead. The number of arrows was minimized so that the minimum number of arrows are pointing to the

arrowheads. This means basically that all the previous models in the same chain of arrows might have been used to built the model in the arrowhead, but of course

not all of them probably were necessary. With blue, we presented De Young and Keizer (1992) and Li and Rinzel (1994) -type models. With pink, we presented Höfer

et al. (2002) -type models. With purple, we presented De Young and Keizer (1992), Li and Rinzel (1994), and Höfer et al. (2002) -type models. All the other types of

models appear green.

were necessary. Models are excluded from Figure 1 if there was
no clear evidence that the authors had used any other models
presented in this study as a reference and their model was not
used as a reference by any other models presented in this study.
The models by De Young and Keizer (1992), Li and Rinzel
(1994), and Höfer et al. (2002) were most often used as a starting
point when developing new models (Manninen et al., 2018). In
addition, the other models that have helped to steer the field are
the models by Nadkarni and Jung (2003), Bennett et al. (2005),
Volman et al. (2007), De Pittà et al. (2009a), Postnov et al. (2009),
and Lallouette et al. (2014).

4. DISCUSSION AND CONCLUSIONS

In this review, we present the state-of-the-art in the
computational modeling of astrocytes and the interactions
astrocytes have with vascular and neuronal systems. We were

delighted to see the number of researchers presently interested
in modeling astrocytic functions. Due to the large number
of models, we concentrated on about a hundred models that
included biophysical descriptions for Ca2+ signaling and
dynamics in astrocytes. The models were categorized into four
groups: single astrocyte models, astrocyte network models,
neuron-astrocyte synapse models, and neuron-astrocyte network
models. We characterized the components of the models in
detail, contrasted and compared the models with one another,
and evaluated their usability in future work. Selecting the best
models to be utilized in one’s own research can be very tedious
and time-consuming due to the large number of available models.
We therefore wish to provide practical help and guidelines in
choosing the proper astrocyte models for future modeling
projects. Our work also promotes the transparency of scientific
work and recommends actions to establish good practices in
computational modeling and the presentation of results.
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One of the fundamental questions in neuroscience is
how different mechanisms of astrocytes and neuron-astrocyte
interactions are linked with cognitive functions and behavior
in mammals. A variety of evidence is accumulating on the
roles of astrocytes in neuronal excitability, synaptic transmission,
plasticity, and in higher cognitive functions, including the
initiation, maintenance and consolidation of memories (Volterra
et al., 2014; Magistretti and Allaman, 2015; Bazargani and
Attwell, 2016). Most of the evidence stems from in vitro
experimental studies, but also from in vivo studies. Experimental
wet-lab work on astrocytes has given rise to a variety of studies
to computationally address astrocytes’ Ca2+ excitability and its
putative role in neural functions in a variety of conditions
(Manninen et al., 2018). Although there is partial controversy and
ongoing debate on the existence of gliotransmission in vitro and
in vivo (see Fiacco and McCarthy, 2018; Savtchouk and Volterra,
2018, and section 2.1.4), recent attempts to model the astrocytes’
roles in synaptic and network dynamics are a welcome and useful
additional tool to help testing various hypotheses. This is indeed
a good sign: astrocytes, the important but mostly neglected
glial cells, are gradually being taken into account in efforts to
understand the roles of astrocytes in neural network dynamics.
Based on our evaluation, we found out that in silico models have
been presented for many of the above-mentioned, experimentally
observed neural phenomena. However, it was not always clear
which of the models were based on cell culture and which ones
on slice studies. Very few of the models were constructed using
in vivo data. According to our evaluation of 106 models, 53
models were constructed to study Ca2+ dynamics and 15 models
were constructed to study neural synchronization. In addition,
12 models were used to study information transfer, 11 models
were used to study vascular events, 10 models were used to study
plasticity, four models were used to study hyperexcitability, and
one model was used to study homeostasis. However, the models
often described a limited set of molecular mechanisms which
sometimes led us to doubt if the models were detailed enough
to answer the questions asked.

