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Abstract 25 
 26 
There is an increasing need for predictive risk assessment of nanomaterials (NMs) using methods 27 

that are rapid, accurate and resource efficient. To fulfill this need, the development and use of 28 

Quantitative Property Property Relationships (QPPRs) for estimating the hazard of NMs and NM-29 

related parameters in exposure modelling seems eminent. In this study, we analyze a selection of 30 

models used for hazard and/or exposure assessment of NMs. This analysis was done by identifying all 31 

the NM-related properties used in these models related to three categories of data: (i) Intrinsic 32 

properties specific to the NM, matrix or experimental conditions, (ii) Extrinsic NM properties related 33 

to interaction between the intrinsic properties and (iii) Measured hazard or exposure data. This 34 

analysis is combined with the current state of QPPR development to recommend further 35 

development of QPPRs for predictive risk assessment of NMs. In particular, the use of descriptors 36 

related to the interaction between a NM and its surroundings, e.g. the attachment efficiency is 37 

proposed. 38 

Key words: nanomaterial, modelling, in silico, QPPR, QNAR, risk assessment  39 
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1 Introduction 40 

With the increasing rate of new nanomaterials (NMs) being developed and applied, an increase in 41 

knowledge gaps is expected for assessing the hazard, exposure and risk of NMs to the environment 42 

and to human health. NMs are expected to be applied in a vast number of variations in e.g. size, 43 

shape, coating and chemical composition. It is not feasible to generate information for every 44 

nanomaterial on the routes of exposure and uptake, and potential bioaccumulation in biota and in 45 

the human body. In addition, generating information on the main interactions with biological 46 

systems, requiring animal testing, may be regarded as unethical in terms of animals use and wasteful 47 

in terms of resource use (Russell and Burch, 1959). Therefore, it is important to develop in silico 48 

approaches to aid in the prediction of NM safety based on their physico-chemical properties. In silico 49 

methods traditionally refer to the application of computational modeling techniques for predicting 50 

the activity or effects of a chemical based on its chemical structure (Reisfeld and Mayeno, 2012). This 51 

includes Quantitative Structure-Activity Relationships (QSAR) which are more widely used in 52 

pharmacology (Dearden, 2003; Fujita and Winkler, 2016), and are already finding application in the 53 

safety regulation of molecular or ionic substances (European Commission, 2006; ECHA, 2008). QSARs 54 

have already been successfully used in relating structural characteristics to chemical properties and 55 

biological effects of molecular substances in order to fill data gaps (Chen et al., 2014; Singh et al., 56 

2014; Modarresi et al., 2007). According to REACH, data derived from QSARs may support the 57 

waiving of laboratory testing or serve as a trigger for proposing further testing or used instead of 58 

testing data when certain required conditions are met (ECHA, 2008). A well-known example in this 59 

respect is the in silico approach used in the exposure models that are included in REACH, allowing to 60 

predict the solids-water partition coefficient on the basis of the octanol-water partitioning coefficient 61 

(Kow) of organic compounds in combination with the fraction organic matter (foc) of solids (Sabljić et 62 

al., 1995). Similarly, the Kow can be used as a descriptor to calculate the acute toxicity (LC50) of 63 

certain compounds for mice (Dearden, 2003).  64 

These relationships, although strictly not addressing 'activity' in the pharmacological sense, are 65 

usually named QSAR; more properly, they should be named QSPR (Katritzky et al., 1997) or QPPR (de 66 

Jongh et al., 1997), Quantitative Structure-Property and Quantitative Property-Property 67 

Relationships, respectively. For nanomaterials, such QSARs, QSPRs or QPPRs are still in the early 68 

stages of development, and are often named Quantitative Nanostructure-Activity Relationship 69 

(QNAR) or nano-QSPR; these include advanced statistical methods using machine learning (González-70 

Durruthy et al., 2017). In this paper, we will use the term QPPR, which relates to all kinds of 71 

predictive relationships that use nanomaterial properties as descriptor. To date, a number of 72 

attempts have been made to correlate the characteristics of NMs to their biological responses 73 
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(Tantra et al., 2014; Raies and Bajic, 2016; Chen et al., 2017; Sizochenko and Leszczynski, 2017). 74 

Those reviews showed the tantalizing possibility that the QPPR method may indeed be feasible and 75 

useful in predicting the biological activity profiles of novel NMs. However, it also revealed that nano-76 

QPPR is now still in its infancy and further challenges in this field need to be overcome. One issue 77 

standing out on this background relates to the comprehensive representation of NM structures. As 78 

known, NMs often exist as populations of materials varying in structural characteristics, e.g. 79 

composites, sizes, shapes, functional groups. The structural ambiguousness of NMs makes it difficult 80 

for experimentalists to provide precise information on NM characterization which consequently 81 

hinders the calculation of representative descriptors for NMs (Tamm et al., 2016).  82 

Another issue of importance in this context concerns the dynamics of NMs in media. NMs often 83 

strongly interact with constituents in the medium and undergo dramatic changes to their surface 84 

properties, and dissolution and aggregation behavior (Winkler, 2016). These changes consequently 85 

alter the mobility, bioavailability, and ultimately the toxicity of NMs. Therefore, in some cases the 86 

toxicity information of NMs can be poorly correlated to the NMs’ characteristics without considering 87 

the dynamics of NMs in the media. Thus QPPRs, predicting toxicity, based on initial structural 88 

features of NMs are now also extended to incorporate experimental descriptors like zeta-potential 89 

