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The Jiles–Atherton magnetic hysteresis model coupled with time-stepping finite-element analysis is reported to suffer from
numerical convergence problems, for example, when simulating electrical machines. In this paper, we describe a source of the
numerical difficulties, and present a more stable time integration scheme for the coupled problem. In addition, we introduce the
quasi-Newton method to accelerate the solution of the nonlinear field equation. Induction motor simulations verify the robustness
of the proposed method.

Index Terms— Finite-element method (FEM), Jiles–Atherton (JA), numerical methods, quasi-Newton (QN).

I. INTRODUCTION

COMBINING the Jiles–Atherton (JA) magnetic hysteresis
model [1] with time-stepping finite-element (FE) analysis

is reported to suffer from numerical convergence problems,
for example, when simulating the electromagnetic field in
a transformer [2], [3]. The combined model involves cou-
pling a differential ∂ H/∂ B-constitutive relation with low-
frequency Maxwell equations for the field strength H and
flux density B, and this is nontrivial both numerically [3] and
mathematically [4]. Numerically, there are issues with
slow or nonexistent convergence when the nonlinear equa-
tions are solved iteratively on each time step. More severely,
the solution itself may blow up, meaning that the H –B curves
eventually drift away from the true solution. This paper focuses
on the numerical difficulties of the coupled JA-finite-element
method (FEM) problem. Other problems, such as parameter
fitting, improved JA-model, and comparison to measurements,
will be addressed in separate works. From a more theoretic
point of view, it is still uncertain in what sense hysteretic
partial differential equations (PDEs) have well-defined solu-
tions [5], [6], and research on such a topic could be interesting.

The most important observation in this paper is that the
numerical stability and convergence problems are mitigated
when the JA-differential equation is solved accurately enough
at each field-equation time step. The required step size for
the JA-equation can be several times smaller than what is
required to solve the field equation. Thus, we use “subdivided”
time steps for the JA-equation, as is done in [2] and [7].
In addition, we observe that the required step size can vary
considerably at different parts of the hysteresis loop. This
suggests using an adaptive scheme to solve the constitutive dif-
ferential relation, which automatically refines the step size at
the critical regions. In our numerical tests, in which a realistic
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rotating induction machine with coupled circuit equations is
simulated, the adaptive error control removes the convergence
and stability problems of the coupled JA-FEM-problem. The
required step size to solve the JA-equation can be very
small, in the worst case of order 1/100 compared with the
FEM-problem time step, so the efficiency of the JA-equation
solver requires special attention.

A quasi-Newton (QN) method, namely a variant of sparse
Broyden’s method [8], is presented to accelerate the solution
of the nonlinear equation arising from the coupled (hysteretic)
FE and circuit equations. The method, which is customized
to fit our particular problem, can offer a significant speedup
compared with a straightforward fixed-point (FP) method.

II. VECTOR JILES–ATHERTON MODEL

A. Definition

The 2-D vector (inverse) JA-model described in [9] is
employed in this paper. In the JA-model, the constitutive
relation between H and B is given as a differential equation

∂ H
∂ B

= νJA(B, H,�H) (1)

where the 2 × 2 tensor νJA is called the differential reluctivity.
The last argument is a short-hand notation �H := ∂t H/|∂t H|,
meaning that only the direction, not the rate, of the change of
H is significant. Rate-dependent (i.e., dynamic) terms can also
be included, but they are neglected here for brevity.

The function νJA(B, H,�H) is defined as follows. The
model involves five parameters (ms, k, c, a, α), which are
determined from measured H –B curves for different materials.
A physical derivation of the model and the meaning of the
parameters can be found in [10]. The magnetization M =
ν0 B − H , where ν0 is the vacuum reluctivity, is separated into
irreversible and anhysteretic terms, M = cMan + (1 − c)Mir.
The effective field is defined as He := H + αM , and the
anhysteretic magnetization is given by

Man(He) = msL

� |He|
a

�
He

|He| (2)
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where L(x) := coth(x) − 1/x is the Langevin function; other
functions, like splines, can also be used to get a better fit with
the measurements [11]. The irreversible term is given by the
differential relation
∂ Mir

∂ He
= |Man − Mir|

k

�
H 2

e,x He,x He,y

He,x He,y H 2
e,y

�

if �H · (Man − Mir) > 0 (3)

else (∂ Mir/∂ He) = 0. The if-condition is a vector general-
ization of the assumption that the change is reversible when
(H, B) is below the anhysteretic curve and �H is negative
(and vice versa) (see Fig. 1). Then

