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We report numerically accurate path integral Monte Carlo results for harmonically confined two-dimensional
quantum dots containing up to N = 60 interacting electrons. The finite temperature values are extrapolated to
zero Kelvin and zero time step in order to provide precise upper-bound energies. The ground-state energies are
compared against coupled-cluster and diffusion Monte Carlo results available in the literature for N ≤ 20. We
also provide Padé fits for the energies as a function of N for different strengths of the confining potential. The
fits deviate less than 0.25% from the path integral Monte Carlo data. Overall, our upper bound estimates for the
ground-state energies have lower values than previous diffusion Monte Carlo benchmarks due to the accurate
nodal surface in our simulations. Hence, our results set a new numerical benchmark for two-dimensional (spin-
unpolarized) quantum dots up to a large number of electrons.

I. INTRODUCTION

Nowadays, quantum dot (QD) technology is an integral
part in developing novel solid state devices. These so-
called artificial atoms can be utilized individually, as clus-
ters or as periodic arrays, which results in a number of
possible applications.1–4 Theoretical and computational ap-
proaches are, however, needed for better understanding of the
behavior of electrons in quantum dots, and in making new
predictions.5–22

There is a large variety of theoretical and computational ap-
proaches available for QD simulations, but commonly their
applicability is limited to certain confinement strengths or to
only a few electrons. The limitations generally arise from the
description of electron-electron correlations, which are more
pronounced with weaker confinement strengths, and in the
scaling of the method as a function of the number of electrons.

Previous numerical benchmarks for QDs beyond the few-
electron regime, i.e., forN & 10, have been obtained by using
coupled-cluster5,6 (CC) and diffusion Monte Carlo6 (DMC)
methods. The CC method has employed singles and dou-
bles (CCSD), as well as singles, doubles and triples denoted
by CCSD(T). In the CC method, the quality of the basis
has a substantial effect on the accuracy5 and, in general, the
method is best applicable to closed-shell systems. In the pre-
vious DMC simulations, the nodal structure was adopted from
density-functional theory calculations using the local-density
approximation (DFT-LDA).6

In this study we provide benchmark ground-state ener-
gies for QDs using the path integral Monte Carlo (PIMC)
method.23–26 PIMC is a finite-temperature approach with ex-
act particle-particle correlations. As a basis-free method it
avoids the challenges in, e.g., the basis-dependent CC meth-
ods. However, similarly to most quantum Monte Carlo
(QMC) methods, the description of the exchange interaction
is challenging at low temperatures. In this work this chal-
lenge is dealt with by the so-called free-particle nodes.27 In
order to ensure upper bound estimates, our total energies are
extrapolated to zero time step. Moreover, we extrapolate our
finite-temperature PIMC results to zero Kelvin, which enables
proper comparison to the most accurate QD energies in the lit-
erature.

II. MODEL AND METHOD

In atomic units with energies in Hartrees (EH) our model
Hamiltonian for the harmonic QD reads

H =

N∑
i=1

[
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]
+
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ε|ri − rj |
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Here we focus on GaAs QDs for which we adopt the same
parameters and confinement strengths as those in Refs. 5 and
6, i.e., me = 0.067, ε = 12.4, and ~ω = 3.3200, 5.9286,
and 11.857 meV. The energies and lengths convert to effective
atomic units as Eeff

H = ε2

me
EH and reff = me

ε r. In effective
atomic units the confinement strengths are ~ω = 0.28, 0.5,
and 1.0Eeff

H , which we use from now on. We point out that we
focus solely on spin-unpolarized systems, i.e., N↑ = N↓ =
N/2.

Path integrals are based on the Feynman formulation of
quantum statistical mechanics,28 which enables the study of
quantum many-body effects at finite temperature. Combined
with Metropolis Monte Carlo sampling of the configuration
space,29 the method is referred to as PIMC. It can be effi-
ciently used to accurately account for both finite temperature
and correlation effects. Improved sampling is obtained by us-
ing multilevel bisection moves.30

Fermi statistics is employed by restricted path integral
formalism,27 in which the density matrix is given as

ρF (Rβ , R?;β)=

∫
dR0ρF (R0, R?; 0)

∫ γ⊂Υβ(R?)