(Fourches et al., 2010; Liu et al., 2011; Singh and Gupta, 2014) and aggregate size (Sayes and Ivanov, 90 

2010; Sizochenko et al., 2014; Pan et al., 2016). The fact that these dynamics play a role in NM risk 91 

assessment was previously made clear in several studies focused on environmental exposure 92 

assessment (Westerhoff and Nowack, 2013; Cornelis, 2014; Hendren et al., 2015a; Baun et al., 2017). 93 

These studies suggest the use of empirical parameters for predicting risk, which include the effects of 94 

experimental conditions, such as pH, ionic strength and Natural Organic Matter content. Although 95 

several possibilities exist, an early study indicated that global descriptors for NM fate and transport 96 

need to include information on at least these experimental conditions (Westerhoff and Nowack, 97 

2013).  98 

Just as for molecular or ionic chemical substances, other methods than QPPRs are available as well 99 

for predicting the safety of NMs. These alternatives include mechanistic models, tools which 100 

implement these models and overarching frameworks (Hristozov et al., 2016; Liguori et al., 2016; 101 

Sanchez Jimenez et al., 2016; Baun et al., 2017; Boyes et al., 2017; Nowack, 2017). These methods 102 

range from models based on commonly applied regulatory accepted approaches, predominantly in 103 

the area of exposure assessment, to more novel approaches such as used for hazard banding. The 104 

aim of all these tools, models and frameworks is to reduce the burden of testing NMs case by case 105 

and to focus on predicting risks based on the physico-chemical properties of a NM and on its 106 

application and use. The tools and models have NM properties as input parameters. Often the 107 
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parametrization of the models is based on assumptions related to the processes that are deemed 108 

relevant based on the mechanistic understanding of the system and more pragmatic choices, e.g. 109 

based on data availability. This leads to differences but also to commonalities in processes and 110 

parameters used between the currently available models. In this respect the ‘age’ of a model is also 111 

an issue as it takes a considerable effort to keep them up to date with the most recent mechanistic 112 

understanding, with newer versions being developed almost continuously (Hristozov et al., 2016). 113 

The key question with regard to the applicability of QPPRs in NM specific risk assessment is how 114 

QPPRs can be used to predict model parameters instead of requiring empirical data for each unique 115 

NM. To answer this question, we analyzed a selection of currently available mechanistic models and 116 

their parametrization related to nanomaterial properties. As such, we did not aim to include an 117 

exhaustive review of all available tools, models and methods for risk assessment, but we intended to 118 

include as many processes and parameters deemed relevant for risk assessment in order to provide a 119 

novel insight on the future of predictive risk assessment and the use of in silico methods in 120 

combination with mechanistic modelling. 121 

The analyzed models predict hazard and/or external and internal exposure concentrations for 122 

humans and for the environment. For hazard assessment, only a few hazard banding tools could be 123 

analyzed as this is still almost solely based on (eco)toxicity testing. Although in hazard assessment 124 

other developments and discussions play an important role in reducing animal testing (e.g. in vitro-in 125 

vivo extrapolation), our analysis focuses on available hazard banding tools and in silico methods.  126 

In the analysis of model parameters and QPPR descriptors a classification is introduced using three 127 

categories loosely based on the strategy for nanomaterial risk forecasting as presented by Hendren 128 

et al. (2015a), see Figure 1. The first category consists of the intrinsic properties of either the NM, the 129 

matrix or the (experimental) conditions of the system. The second, affected by the first, are the 130 

extrinsic NM properties that are based on the interaction of NMs with their surrounding matrix and 131 

the conditions affecting that system, e.g. a process rate constant or the attachment efficiency. The 132 

hazard concentrations (no effect, effect or lethal concentrations) or exposure concentrations 133 

(measured or otherwise estimated) make up the third category. These hazard and exposure 134 

concentrations are the regulatory basis for assessing risks. The division into these categories is used 135 

in the discussion and recommendations to assist in finding better descriptors for use in development 136 

of QPPRs and in silico methods with a basis in empirical data. For that reason the subcategorization 137 

of the intrinsic properties, relates to the fact that this metadata should be reported together with the 138 

main experimental outcome (Marchese Robinson et al., 2016). This is because the intrinsic NM, 139 

matrix and experimental system properties inherently affect the extrinsic NM properties and 140 
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eventually risk, in this sense the categorization is hierarchical (Figure 1). For example, an intrinsic NM 141 

property is size, an intrinsic matrix property is pH or ionic strength and an intrinsic experimental 142 

condition is temperature or mixing rate, these likely affect an extrinsic NM property such as the 143 

dissolution rate.   144 
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 145 

 146 

Figure 1. Schematic representation of property categories and types of data required for predicting the risk of engineered 147 
nanomaterials (NMs) based on quantitative relationships. These are (i) intrinsic properties of the ENM, the matrix and 148 
the overall experimental System, (ii) Extrinsic properties that are dependent on the interaction between ENM, Matrix 149 
and System conditions. (iii) Exposure and hazard concentrations used for risk assessment. 150 