∂ M
∂ H

= (I − αχ)−1χ (4)

where I is the identity matrix and χ := c(∂ Man/∂ He) + (1 −
c)(∂ Mir/∂ He). Finally, the desired equation is

νJA(B, H,�H) =
�

∂ B
∂ H

�−1

= ν0

�
I + ∂ M

∂ H

�−1

. (5)

It should be kept in mind that certain JA-parameters can
give negative νJA in the scalar case (and negative definite
in the vector case) [12]. As νJA appears later on as the
material parameter in the field equation, “bad” parameters
could cause problems. For example, if the Langevin function
with parameters ms, a, α is used as the anhysteretic magne-
tization, the parameters must satisfy (αms/3 a) < 1 in order
to the anhysteretic curve be monotonously increasing in the
H –B plane, which is needed to keep νJA positive.

B. Proposed Numerical Integration of JA Equation

In the inverse JA model, B is the independent variable,
which is convenient when the vector potential formulation
B = ∇×A is used to solve the field equation. The magnetizing
field H is solved from the differential equation (1) numerically
by an explicit method. Given (Hi ,�Hi , Bi , Bi+1), where i
denotes the i th time step, the “B-step” �B := Bi+1 − Bi

is divided into s subintervals, because in our test problem,
we need to integrate (1) using several times smaller �B than
what is required to solve the time-stepping FEM problem. For
brevity, explicit Euler is used to integrate each subinterval in
the following scheme; in the actual implementation, we use
the fourth-order Runge–Kutta (RK4). To make the coupling
to the field equation (Section III) clear, the scheme is written
as follows.
INPUT (Bi , Bi+1, Hi ,�Hstart, s).
�H0 = �Hstart.
FOR m = 1, . . . , s

νJA,m = νJA

�
Bi+ m−1

s
, Hi+ m−1

s
,�Hm−1

s

�
(6)

�Hi+m/s = 1
s νJA,m�B (7)

Hi+m/s = Hi+ m−1
s

+ �Hm/s . (8)

OUTPUT (Hi+1).
Noninteger indices denote the values at “substeps,” and they

are not needed later. The average reluctivity

ν̂JA := 1

s

s�
m=1

νJA,m (9)

Fig. 1. Top: anhysteretic curve M(H, B) = Man(H, B) in the
H –B plane and some increasing (�H > 0) solutions to the scalar JA equation
d H/d B = νd(B, H,�H ) (implicitly defined). Bottom: Corresponding differ-
ential reluctivity νd(B, H,�H ) in the H –B plane. Note that νd varies rapidly
close to the anhysteretic curve, which is an expected cause of numerical
difficulties.

is stored for later use, because ν̂JA appears as a material
parameter in the field equation in Section III. The resulting
Hi+1 can be expressed shortly as

Hi+1 = Hi +
s�

m=1

νJA,m
Bi+1 − Bi

s

= Hi + ν̂JA(Bi+1 − Bi ). (10)

The initial �H can be chosen as �Hstart = Hi −Hi−1, but that
leads to problems when an adaptive method is used (when the
change switches from reversible to irreversible or vice versa
[see (3)], this choice of �Hstart forces the solution into the
“wrong branch”). In our implementation, we first compute a
candidate H̃i+1 by using explicit Euler without subdivisions
(s = 1), and use �Hstart = H̃i+1 − Hi as the initial value for
the actual RK4 solution.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

PERKKIÖ et al.: STABLE ADAPTIVE METHOD TO SOLVE FEM COUPLED WITH JA HYSTERESIS MODEL 3

The function νJA(B, H,�H) is quickly varying near the
anhysteretic curve M = Man (or its equivalent hypersurface
in the vector model) (see Fig. 1). Such rapid variation makes
numerical integration more difficult. In addition, νJA is non-
differentiable on that curve [see (3)]. Also, the magnitude of
νJA varies from small (close to B-axis) to large (at saturation
region, large B). These observations suggest using adaptive
methods, such that different step sizes are used at different
parts of the FE solution region. This is explained in Section V.