Even though some promising studies on the modeling of
glial functions exist (see e.g., Höfer et al., 2002; Nadkarni et al.,
2008; De Pittà et al., 2009a; Lallouette et al., 2014; Taheri et al.,
2017), the actual value of the models can only be assessed with
time and the reimplementation and resimulation of published
models. Astrocytic mechanisms, such as astrocytic Ca2+ fluxes
related to cytosolic Ca2+, diffusion of astrocytic variables either
in the cytosol, ER, or extracellular space, and gap junction
signaling between astrocytes, were characterized in more detail
here than in our other, educational study (Manninen et al., 2018)
to facilitate the viewing of the similarities and differences of
the models, as well as to support the utilization of the models
in future work. In the present study, a careful review of the
details of the published models revealed that several publications
gave inaccurate descriptions of the models. Examples include
misleading or completely missing graphical illustrations of
the models, incorrect mathematical equations, biologically
incorrectly or sometimes misleadingly named variables, unclear
or non-existent statements of the number of cells modeled, and
non-existent description of the applicability of the selected model

components (see also, Manninen et al., 2018). Moreover, our
detailed evaluation revealed that most models were generated
making slight variations to a small set of older models that did
not originally represent data obtained for astrocytes. However,
neither citations to previous models with similar core structure
nor explanations about what exactly was added to the previous
models were provided. This made it possible, in some cases,
to publish the same or a very similar model several times.
Very few models provided a detailed sensitivity analysis, that
is, an analysis of the robustness of the model against changes
in parameter values. We therefore conclude that most of the
models published thus far do not serve the scientific community
in their best potential and the simulation results of the models are
very difficult to reproduce. A proper validation of the simulation
results against experimental findings and a careful review process
of manuscripts are needed to promote the transparency and
utility of in silicomodels. Large-scale neuroscience projects, such
as presented by Markram et al. (2015), Amunts et al. (2016),
and Grillner et al. (2016), are seeking to solve these challenges
by providing sophisticated informatics tools for the construction,
estimation and validation of models.

Our study highlights the need for reproducible research,
which is an enormous challenge in all areas of science (Baker,
2016; Munafò et al., 2017; Rougier et al., 2017). In our other
studies, we have shown how tedious and difficult it is to
reproduce and replicate the simulation results of published
astrocyte models (Manninen et al., 2017, 2018). We have shown
that it is often impossible to reproduce the results without first
carefully assessing and verifying all equations or contacting the
authors for more details of the published model. In our previous
studies, we have reimplemented altogether seven astrocyte
models and were able to reproduce the simulation results of only
two of the publications completely, based on the information
in the original publications and corrigenda (Manninen et al.,
2017, 2018). After fixing the observed errors in the original
equations, we were able to reproduce the original results of one
more model completely (Manninen et al., 2017). One of the
goals of the present study is to show how many similar models
have already been developed and how emphasis should be put
on making the developed models usable for other researchers
by publishing the model codes online. Furthermore, reviewers
should be able to verify that the implementation and equations
presented in the manuscript match. One solution would be to
submit all the details of the model, such as equations, parameter
values, initial values, and stimuli, in table format with the
manuscript, similarly to what was presented in our previous
studies (see e.g., Manninen et al., 2017). It would also be helpful
to present the outline of the model in a table (see e.g., Tables 2–5
and Manninen et al., 2010, 2018). Reproducible models can
truly advance the computational fields of neuroscience and
glioscience.

It seems increasingly evident that astrocytes modulate a
variety of events in the brain. Astrocytes are fully integrated
into the brain cellular circuitry and are an essential part of
the neural networks. Future mathematical and computational
models of brain functions should better take into account the
hidden capacity of astrocytes and other glial cells, as also pointed
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out by Sompolinsky (2014), and available methodologies (see e.g.,
Stiles and Bartol, 2001; Kerr et al., 2008; Skupin et al., 2008; Wils
and De Schutter, 2009; Andrews et al., 2010; Oliveira et al., 2010;
Hepburn et al., 2012; Tilūnaitė et al., 2017). Such comprehensive
models will help us detail the complex interactions between
different types of glial cells and other systems in the brain,
including the vascular and neuronal systems, and may lead
to a better understanding of the roles astrocytes have in the
brain. Most urgently, in silico modeling in neuroscience should
strive to incorporate state-of-the-art wet-lab data on glial cells
to advance the construction and validation of models. In this
process, more emphasis should be put on the selection of the
animal species, the developmental stage of an organism, and the
type of wet-lab preparation. Future work should also include
the development of theory, based on constraints of physics
and chemistry, to provide a linkage between the phenomena
measured at different levels and scales in the brain. In conclusion,
the description of the state-of-the-art in neuron-glia modeling
and the constructive criticism presented in this work will be
useful in setting new goals and guidelines for future modeling in
neuroscience.
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