2 Nanomaterial related properties in environmental exposure 151 

models 152 

Several environmental exposure models have been developed describing transport and 153 

transformation processes of nanomaterials (Praetorius et al., 2012; Liu and Cohen, 2014; Meesters et 154 

al., 2014; Dale et al., 2015a; Quik et al., 2015; Garner et al., 2017). We have analyzed the processes 155 

reported in these fate models specifically affecting NM transport or transformation, to evaluate the 156 

dependency of these models on intrinsic NM properties or extrinsic NM properties related to 157 

interaction with the intrinsic matrix or system conditions (Table 1). Although numerous  properties 158 

affect NM fate, not all of them are related to intrinsic or extrinsic NM properties (Table S1 in 159 

supporting information). For example, the description of dry and wet deposition and resuspension of 160 

aerosols is mainly based on atmospheric characteristics such as the rain rate, wind speed and aerosol 161 

properties (Nho-Kim, 2004; Wang et al., 2010). Runoff from soil to water and leaching out of the soil 162 

are processes primarily related to soil characteristics and the rain rate (Renard et al., 1997). In the 163 

aquatic compartment, sedimentation and resuspension can also be considered processes already 164 

taken into account in multimedia modelling of conventional chemicals (Hollander et al., 2016). The 165 

process rates are thought to be largely based on the characteristics of the sediment and natural 166 

suspended particulate matter characteristics rather than on properties of the NM (Quik et al., 2012; 167 

Dale et al., 2015b).  168 
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In practice, the effects that nanomaterials have on these processes cannot be fully neglected. It is 169 

clear from experimental and modelling studies that hetero-agglomeration between soil, sediment or 170 

suspended particles and NMs is an important process affecting their transport (Praetorius et al., 171 

2012; El Badawy et al., 2013; Quik et al., 2014; Therezien et al., 2014; Bouchard et al., 2015; Quik et 172 

al., 2015; Ghosh et al., 2016). The mechanistic approach to including this process in models is to 173 

estimate the hetero-agglomeration rate, which is dependent on the hetero-agglomeration rate 174 

constant, which equals the product of the collision frequency and attachment efficiency (also called 175 

attachment affinity or attachment factor, and α) (Lyklema, 2005). There are theoretical approaches 176 

to calculate these properties (Lyklema, 2005; Petosa et al., 2010), but they mostly apply to relatively 177 

simple colloidal systems, e.g. not taking into account more complex behavior due to the presence of 178 

natural organic matter or protein corona’s. For this reason the hetero-agglomeration rate or 179 

attachment efficiency is mostly measured empirically (Westerhoff and Nowack, 2013; Barton et al., 180 

2014; Garner et al., 2017). 181 

In addition to hetero-agglomeration affecting NM transport, the NMs are transformed into a new 182 

form, being the hetero-agglomerate. Several other transformations of NMs are deemed relevant in 183 

the natural environment, such as changes in the surface chemistry, disintegration due to chemical 184 

reactions and dissolution (Dale et al., 2015a). However, only dissolution and sometimes an overall 185 

process rate for additional degradation processes are included in the current models (Table 1). 186 

  187 
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Table 1. The nanomaterial related parameters used for the reported parameterization methods commonly applied in 188 
nanomaterial fate models: Praetorius (Praetorius et al., 2012), MendNano (Liu and Cohen, 2014), SimpleBox4nano 189 
(Meesters et al., 2014), NanoDUFLOW (Quik et al., 2015) and NanoFate (Garner et al., 2017). 190 

Fate process 
Model 

Reported parametrization 
Nanomaterial related 
properties 

Dry deposition 

MendNano 
Theory for interception due to 
surface resistance combined with 
Stokes’ Law 

Size and density 

SimpleBox4nano 

Theory for interception due to 
aerodynamic and surface 
resistance combined with Stokes’ 
Law 

Size and mass 

nanoFate Stokes’ law Size and density 

Wet deposition 

MendNano Below cloud rain scavenging ratio No parameter, defined 
by size class 

SimpleBox4nano 

Rain collection efficiency 
calculated from Brownian, 
Interception and gravitational 
impaction 

Size and density 

nanoFate Below cloud rain scavenging ratio No parameter 

Sedimentation 

Praetorius, MendNano 
SimpleBox4nano, 
NanoDUFLOW, 
nanoFate,  

Stokes’ Law Size, density 

Hetero-
agglomeration (air) 

MendNano Fixed attachment and weighing 
factor Attachment factor 

SimpleBox4nano  
Coagulation coefficient and 
transitional correction coefficient 
or attachment efficiency 

Size, density, 
attachment efficiency 

nanoFate 

Empirically estimated hetero-
agglomeration rate for freshwater 
adjusted based on lower collision 
frequency 

Hetero-agglomeration 
rate constant 

Hetero-
agglomeration 
(water) 

Praetorius, 
NanoDUFLOW, 
SimpleBox4nano 

Smoluchowski theory on particle 
aggregation based on collision 
frequency and attachment 
efficiency 

Size, density and 
attachment efficiency 

MendNano Fixed attachment and weighing 
factor Attachment factor 

nanoFate  Empirically estimated hetero-
agglomeration rate 

Hetero-agglomeration 
rate constant 

Hetero-
agglomeration (soil) 

MendNano Fixed attachment and weighing 
factor Attachment factor 

SimpleBox4nano  

Smoluchowski theory on particle 
aggregation and particle filtration 
theory with the attachment 
efficiency estimated empirically or 
using the interaction force 
boundary layer approximation 

Size, density, 
attachment efficiency, 
surface potential, 
Hamaker constant 

nanoFate 

Partitioning between solids and 
water fraction of soil based on 
empirical estimate of NM retention 
in soil. 