III. COUPLED FIELD AND JA EQUATIONS

Consider a magnetoquasi-static (i.e., low-frequency) field
problem in domain �, where the currents flow in
the z-direction and the H and B fields have only
x- and y-components [13]. This is an adequate approximation
to model, for instance, a cross section of a rotating electrical
machine. In this 2-D approximation, the vector potential has
only one component A(x, y) = A(x, y)ez. The magnetic and
electric fields are B = ∇× A and E = −(∂/∂ t)A. The field
H is governed by the PDE

∇× H = J + σ E (11)

where J = J ez is an “imposed” current density (e.g., in stator
windings) and σ is the electrical conductivity (nonzero in bulk
conductors, e.g., rotor bars). The current density J may be
coupled to external circuit equations, modeling, for example,
three-phase stator windings, but coupling is omitted in these
derivations for brevity (it is included in the numerical tests).
The domain � is divided into hysteretic and non-hysteretic
regions � = Fe ∪ N. The constitutive relation is H = ν0 B in
N and (1) in Fe. The Dirichlet boundary condition A = 0 is
applied on the boundary ∂�. To get the weak form of (11),
the equation is multiplied by a test function φ = φez,
integrated over the domain �, and then partially integrated
resulting in

	
σ ∂

∂t A, φ


�

= (J, φ)� − (H,∇×φ)� (12)

where (u, v)� denotes integration
�
� u · v (and the bound-

ary term vanishes due to the Dirichlet boundary condition).
For simplicity, implicit Euler is applied for time discretization
(one could also use Crank–Nicolson)

(σ Ai+1, φ)�

= (σ Ai , φ)� + �t {(Ji+1, φ)� − (Hi+1,∇×φ)N

− (Hi+1,∇×φ)Fe} . (13)

As (∇×(uez),∇×(vez)) = (∇u,∇v), the nonhysteretic term
is (Hi+1,∇×φ)N = (ν0∇ Ai+1,∇φ)N. In Fe, an integration
method [see (9) and the preceding scheme]

Hi+1 = Hi + ν̂JA(∇× Ai+1 − ∇× Ai ) (14)

is applied, resulting in

(Hi+1,∇×φ)Fe

= (Hi ,∇×φ)Fe + (ν̂JA∇× Ai+1,∇×φ)Fe

− ( ˆνJA∇× Ai ,∇×φ)Fe. (15)

Substituting this into (13), the weak form of the problem to
be solved at each time step is the following: find potential
Ai+1 = Ai+1ez that satisfies

(σ Ai+1, φ)

+�t
�
(ν0∇ Ai+1,∇φ)N + (ν̂JA∇ Ai+1,∇φ)Fe

 = (σ Ai , φ)

+ �t
�
(Ji+1, φ) − (Hi ,∇×φ)Fe + (ν̂JA∇ Ai ,∇φ)Fe


(16)

for all test fields φ = φez .
To discretize (16) spatially, the simplest option is to use

linear elements for A, using three Gaussian quadrature points
per element to integrate terms without gradient or curl and one
quadrature point to evaluate the terms involving derivatives.
The discretized H can be considered to be an elementwise
constant vector field determined by (14) in each element, for
example, with an initial condition H0 = 0. The test functions φ
are the linear basis functions. Degrees of freedom (DoFs) for
Ai are denoted by ai , and DoFs for Hi by hx

i and hy
i . Thus,

for linear elements, ai ∈ R
#nodes and hx

i , hy
i ∈ R

#Fe−triangles.
In each time step, the system of equations to be solved with
respect to ai+1 is

{M + �t (K + K Fe(ai+1))}ai+1

= Mai + �t (C ji+1 − Dx hx
i − Dy hy

i + K Fe(ai+1)ai )

(17)

where �t is the time step length, Mk,l := (σφk, φl) is the
mass matrix, Kk,l := (ν0∇ ×φk,∇ ×φl) is the linear part
of the stiffness matrix, Ck,l := (1/area(Sl))(1, φk)Sl connects
the source current jl at phase l to the system, and Dx

k,l :=
(∂yφk, 1)Fe(l), Dy

k,l := (−∂xφk, 1)Fe(l), where Fe(l) is the
lth iron element. The nonlinearity due to the JA model appears
in the term

K Fe
k,l (ai+1) = (ν̂JA(ai+1)∇φk,∇φl)Fe (18)

where ν̂JA depends on ai+1 through the numerical JA-equation
solution [see (9)]. Matrices M, C , and D are fixed dur-
ing simulation. If rotor motion is included (for example,
by remeshing), certain elements of K will depend on the rotor
position.