γ:R0→Rβ
dRte

−S[Rt],

where β = 1/kBT , F refers to the Fermion density matrix,
S is the action, R? is the so-called reference point, and Υβ

is a region in ”space-time” that specifies the boundary condi-
tions for the Bloch equation. Here, we use the nodes of the
free-particle density matrix27 to determine the boundary con-
ditions, and we demonstrate that these nodes can be consid-
ered to be of high accuracy especially for the harmonic QDs
under consideration. For the energetics we use the Herman
type virial estimator.31
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III. RESULTS AND DISCUSSION

For the confinement strengths ~ω = 0.28, 0.5, and 1.0Eeff
H ,

and electron numbers N = 6, 12, 20, 40, and 60 we provide
accurate PIMC data at T/TF = 0.025 in addition to the ex-
trapolated PIMC values at zero Kelvin. The error estimates in
this work are given as 1-σ statistical error of the mean. For
two electrons with ω = 1.0Eeff

H the harmonic dot can be ex-
actly solved yielding the total energy of 3.0Eeff

H .32 With our
PIMC implementation we obtain a value of 2.99994(9)Eeff

H at
T/TF = 0.005 in good agreement with the exact result. How-
ever, let us first elaborate what is needed in order to obtain the
benchmark PIMC results presented in this article.

PIMC method is the more efficient the higher the tempera-
ture, which is naturally advantageous in dealing with temper-
ature effects. Here, however, we focus on low temperatures
in accordance with most experimental and theoretical works
on QDs. We consider T = 0 in particular, which requires
extrapolation based on several temperatures. For N ≤ 20
we use four temperatures (T/TF = 0.0125, 0.025, 0.05, and
0.1) for the extrapolation. We use additional fifth temperature
at T/TF = 0.008 for a few cases to validate the agreement
with our fit. For the N = 40 case we use five temperatures:
T/TF = 0.0125, 0.017, 0.025, 0.05, and 0.1. The tempera-
ture effects are considered with our second smallest time-step,
i.e., τ = 0.019531E−1

F .
With the increasing number of electrons it is desirable to

use as high temperature as possible, and thus, for the N = 60
case we performed simulations only at a temperature rela-
tively close to the ground state, i.e., at T/TF = 0.025. In
this case, we obtain the zero Kelvin value by estimating the
temperature effects from our N ≤ 40 simulations: We opti-
mized the coefficients α, a, and b in N−α∆E = aN + b, and

TABLE I: Estimation of the temperature effects ∆E on the total en-
ergy at T/TF = 0.025 with one sigma statistical error estimate in the
parenthesis. Notice that E(T = 0) ≈ E(T/TF = 0.025) + ∆E.
Energies are given in effective atomic units.

~ω ∆Etot

0.28 −0.0053(3)

N = 6 0.50 −0.0083(4)

1.00 −0.0158(7)

0.28 −0.0358(12)

N = 12 0.50 −0.054(2)

1.00 −0.096(5)

0.28 −0.153(5)

N = 20 0.50 −0.212(9)

1.00 −0.33(2)

0.28 −0.168(6)

N = 40 0.50 −0.30(6)

1.00 −0.8(1)

0.28 −0.21(5)

N = 60 0.50 −0.41(6)

1.00 −1.3(2)
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FIG. 1: Scaling relation of the ground state energy from Ref. 18
(solid line) and path integral Monte Carlo data with three different
confinement strenghts (symbols). Large-N values tend towards the
Padé form of the scaling function as expected.

used that expression to estimate ∆E for N = 60. In Table I
we show the values for ∆E that can be used in the extrapola-
tion to zero from T/TF = 0.025. These values can be used
in estimating the temperature effects by interpolation or ex-
trapolation in future PIMC studies also. This will reduce the
computational time, since simulations only at T/TF = 0.025
are needed.

In order to obtain upper bound estimates we have extrapo-
lated our PIMC data to zero time-step at T/TF = 0.025 for all
the cases. We have used six different time-steps, τ ≈ 0.0098,
0.0195, 0.0391, 0.0781, 0.15625, and 0.31250 in units of
E−1

F , and a third-order polynomial fit. The behavior of the
total energy as a function of time-step (τ ) becomes linear as τ
tends to zero. These upper bound values at T/TF = 0.025 are
then extrapolated to zero Kelvin using the values in Table I.