NM-Soil retention 
fraction 

Dissolution 

MendNano 
Based on solubility, mass transfer 
coefficient and available surface 
area of NMs 

Concentration, size, 
density, fractal 
dimension 

NanoDUFLOW, 
SimpleBox4nano, 
nanoFate 

Empirical Dissolution rate 
constant 

Agglomerate breakup Praetorius, 
nanoDUFLOW, No, assumed irreversible No parameter 
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MendNano, 
SimpleBox4nano, 
nanoFate 

Degradation and 
other transformation 
processes 

Praetorius, MendNano, 
nanoFate No No parameter 

SimpleBox4nano, 
NanoDUFLOW No Degradation rate 

constant 
 191 

From Table 1, it becomes clear that size and density are the only intrinsic NM properties used for  192 

modelling  the transport processes, deposition and sedimentation. The transformation processes do 193 

not include other purely intrinsic nanomaterial related descriptors, except for the fractal dimension 194 

of homo-aggregates in MendNano where homo-aggregates can be defined as the form of ENM under 195 

consideration. The Hamaker constant, attachment efficiency, attachment factor, hetero-196 

agglomeration rate constant and dissolution rate constant are extrinsic properties not only related to 197 

the nanomaterial, but also to the environmental compartment under consideration, including the 198 

natural colloids and particulates.  199 

3 Nanomaterial related properties in human exposure models  200 

Human external exposure modelling traditionally largely depends on the application scenario of a 201 

consumer product (in the case of consumer exposure) or on a worker’s activity scenario (in case of 202 

occupational exposure). For the former the calculation of the load of a NM based on the 203 

concentration in a product and the frequency and amount of use are the relevant variables (RIVM, 204 

2016) (see table S2 in supporting information), while for the latter the activity and the duration 205 

mainly determine the exposure.  206 

Although several models exist that take into account consumer exposure to chemicals and particles 207 

due to inhalation from consumer products (sprays), only the well established Multiple-Path Particle 208 

Dosimetry (MPPD) model and recent extension of ConsExpo nano 209 

(https://www.consexponano.nl/)(RIVM, 2016) take specific nanomaterial properties into account 210 

(Table 2). In both models the size and density, shape only in Consexpo nano, of a NM are taken into 211 

account for assessing the deposition of the NM in the lung. The NM dissolution rate is used to 212 

estimate the clearance rate for soluble particles in Consexpo-nano, for other particles both 213 

Consexpo-nano and MPPD use a particle independent clearance rate constant.  214 

The main concern in relation to estimating human occupational exposure of NM is related to 215 

inhalation (Schneider et al., 2011). For occupational exposure several risk control banding tools (e.g. 216 

Stoffenmanager Nano, NanoSafer CB, Control Banding Nanotool) also include an estimate of the 217 

exposure to nanomaterials (Liguori et al., 2016). The exposure estimate in these tools is largely based 218 

on the application scenario and dustiness is the only NM related property used (Table 2). Dustiness is 219 
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measured using standard testing methods and is thought to be primarily related to the coating and 220 

agglomeration of NM (Jensen et al., 2008; Schneider and Jensen, 2009). 221 

This shows that although dustiness of a powder is related to intrinsic physico-chemical properties of 222 

the NM, the attractive and repulsive forces affecting agglomeration are also dependent on the 223 

systems conditions and matrix, e.g. moisture decreases dustiness and statically charged systems 224 

increase dustiness, meaning that this is an extrinsic parameter describing an interaction (Jensen et 225 

al., 2008; Schneider and Jensen, 2009; Koivisto et al., 2015; Levin et al., 2015).  226 

Table 2. Nanomaterial related properties used in estimating worker and consumer exposure to NM using a selection of 227 
control banding tools (Zalk et al., 2009; Duuren-Schuurman et al., 2011; Jensen et al., 2014) and  quantitative consumer 228 
exposure models (Anjilvel and Asgharian, 1995; Asgharian and Price, 2007; RIVM, 2016). 229 

Process 
Model 

Reported parametrization 
Nanomaterial related 
properties 

Exposure at room 
level due to worker 
handling 

Stoffen manager nano Application scenario, dustiness, 
moisture Dustiness 

NanoSafer CB Application scenario, dustiness Dustiness 

CB NanoTool Application scenario, dustiness, 
mistiness Dustiness 

Inhalation of spray 
product ConsExpo nano Similar to (conventional) 

ConsExpo model Not reported 

Deposition of NM in 
lungs 

ConsExpo nano ICRP deposition model Size, density and shape 

Multiple-Path Particle 
Dosimetry (MPPD) 

Semi-emperical relationship using 
the molecular diffusion coefficient  
and effective diffusion coefficient 
in combination with lung 
dimensions 

Size, density 

Clearance of NM 
from lungs 

ConsExpo nano 

ICRP clearance model for non-
soluble particulates using 
clearance rate constants 
First order removal due to 
dissolution for soluble nano 
materials. 