IV. NONLINEAR FIELD-EQUATION SOLUTION

To express the system of equations to be solved at each time
step more formally, (17) is rewritten as

f (x) := A(x)x − b = 0 (19)

where x := ai+1 − ai and

A(x) := 1
�t M + (K + K Fe(x)) (20)

b := C ji+1 − Dhi − K ai . (21)

The unknown x is chosen as above, because x = ai+1 would
lead to x-dependent load term b(x).
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A. Fixed-Point Method

A straightforward method to solve (19) is the FP iteration

xk+1 = A(xk)
−1b =: F(xk). (22)

This iteration is not guaranteed to converge for arbitrary para-
meters and initial guess x0. However, we expect convergence
for small enough �t and accurate enough JA solution by
the following reasoning, which agrees with our numerical
experiments. The convergence of iteration (22) depends on the
smoothness of F with respect to x. If there is a considerable
error in JA-equation’s integration, the function F will be less
smooth, and the iteration converges more slowly, or not at
all. This is seen in our numerical tests; choosing too large
tolerance (29) leads to bad convergence.

The iteration (22) is called “the Newton–Raphson (NR)
method” in [2] and [9], but we prefer to call it the FP method.
What is called the Jacobian in [2] and [9] is actually the dif-
ferential JA-model (1) itself. According to our understanding,
the actual Jacobian is some complicated function depending
on the chosen JA-integration scheme.

B. Sparse Broyden’s Method

It is well known that the iteration (22) may converge slowly
when a single-valued (SV) H –B curve is used [14], and
the same can be observed with the JA model. To improve
the convergence rate, a QN scheme is introduced as follows.
The iteration to solve (19) is expressed in the form

xk+1 = xk − [ Q(xk)]−1 f (xk) (23)

where Q depends on the chosen method. In the SV
H –B case, it is often possible to compute the exact Jacobian
J(x) := Dx f (x), which results in the NR method. Another
possibility is to choose Q−1 = α A−1, which is the FP
method (22) with the relaxation parameter α. Computing
the exact Jacobian is in practice impossible with the JA
model, because ∂xk ν̂JA(x) is a complicated function involving
derivatives ∂BνJA and ∂HνJA. Also, computing an approximate
Jacobian by finite differences would be costly in this case.
Thus, we propose to use the following QN scheme to get
an approximation Q ≈ J , which exploits certain special
structure of this particular problem, namely, sparsity and a
known linear part. Assuming the implicit Euler method (20)
for time stepping, the exact Jacobian is

J(x) = A(x) + (Dx A(x))x

= 1
�t M + K + K Fe(x) + (Dx K Fe(x))x

= Jlin + JFe(x) (24)

where Jlin := (1/�t)M + K and JFe(x) := K Fe(x) +
(Dx K Fe(x))x. Matrix Qk denotes the approximation of the
Jacobian at the kth iteration. The aim is to construct

Qk = Jlin + Q̃k (25)

such that Q̃k retains the sparsity pattern of the exact JFe.
On the first iteration, FP iteration is used, i.e., Q̃k = K Fe(xk)
for

k = 0, 1, ..., kstart − 1 (26)

where the parameter kstart is chosen to be 2 or 3 in our
simulations. In other words, the term (Dx A)x is neglected
during the first iterations (another possibility is to store Q̃
from the previous time step). When k ≥ kstart, Q̃k+1 is updated
by the so-called Fletcher’s method, a sparse variant of good
Broyden’s method [8]. The method is modified to detect round-
off errors, which could otherwise make the iteration fail. The
resulting update formula is⎧⎪⎪⎨

⎪⎪⎩
q l

k+1 = q l
k + yl−(ql

k)
T �x�

j ξi, j (�x j )2

�
j ξi, j �x j

if |q i
k+1 · �x − � yi | < TOLQN

q l
k+1 = q l

k, otherwise

(27)

where q l
k is the lth row of Q̃k , �x := xk+1 − xk , y :=

KFe(xk+1)xk+1 − KFe(xk)xk , and ξ is the sparsity pattern,
i.e., ξi, j = 1 if K Fe

i, j is nonzero, otherwise ξi, j = 0. The
if-condition detects “numerical 0/0,” which occurs when xk is
close to the actual solution. By a proper implementation,
the computational cost of the update (27) is small compared
with the construction of K Fe or the solution of a linear
system at each iteration. The derivation of (27) is found in
the Appendix.