Next, let us consider the behavior of the ground state en-
ergies with respect to the large-N scaling relation given in
Ref. 18 in a form of a Padé approximant. It is given as

Egs

~ωN3/2
≈ 2

3
+

0.698z + 1.5z4 + 2.175z5/3

1 + 2.149z1/3 + 1.5z2/3 + 2.175z
, (2)

where z = N1/4ω−1/2 in effective atomic units.
In Fig. 1 we present the scaling relation as “Padé” (solid

line) and our extrapolated PIMC results (symbols). Clearly,
as z is increasing, the PIMC data tend towards the large-N
scaling relation. This tendency is pronounced for large con-
finements, i.e., weaker electron-electron interactions. This ex-
pected behavior demonstrates the rather good predictability of
the scaling relation for large N .

Despite the general validity of the trend in Fig. 1, there are
significant deviations from the Padé curve for, e.g., z ≈ 3.36



3

0 10 20 30 40 50 60 70

N

0

200

400

600

800

1000

1200
E

to
t

(e
ffe

ct
iv

e
at

om
ic

un
its

)

ω = 0.28

ω = 0.5

ω = 1.0

FIG. 2: Modified Padé fits to our PIMC data, see Eq. (3). The fits
yield better than 0.24% accuracy with respect to our PIMC data, and
on average the discrepancy is less than 0.1%. The PIMC data points
correspond to N = 6, 12, 20, 40, and 60, and the energy values are
shown in Table IV.

and ω = 0.28. However, we can modify the functional form
in Eq. (2) to obtain accurate fits for all the PIMC energies.
This is achieved through the following form:

Etot = ~ωN3/2

[
2

3
+

az + 1.5z4 + 2.175z5/3

1 + bz1/3 + 1.5z2/3 + 2.175z

]
, (3)

where a and b are two parameters that can be optimized for
each confinement strength, respectively, to fit with the PIMC
data. In our examples we obtain a = −5.09904703 and
b = −4.64163077 for ~ω = 0.28, a = −4.17789992 and
b = −3.74168272 for ~ω = 0.5, and a = −3.2961045 and
b = −2.88621374 for ~ω = 1.0. These parameters yield
better than 0.24% accuracy to our PIMC data, and on aver-
age the discrepancy is less than 0.1%. Our PIMC data gives
lower upper bound estimates than the DMC results of Ref. 6,
which actually deviate from our data on average by 0.20%
having the maximum discrepancy of 0.32%. Therefore, our
fit should provide even more accurate reference data than the
DMC based on DFT-LDA nodal structure. The fits are shown
in Fig. 2. We point out that the above procedure, i.e., the
PIMC calculation for a few N followed by the two-parameter
Padé fit according to Eq. (3), can be repeated for any confine-
ment strength to obtain an accurate trend as a function of N .
However, due to the spin-independent scheme used here, we
do not account for the fine structure in E(N) resulting from
nontrivial spin polarization at certain N according to Hund’s
rules.

Despite the lack of spin effects we can assess the elec-
trochemical potentials of QDs defined as µ(N) = E(N) −
E(N − 1). This is demonstrated in Table II. In general, the
values are in a reasonable agreement. Interestingly, the PIMC

TABLE II: Electrochemical potential µ(N) = E(N) − E(N − 1)
for ~ω = 0.28 from our fits (Fig. 2 and Eq. (3)) compared with
available values in the literature. The energies are given in effective
atomic units.

CC6 DMC6 PIMC fit
E(3) − E(2) 1.2284 1.2123(1) 1.1612

E(6) − E(5) 2.0438 2.0663(1) 2.1166

E(7) − E(6) 2.4528 2.4341(1) 2.3921

E(12) − E(11) 3.5420 3.5618(1) 3.6025

E(13) − E(12) 3.8738 3.8582(1) 3.8213

fit seems to provide “extrapolation” of the CC and DMC val-
ues. That is, CC has always either the largest or the smallest
value, and DMC value is always in between CC and PIMC
result. Nevertheless, we leave further calculations and analy-
ses of chemical potentials to future works, where spin effects
should be incorporated.