 
Dissolution rate 
constant 

MPPD Semi empirical relationship using 
clearance rate constants. Not reported 

 230 

4 Nanomaterial related properties in internal exposure/kinetic 231 

models 232 

Although modelling of internal concentrations of compounds has been applied in risk assessment of 233 

chemicals, its use is often limited by availability of sufficiently generic data on the required input 234 

parameters. As internalization of NMs is an important driver for NM toxicity, these types of models 235 

are promising. Furthermore, this area of research contributes to future risk assessment methods that 236 

depend less on in vivo studies. From data on the external exposure and intake of NMs, the internal 237 

concentration in relevant organs in the human body can be calculated using physiologically based 238 
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pharmacokinetic (or PBPK) models (Lankveld at al. (2010), Bachler et al. (2013, 2014), Van Kesteren 239 

et al. (2015), Heringa et al. (2016), Li et al. (2017) and references cited herein (Lee et al., 2009; Péry 240 

et al., 2009; Li et al., 2012)). Currently, most PBPK models depend on NM specific parameters that 241 

were fitted from experimental data. The main process parameters are related to the absorption and 242 

distribution of NMs to different organs, the metabolism and the excretion of NMs (Table 3).  243 

The absorption of NMs to the skin, lungs and intestines is commonly modelled using an absorption 244 

fraction that is fitted using experimental data (Table 3). So, no clear relationship with any intrinsic 245 

physico-chemical NM property is used, although it is expected that several intrinsic NM properties 246 

will affect the absorption fraction or rate, such as NM chemical composition and coating, but also the 247 

intrinsic characteristics of the biological surface will play a role. This is similar to how in 248 

environmental exposure modelling, the attachment affinity is based on both the NM and the other 249 

surface to which the NM will be attached (or in this case: absorbed). 250 

The distribution of NMs via the blood to the different organs is based on organ uptake and release 251 

rates which are dependent on the formation of the protein corona, particle size, surface charge, and 252 

dissolution, speciation (Lankveld et al., 2010) and the crystalline form (van Kesteren et al., 2015; 253 

Heringa et al., 2016) of the NM (Table 3). However, one of the main processes governing this 254 

distribution is related to the ability of NMs to cross the capillary wall of the organs and by uptake by 255 

macrophages in the mononuclear phagocyte system (MPS) (Bachler et al., 2013, 2014). These 256 

macrophages are primarily located in the liver, lung and spleen. The former process of crossing the 257 

capillary wall was reported as size independent for the size range from 15 to 150 nm, whereas the 258 

latter (uptake by macrophages) is dependent on the size of the particle. The minor influence of size 259 

(for silver and TiO2)(Bachler et al., 2013, 2014), of the surface charge, of coating (for silver) (Bachler 260 

et al., 2013), and of the crystalline structure of the particles (TiO2)(Bachler et al., 2014) on the passing 261 

of the capillary wall of the organs may be explained by the formation of a protein corona. Thus, the 262 

extrinsic property of a protein corona may have a stronger influence on the distribution than the 263 

intrinsic NM properties (Bachler et al., 2013). 264 

The metabolism of NMs is related to the dissolution of NMs (Table 3). For silver, the formation of 265 

silver sulfide particles was the main metabolic process. The formation of silver sulfide complexes 266 

caused storage of these particles in the different organs. For each organ the relative complexation 267 

capacity was estimated using the glutathione (GSH) content of the organs (Bachler et al., 2013).  268 

The excretion of NMs is considered size independent, although different mechanisms are used for Ag 269 

or TiO2 NMs (Bachler et al., 2013, 2014). The Ag NM excretion was due to the biliary endocytosis of 270 

silver-GSH complexes and for TiO2 NMs this was due to the trans- capillary pathway. 271 
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In summary, estimating the internal concentration of nanomaterials is largely based on the physical 272 

and biological characteristics of the bloodstream and different organs of the human body in 273 

combination with NM characteristics. NM size and crystalline structure are found to be the only 274 

intrinsic NM properties, and the other parameters are all extrinsic, related to the interaction of the 275 

NM with the matrix and blood or organ system. In particular, the surface chemistry and the 276 

formation of a protein corona could play an important role, e.g. in estimating the absorption to skin, 277 

lungs and intestines. In environmental and colloid sciences, the attachment affinity is an important 278 

similar property both related to the interaction of a NM and another surface with which the NM 279 

interacts, e.g. sediment or soil particulates. It was also shown that the NM characteristics itself could 280 

be of lesser importance compared to the interaction with proteins contained in the blood which 281 

result in formation of a protein corona (Li et al., 2017). This means that these proteins should be 282 

included in estimating any parameter related to absorption or attachment to biological surfaces. 283 

Table 3. Processes and nanomaterial related properties as reported in studies on pharmacokinetic models using 284 
nanomaterials: Lankveld et al.(Lankveld et al., 2010), Bachler et al. (Bachler et al., 2013, 2014) and references cited 285 
herein (Lee et al., 2009; Péry et al., 2009; Li et al., 2012). 286 

Process 
Studied 
organ/compartment 

Nanomaterial related 
properties 

Absorption 
Skin, lung, intestine Absorption fraction to 

skin and intestine. 
Absorption rate to lung 

Distribution 

Blood and all organs Size, surface charge, 
surface coating and 
protein corona, 
crystalline structure 

Metabolism 
Liver, lung, other 
organs 

Dissolution rate, 
sulfidation rate 

Excretion 
Bile, kidney (urine), 
intestine 

No reported 
dependencies 

 287 

5 Nanomaterial related parameters in hazard banding tools 288 

Although modelling is currently not common in estimating the hazard of chemicals in a regulatory 289 

context, several control banding tools are available to perform a first risk screening of a NM 290 

application in order to prioritize further assessment (Zalk et al., 2009; Duuren-Schuurman et al., 291 

2011; Höck J. et al., 2011; Jensen et al., 2014). The approaches of these authors to estimating NM 292 

hazard are briefly, although not exhaustively, analyzed here. For a more thorough review see e.g. 293 

Liguori et al. (2016), Sanchez Jimenez et al. (2016) or Hristozov et al. (2016).  294 

In general, all the considered tools distinguish some parameter that indicates whether the NM is 295 

expected to be persistent, often related to solubility. However, in the case of the Precautionary 296 