Some alternatives, or complements, to the QN-method are
relaxation [7], the so-called polarization method [14] and
line-search methods [2]. However, in the numerical tests,
the proposed QN method appears to be fast and robust, so the
other methods are not considered in this paper, even though a
comparison could be interesting.

V. IMPLEMENTATION

Due to the reasons given in Section II-A, the JA equation (1)
is integrated using an adaptive method such that �B is sub-
divided into s and 2s smaller subintervals, and the difference
between these two solutions, Hs and H2s , is compared. At FE
integration points where the (relative) difference is too large,
the solution is recomputed using halved step size 4s, and
and this halving is continued until the relative and/or absolute
difference is small enough, i.e., at the smallest m = 0, 1, 2, . . .
such that

�H2m+1 − H2m � < ATOLJA (28)

and/or

�H2m+1 − H2m �
�H2m+1� < RTOLJA . (29)

In practice, a large number of refinements are required only
in a limited number of spatial points, and the location of
those points varies during simulation, so it would be inefficient
to use some fixed large s at every point (in some cases,
one requires s > 500 to have stable solution, and it would
be unacceptably slow to compute everything with such an
accuracy). In our simulations, too large integration error in the
JA equation manifests as slowly (or not at all) converging field-
equation iterations, and even worse, diverging H –B loops. The
adaptive error control seems to solve both of these problems.

With linear elements, we use one quadrature point in each
hysteresis element. Thus, we must adaptively solve JA equa-
tion once per element per time step per iteration. The value of
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TABLE I

JA-MODEL PARAMETERS

H and �H in each element is stored to be the initial values
of the next time-step’s iteration. With quadratic elements,
we use three quadrature points per element. These choices
give an exact quadrature for a linear problem and a negligible
integration error (compared with other error sources) for a
nonlinear problem.

In our test problems, the evaluation of the JA function (1)
takes the most of the computation effort, so the routines related
to the JA model should be implemented as efficiently as
possible. First, the anhysteretic curve (Section II-A) is usually
given using the Langevin function L(x) = coth(x) − 1/x ,
which is expensive to evaluate and values near zero need
to be handled separately. For these reasons, the Langevin
function is replaced with a fast and once differentiable spline
in the implementation. The Langevin function L and its
derivative L � are monotonous, and, for example, cubic Hermite
spline fits to L(xn) and L �(xn), where xn are the nodes, retains
these properties. In addition, the JA-model-related routines
(Section II-A) are written in a lower level language (C++)
than the rest of the implementation (MATLAB).

Mechanical rotation is included in the FEM by the mov-
ing band technique [15], which is implemented so that the
“jumps” caused by remeshing are as small as possible. This
is achieved by placing the nodes in the moving band slightly
asymmetrically and having a different number of nodes on
the boundaries, so that the whole moving band triangulation
does not change abruptly at certain rotor angles. Large jumps,
in addition to other problems, would lead to large �B in
the solution of the JA equation, and make its solution more
difficult.

The field equation (17) is solved either by FP itera-
tion (22) or the QN scheme (27). The iteration is stopped
when the (relative) residual is small enough

� f (xk) − f (xk−1)�
�xk� < RTOLFE . (30)

VI. NUMERICAL TESTS

The simulated device is a 4-pole, 37-kW, 1500-r/min induc-
tion machine with a squirrel-cage rotor, rotating at a constant
speed (slip 0.01). The field equation is coupled to three-
phase voltage supplied stator winding and rotor-cage circuit
equations [13]. The supply voltage is initially dampened in
such a way that it increases from zero to its steady-state
amplitude smoothly; this reduces the initial transient and
makes the computation easier without changing the steady-
state solution. The domain is one quarter of the machine,
where the boundary conditions for A are antiperiodic on the
symmetry boundaries and zero Dirichlet condition on the outer
boundary.

The JA-parameter set JA1 (see Table I) is used unless
otherwise stated. In reality, the core lamination sheets are

Fig. 2. Simulated H –B curve in the rotor, close to the air gap, tangen-
tial component. Left: diverging solution, fixed step size in JA integration.
Right: stable solution, adaptive step size.

Fig. 3. Number of adaptive JA-integration subdivisions at each iron element.
The distribution varies between time steps.

significantly anisotropic. This is neglected in this paper, which
focuses only on the numerical convergence problems, as we
expect that including the anisotropy does not change the
convergence properties considerably.

A. Adaptive JA Integration
The simulated H –B curves may diverge if too large error is

allowed in the solution of the JA equation. This is illustrated
in Fig. 2, which shows a diverging solution (fixed step size
without error control, s = 8) versus a stable solution (adaptive
method, s varies between 2 and 256).

The adaptive method assigns a different number of subdi-
visions at different elements, which is illustrated in Fig. 3.
As expected, the region near the air gap, and especially on
the saturating rotor iron bridges, is the most critical, as the
change �B per time step is the largest there.

Choosing proper tolerances ATOLJA and RTOLJA
[see (28) and (29)] appears to be crucial. Too large tolerance
leads to diverging solutions, whereas too small tolerance
requires a large number of subdivisions when integrating the
JA equation, which is the most time-consuming part in our
test problems.

B. Comparison of FP and QN Methods
To compare the computational efficiency of the different

nonlinear solvers, simulations were run for two-stator volt-
age source periods using different nonlinear solver methods.
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TABLE II

NUMBER OF FIELD-EQUATION ITERATIONS AND COMPUTATION TIME

One source voltage period was divided into nper time steps.
The required number of FP, QN, or exact NR (applicable only
with the SV H –B model) iterations required to solve the time-
stepping field equation (19) is shown in Table II, along with
the computation times. Note that the total computation time
does not scale linearly with the number of field-equation iter-
ations, because the number of adaptive JA-equation solutions
can vary.

The SV H –B case represents a problem where the exact
Jacobian is available and the methods are well established.
The performance of the QN method is between FP and NR
methods, as expected. The FP method converges extremely
slowly, if at all. In this case, the QN method does not
provide any advantage over the NR method, because the
exact Jacobian is easy to compute. However, this demonstrates
that the proposed QN method is applicable to a nonlinear
FE-equation system.

Using the JA model, the QN method can offer a significant
speedup compared with the plain FP method. However, for
small time steps (nper > 1200), the performance gap starts to
close, as both the methods converge in less than five iterations.
It can be beneficial to the computation speed, while not strictly
necessary for convergence, to use a smaller time step with the
JA model than what is conventionally used with an SV model.

C. Effect of Hysteresis on Stator Current

To “numerically validate” the results, the stator current is
computed using an SV iron model and JA with different sets
of parameters. The parameter sets (JA1, JA2, and JA3; see
Table I) describe either a low-loss (thin loop, JA1) or high-loss
material (thicker loop, JA2 and JA3), but they have the same
anhysteretic curve (parameters k and c control the thickness
of the loop, whereas Ms , a, and α affect only the anhysteretic
curve [10] for more physical details). The SV curve in this
case is a spline-fitted to minor loops of sinusoidal excitation.
It is expected that the quantities computed using the JA model
should approach the SV model’s results as the JA parameters
approach an SV model (i.e., when k → 0, c → 1). The
simulation is run for 100 stator source periods, so that a steady
state is reached (at least in quantities such as induced currents,
torque, and losses).

The peak of a stator winding current in one of the
phases is shown in Fig. 4, with the corresponding RMS

Fig. 4. Simulated stator current, using the SV H –B curve and the JA model
with increasing loss terms (see Table I). On this scale, the first three curves
are barely distinguishable.

values. As expected, the values computed using a “thin loop”
(JA1 and JA2) are close to the SV results. When the hysteresis
loop thickness is increased significantly (JA3), the RMS- and
peak values increase by about 10 percent. The parameter set
JA1 is probably the closest to a realistic high-grade steel,
and in that case one should not expect a large effect on the
machine characteristics when the hysteresis is included in the
field simulation.

D. Second-Order Elements and Time Integration
For simplicity, the previous numerical tests were executed

using the first-order FEs and implicit Euler for time step-
ping. However, the second-order (quadratic) elements and
time integration method (Crank–Nicolson) are usually used
in practical simulations. In our tests, the proposed methods
appear to work with quadratic elements, but more JA-equation
subdivisions are needed, probably because there are more
FEM-quadrature points where the JA equation is difficult to
solve. This suggests that the adaptive scheme can significantly
save computational effort as the number of hysteretic quadra-
ture points is increased.