Matrix, a more general classification based on a nanomaterial half-life is used. In this sense, 297 

dissolution reflects the potential for degradation of NMs by an organism and not the potential 298 
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toxicity related to a transformation product, such as the dissolved ion. The second and most 299 

important aspect in estimating NM hazard is classifying the potential toxicity of a NM based on either 300 

physico-chemical characteristics and/or the toxicological characteristics of the NM (toxic potential, 301 

Table 4). Several tools also include the toxicological characteristics of either bulk, larger sized 302 

particulates or of the parent chemical compound for estimating the toxic potential. Although there is 303 

some variation between the intrinsic physico-chemical characteristics considered, 3 out of 4 tools use 304 

shape to classify the toxic potential of a NM. They consider fibrous or tubular particles with a high 305 

aspect ratio to coincide with a high toxic potential following the fibre paradigm (Poland et al., 2008). 306 

Furthermore, 3 out of 4 tools include NM surface chemistry, for which the parametrization ranges 307 

from classifying the catalytic or redox potential to identifying the presence of surface 308 

coatings/modifications. Only one of the tools considers size a driver for toxic potential. For the 309 

eventual risk assessment, NanoSafer CB and ConsExpo use the specific surface area, based on NM 310 

size and density, to scale the exposure limits and exposure potentials. 311 

This analysis shows that empirical toxicity data are a main component of hazard assessment, also in 312 

these hazard banding tools (hazard concentrations in Figure 1). Although it is clear that several 313 

inherent relationships between adverse effects and intrinsic NM physico-chemical properties are 314 

taken into account, only a few parameters relate to the interaction between a NM and the matrix or 315 

system, e.g. solubility or half-life. 316 

Table 4. Nanomaterial related properties included in processes affecting hazard estimation used in risk control banding 317 
tools. 318 

Process 
Model 

Reported classification method 
Nanomaterial related 
properties 

Biopersistence 

Stoffenmanager nano Soluble/insoluble Solubility 

NanoSafer CB Soluble/insoluble Solubility 

Precautionary Matrix NM stability Half-life 

CB NanoTool Soluble/insoluble Solubility 

Toxic potential 

NanoSafer CB 

Occupational exposure limit or 
risk sentence of conventional 
analogue compound, shape and 
coating 

Dimension of primary 
particle, presence of 
coating/surface 
modification, hazard 
data 

Stoffen manager nano 

Fiber aspect ratio, Hazard band 
NM and/or parent material based 
on hazard classification for either 
carcinogenicity, mutagenicity, 
reproduction toxicity or 
sensitisation. 

Fiber aspect ratio, 
hazard data 

Precautionary Matrix Classification of catalytic & redox 
activity 

Catalytic & redox 
activity 

CB NanoTool 
Mutagenicity, carcinogenicity, 
dermal, and reproductive 
effects of parent and micron-size 

Surface activity, 
solubility, shape, size, 
hazard data 
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or NM, surface activity, particle 
shape, particle diameter 

Hazard concentration n-SSWD 
Ecotoxicological data corrected for 
Species relevance, trophic level 
abundance and data quality 

Hazard data 

  319 
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6 Discussion 320 

6.1 Role of QPPRs in risk assessment 321 

Based on the models and assessment methods currently used for prognostic risk assessment as 322 

presented here, it should be clear that QPPRs have different goals in exposure assessment on the 323 

one hand and hazard assessment on the other. Whereas exposure assessment uses quantitative 324 

mechanistic modelling techniques, hazard assessment mainly depends on measuring toxicity or using 325 

tools for a more qualitative hazard assessment. This means that, for hazard assessment, in silico 326 

methods, such as QPPRs, are most useful for predicting hazard concentrations (see supporting info 327 

table S4). On the other hand, for the exposure models - based on intrinsic and extrinsic NM 328 

properties - QPPRs and in silico methods in general are valuable for the estimation of extrinsic input 329 

parameters. Several of such hazard QPPRs have been developed, either classifying NMs into hazard 330 

categories or quantitatively predicting toxicity, which provide useful output for hazard band tools 331 

and hazard assessment in general. Only a few exposure-related nano-QPPRs have been developed, 332 

such as those for predicting the zeta-potential (Mikolajczyk et al., 2015; Wyrzykowska et al., 2016). 333 

Most other currently available QPPRs predict parameters that are not used for risk assessment of 334 

NMs, e.g. related to adsorption of compounds to NMs (Heidari and Fatemi, 2016; Toropova and 335 

Toropov, 2016; Urbaszek et al., 2017) or the Kow of carbon nanotubes (Toropov et al., 2007). Here lies 336 

an opportunity to develop new in silico methods to predict different interactions of NM and natural 337 

and biological surfaces, such as the attachment efficiency, whereas it is more logical to use a 338 

modelling approach when the full mechanistic functioning of a system is understood. The strength of 339 

using nano-QPPRs here lies in bridging the gap between a NM property and a model parameter when 340 

this relationship is not (easily) quantifiable. This is for example the case for predicting the attachment 341 

efficiency. As mentioned above, the attachment efficiency can be calculated based on measurements 342 

of the zeta-potential, the Hamaker constant and NM radius (Petosa et al., 2010; Meesters, 2017). 343 

However, this is only valid for ideal systems where complexities due to the presence of proteins or 344 

natural organic matter and variable properties of natural and biological surfaces do not play a role 345 

(Petosa et al., 2010). This makes mechanistic modelling less relevant for environmental or biological 346 

systems. For this reason, development of a QPPR predicting the attachment efficiency, based on data 347 

gathered using a range of empirical data, appears a more beneficial approach. In addition, it is to be 348 

noted that use of empirical data on other transformation processes, such as dissolution, should be 349 

considered for QPPRs and other types of in silico methods, such as material modelling. Material 350 

modelling, for example, has been used for predicting dissolution kinetics of active pharmaceutical 351 

ingredients (Elts et al., 2016). 352 
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A major drawback in current efforts of developing any in silico method based on empirical data, is 353 

the present low availability and quality of data. For this reason, current activities have shown very 354 

limited success due to data scarcity, non-standardized testing methods and incomplete reporting of 355 

the NM, of the matrix used, and of experimental conditions (Hendren et al., 2015b; Marchese 356 

Robinson et al., 2016). Such development will only work when standardized assays are used in order 357 

to combine datasets for QPPR development and thus to allow for optimal use of data from different 358 

studies. Additionally, data curation systems need to be used, such as those developed for the 359 

Nanomaterials Registry (Guzan et al., 2013) and the NanoInformatics Knowledge Commons 360 

(https://ceint.duke.edu/research/nikc).  361 

Based on the current understanding of NM behavior in the environment and in humans and 362 

organisms, it should be clear that their interaction with the surroundings is an important aspect to 363 

consider. Extrinsic parameters are the drivers of most exposure models (see Table 1, 2 and 3). Only 364 

few of these extrinsic parameters such as the sedimentation velocity can be estimated based on a 365 

quantitative theory using solely intrinsic parameters. These intrinsic parameters (such as size, shape 366 

and density) reported in earlier studies on pristine particles can be used for mechanistic modelling, 367 

although, as stated earlier, curation of reported data needs attention (Hendren et al., 2015b). Most 368 

parameters need to be estimated empirically in the relevant systems (Westerhoff and Nowack, 2013; 369 

Hendren et al., 2015a; Geitner et al., 2016). These extrinsic parameters which describe the 370 

interaction between the nanomaterial, the matrix in which they are present and the system’s 371 

conditions (Figure 1) are inherently dependent on more than the properties of the nanomaterial 372 

alone. This means that any QPPR aimed at predicting extrinsic parameters should include intrinsic 373 

descriptors related to the matrix and system characteristics. This can be done using ‘easily’ measured 374 

extrinsic descriptors, e.g. zeta-potential or aggregate size, or by using intrinsic descriptors that also 375 

include system and matrix characteristics. 376 

 In the analysis of the environmental exposure models we have identified the most important 377 

extrinsic input parameters to be the attachment efficiency or the hetero-agglomeration rate 378 

constant, the dissolution rate constant, and rate constants related to transformation or degradation. 379 

In human exposure models dustiness is a key parameter, whereas also the absorption rate, surface 380 

charge and coating affect the internal exposure concentration (Table 5). These properties can all be 381 

empirically estimated, but this often requires a significant monetary investment. For this reason, 382 

further mechanistic understanding is needed on the interactions between NMs, the matrix and 383 

systems conditions, in order to find easily measured descriptors or parameters that can function as a 384 

basis for estimating these input parameters. This is the focus of the current efforts to develop 385 

specific standardized assays for these relationships between an input parameter and readily available 386 
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characteristics of the experimental system, commonly called functional assays (Hendren et al., 387 

2015a). In addition to using such standardized empirical methods or functional assays, the resulting 388 

data should be available so that they can be used to create in silico methods such as QPPRs. 389 

Eventually this will lead to a link between the extrinsic process parameters or interaction descriptors  390 

and intrinsic descriptors based on the NM, matrix and system. In this way, input parameters used for 391 

mechanistic exposure modelling can be estimated without the need for further functional assays. 392 

These input parameters can rather be estimated using much simpler measurements of specific 393 

properties, similar to how Kow is used for organic compounds. This relationship between different 394 

types of descriptors and relevant input parameters is important to realize in further development of 395 

nano-QPPRs and other in silico models. 396 

6.2 Descriptors in hazard assessment 397 

From analyzing the current state-of-the-art of QPPRs for metal-based NM as reviewed in Chen et al. 398 

(2017), it is clear that hazards of NMs are dependent on a variety of intrinsic NM properties, some 399 

experimental conditions such as NM concentration, and on extrinsic characteristics of the interaction 400 

of the NM with the target organism or exposure matrix. These extrinsic characteristics include zeta-401 

potential, agglomerate size in the exposure media or water and in one case the overlap of 402 

conduction band energy levels with the cellular redox potential and solubility. It is clear that these 403 

types of characteristics of the interaction of NM with organisms are important and the search for 404 

better descriptors (Tamm et al., 2016; Toropova et al., 2016) should include them in addition to  405 

intrinsic NM descriptors (Chen et al., 2017; Shityakov et al., 2017).  406 

Given the analysis of the parametrization of hazard assessment models, we conclude that mainly 407 

hazard data itself, based on dose response relationships are important in assessing the toxic 408 

potential of NMs (Table 4). Furthermore, the intrinsic NM properties such as fiber aspect ratio, size, 409 

coating, and surface activity are used as drivers for this toxic potential. In only one tool, solubility is 410 

included in relation to the toxic potential, and all the tools otherwise use solubility or half-life only to 411 

estimate the persistence. In most cases this means that NM with high solubility would not be 412 

considered according to the NM specific toxic potential estimate, but related to the conventional 413 

compound.  414 

In comparison with the hazard band tools, none of the QPPRs takes the fiber aspect ratio or shape 415 

into account. Although QPPRs are developed for high aspect ratio NMs, such as carbon nanotubes, 416 

they are only applicable to these types of NM and also do not include size or aspect ratio as a 417 

descriptor (González-Durruthy et al., 2017). Overall, both the hazard band tools and nano-QPPRs 418 

have descriptors related to the surface activity of NMs. Most currently available QPPRs have rather 419 
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narrow applicability domains, e.g. limited to one core material with different coatings or different 420 

cores, but similar shape and coating, see table S3 in supporting info. Using a broader set of 421 

descriptors based on the known NM toxicity mechanisms could extend this applicability domain.  422 