VII. DISCUSSION

The proposed techniques appear to resolve the numerical
convergence problems related to coupled JA-FEM. Unfor-
tunately, there are still issues with the computational cost.
To have a numerical scheme that is guaranteed to converge,
one may require a small step size in the solution of the
JA-equation, and it is difficult to tell a priori what is an optimal
tolerance for the JA-model’s integration error. The worst-
case scenario may require hundreds of steps at thousands of
FE-quadrature points to get a stable solution, and such simu-
lation can be thousands of times slower than a correspond-
ing simulation with an SV H –B curve. Fortunately, the
JA-equation solutions at different quadrature points are inde-
pendent of each other, so that part of the computation is trivial
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to parallelize, and the remaining part is equivalent to a standard
nonlinear FE computation, which is a well-established field,
parallel computation included.

There is still room for improvement with the methods
presented in this paper. First, the adaptive procedure to solve
the JA equation given in this paper may be improved. For
example, it could be possible to smoothen the function νJA so
that the equation becomes easier to solve, but the solution
remains essentially unchanged. Second, the proposed QN
scheme could also be improved, as the problem has significant
special properties such as sparsity, symmetricity, positive-
definiteness, and other possible structure.

This paper focuses only on the numerical issues, and we
are not yet in a position to compare the simulations with
real measurements. Modeling hysteresis in a real electric
machine is challenging, because the lamination sheets are
magnetically anisotropic, and they are stacked in such a
way that the anisotropy direction changes on every sheet
layer. Moreover, the JA model with additional dynamic terms
may or may not be an appropriate model for iron at around
50 Hz [16].

Finally, the methods in this paper are “engineering solu-
tions” in the sense that they are given without any math-
ematical proofs. For a problem with an SV monotonous
H –B curve, it is known that the problem is well posed, and the
FEM solution converges properly to the actual solution [17].
As per our knowledge, such proofs are not found for the hys-
teretic case. From a numerical point of view, one should check
that the solution to (19) exists and is unique; it is possible
that this is not true when the time step �t is too large, for
example.

The planned future work involves modifying the vector JA
model in order to properly model magnetization in rotating
fields in an anisotropic material. After a satisfying model is
constructed, the aim is to measure and test the model with a
realistic device.

APPENDIX

SPARSE BROYDEN’S METHOD

The QN method behind (27), sometimes called the sparse
Broyden’s method or Fletcher’s method, was introduced in
the 1970s and its properties were studied more rigorously by
Marwil [8]. The nonlinear FEM problem in this paper has a
certain structure that can be exploited when approximating the
Jacobian, so formula (27) is derived here.

The nonlinear equation (19) is solved iteratively and an
approximate Jacobian of f at the kth iteration is Qk . The
approximation is updated on each iteration such that the
following secant condition (i.e., an approximation to a direc-
tional derivative) holds:

Q̃k+1(xk+1 − xk) = fk+1 − fk . (31)

In our specific problem, the Jacobian is of form J = Jlin+ JFe
[see (24)], where Jlin is a known linear part (including,
e.g., coupled circuit equations and regions without iron),
so the Jacobian approximation can be expressed as Q̃k+1 =
Jlin + Qk+1, where Qk+1 denotes the nonlinear part to be

approximated. The secant condition then simplifies into form

Qk+1�x = K Fe(xk+1)xk+1 − K Fe(xk)xk =: � y. (32)

Equation (32) does not determine Qk+1 uniquely, so an
additional “minimal change”-condition is imposed

min
Qk+1∈RN×N

� Qk+1 − Qk�2
F (33)

where �X�2
F = �

i, j |Xi, j |2 is the Frobenius norm. The solu-
tion to the quadratic minimization problem (33) with the linear
constraint (32), with an additional “numerical safeguard,” is⎧⎪⎨

⎪⎩
q i

k+1 = q i
k + �y−�x

��x�2 �xi

if |q i
k+1 · �x − � yi | < TOLQN

q i
k+1 = q i

k, otherwise

(34)

where q i
k is the i th row of the matrix Qk . The additional

if-condition is required to have a numerically stable method,
because the update term approaches “0/0” as the iteration gets
closer to the exact solution, leading to numerical round-off
errors starting to dominate in the computation. This can be
detected by computing first a “candidate Qk+1” and checking
the validity of (32) row by row; the equation should hold
exactly, and all deviation is due to numerical round-off. The
rows where the deviation is above some (relative) tolerance
are not updated, and as a result, we get the condition (34).

The known sparsity pattern of Qk+1 can be fixed, and
the previous derivation remains essentially unchanged. The
resulting update formula (27) is used in this paper.
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