In addition to the different NM related properties that affect the toxic potential, the eventual 423 

adverse effects are also related to the kinetics of the uptake and internal distribution processes of 424 

the NM in humans and organisms. This means that any important parameter or descriptor identified 425 

in those studies (Table 3) is likely to also drive the hazard of an NM. This shows that three important 426 

interactions likely play a role in hazard assessment, but have until now not been commonly 427 

parameterized in hazard banding tools or as descriptors in QPPRs. The first of these is the interaction 428 

of NMs with organs, such as absorption to skin and lungs affecting internalization. Empirically 429 

estimating the attachment efficiency could prove useful here. The biological relevance of this 430 

parameter has recently been shown in a study on the trophic transfer of NMs through the food chain 431 

of aquatic organisms (Geitner et al., 2016). The second interaction of importance is the formation of 432 

a protein corona affecting several processes related to the distribution of NMs between blood and 433 

organs. This interaction is related to the first key interaction identified, but the focus here is on the 434 

formation and stability surrounding a protein corona and the NM itself. Formation of a protein 435 

corona affects the attachment efficiency, but other descriptors are likely to be relevant in this 436 

respect as well. The third interaction is the degradation of NM to other forms, e.g. dissolved ionic 437 

species (Waalewijn-Kool et al., 2013; Schwabe et al., 2014) or metabolites (Levard et al., 2011; Hou et 438 

al., 2015). 439 

6.3 Conclusion 440 

In conclusion, there is a big difference in the models and tools available to predict exposure or hazard 441 

of ENMs. This is mainly due to the more qualitative approach commonly applied to predicting hazard 442 

compared to the quantitative estimates of exposure. However, the currently used set of parameters 443 

for both exposure and hazard assessment is limited in nature, and consists of intrinsic and extrinsic 444 

parameters related to the dynamic interactions between NMs and the exposure media or biological 445 

kinetics (Table 5). These often complex interaction processes related to hazard or exposure can 446 

inherently be described using descriptors for the intrinsic characteristics of the NM, matrix and 447 

system conditions or by simpler extrinsic descriptors of interaction. This could for example be 448 

relationships between the aggregation rate and pH, organic matter concentration and ionic strength 449 

(Liu et al., 2013) or between the zeta-potential, an easily measured interaction type parameter, and 450 

the attachment efficiency (Wang and Keller, 2009). These relationships should be quantifiable using 451 

in silico methods, such as QPPRs and other modeling approaches, based on empirical datasets from 452 

standardized functional assays. This also means that the required data should be made available for 453 
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the in silico modeling research field. These data should consist not only of the measured parameter, 454 

such as NM size, attachment efficiency or hazard concentration, but include meta-data that covers 455 

the relevant intrinsic properties of the NM, matrix and experimental conditions (Figure 1).  456 

Table 5. Overview of nanomaterial related model parameters used in the analyzed models to predict nanomaterial risk. 457 
Italic parameters are likely to be useful endpoints for QPPRs and underlined parameters are likely descriptors for QPPRs. 458 
This should not be seen as a limitative list, specifically for the ENM intrinsic properties. 459 

 
Hazard concentration NM extrinsic property NM intrinsic property 

ECx, LCx, NOEC Attachment efficiency  
NM-Soil retention factor 

Hetero-agglomeration rate 
Absorption rate 

Dustiness 
 

Dissolution rate  
Sulfidation rate 

Degradation rate 
 

Zeta potential 
Surface Charge 

Hamaker constant 
 
 

Size 
Density 
Shape 

Coating 
 

Surface activity 
Catalytic & redox 

activity 
Isoelectric Point 

Crystalline structure 
 

 460 

Given the inherent relationship between NM properties and the interaction with the relevant matrix 461 

or organism it can be hypothesized that even though changes of NM properties could occur in the 462 

exposure media, the characteristics of the pristine NMs may still be linked to the observed adverse 463 

biological effects or transformation and behavior. However, the current understanding of these 464 

complex interactions requires the use of descriptors related to the interaction of NM and the 465 

relevant exposure matrix. Although several descriptors are identified here based on the parameters 466 

used in modelling (Table 5), further steps are needed in finding relevant descriptors and developing 467 

better QPPRs in general. These steps include (i) availability of standardized methods for measuring 468 

the interaction parameters. The methods need to include proper characterization of NM properties 469 

and proper reporting of the matrix and of the experimental conditions; (ii) improvement of the 470 

availability of new and existing data for modeling, e.g. using the current state-of-the-art data systems 471 

including data curation to improve data quality (Thomas et al., 2013; Hastings et al., 2015; Hendren 472 

et al., 2015b). Overall, this should lead to novel risk assessment tools, which incorporate improved in 473 

silico models. These novel tools should be validated with high quality data so they can be accepted 474 

for regulatory use. 475 
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