In Table III we present our PIMC energies at T/TF =
0.025. The results include the total energy (Etot), kinetic en-
ergy (Ekin), total potential energy (Epot), and the electron-
electron interaction energy (Eee). The contribution of the har-
monic confinement is thus Eharm = Epot − Eee. The ener-
gies in Table III have been extrapolated to zero time-step, and
therefore, they provide an upper bound estimate for the total
energy at this temperature.

By adding the values from Table I to the total energies in
Table III we obtain the extrapolated T = 0 values. They are
shown in Table IV in comparison with other high-accuracy
values in the literature. In general, the PIMC energies are
slightly lower than those obtained with CC or DMC methods.
For N = 12 and ~ω = 0.28, the CCSD result of Ref. 5 is
lower than the PIMC, but the difference is very small, and it
should also be noted that the CC is not an upper-bound esti-
mate. Moreover, it is good to point out that the differences
between the PIMC and DMC energies cannot be explained by
uncertainties in the extrapolations to zero temperature and to
zero time-step. Even in the case in which we would expect
the smallest effects related to the nodal surface, i.e., N = 6
and ω = 0.28, the error from above in the temperature extrap-
olation can be estimated to be εT=0 ≤ 0.000224Eeff

H , while
an upward exaggerated error estimate in the time-step extrap-
olation would give ετ=0 ≤ 0.003Eeff

H . Using the maximum
values would still give us ∼ 0.0040(2)Eeff

H lower total energy
than DMC in the case that is expected to have the smallest
discrepancy.

In some cases, there are relatively large discrepancies be-
tween the two CC implementations using different basis func-
tions. For CCSD, the results in Ref. 5 are generally more
accurate compared against our PIMC values. For the CC in
Ref. 6, the addition of triples makes a considerable improve-
ment in the results. Therefore, it would be interesting to obtain
CCSD(T) values also for the implementation of Ref. 5. Maybe
even an extension to quadrupoles would be advisable, but ex-
pectedly this is computationally very demanding, especially
for higher N . PIMC does not suffer from basis set depen-
dence, but – on the other hand – very accurate nodal surfaces
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are called for in calculations of atoms, molecules, and solids at
low temperatures. In the present case of semiconductor QDs,
the free particle nodes are sufficient to yield accurate results.

The main advantage of PIMC is the straightforward account
of finite temperature and correlations between particles irre-
spective of the external potential. At its current state-of-the-
art it is most feasible in treating model systems and low-Z
materials at intermediate to high temperatures, but progress
towards high accuracy materials modeling will be possible
hopefully already in the near future. As shown here, PIMC
is already capable of treating accurately quite large numbers
of interacting electrons in finite systems. It should be pointed
out that for only a few particles the simulations are rather ef-
fortless, although this is dependent on the external potential
of the particles. In general, the attractive Coulomb potential
is challenging especially for higher Z elements, which stems
from the fact that the potential is not bound from below. For
model potentials, such as individual quantum dots or arrays of
quantum dots of various shapes, these challenges are absent,
which make them ideal objects for more path integral studies.

IV. CONCLUSIONS

In this study we produce benchmark energies for two-
dimensional harmonic quantum dots up to N = 60 electrons
with the path integral Monte Carlo method. The finite tem-
perature values are extrapolated to zero Kelvin and zero time-
step in order to provide accurate upper-bound energetics. The
ground-state energies are compared against coupled-cluster
and diffusion Monte Carlo results available in the literature
for smaller N . We find that our upper bound estimates for
the ground state energies yield lower values than the diffusion
Monte Carlo benchmarks. This tendency is pronounced as the
confinement strength is increased. However, the deviations
between the two Monte Carlo methods remains below 0.32%.
The difference arises from the approximate description of the
nodal surface in the diffusion Monte Carlo approach. Using
comparable nodal surfaces both methods should lead to the
same zero Kelvin total energy, which is evident also from,
e.g., the simulations of nodeless systems such as the unpolar-
ized N = 2 harmonic quantum dot.

We have also introduced a fit in a form of a Padé approxi-
mant for the ground state energies as a function of N . The fit
yields smaller than 0.25% deviation from the computed total
energies, and the validity of the fit is shown for N = 6 . . . 60.
It can also be expected that the fit yields reasonable approx-
imations also at larger N . In conclusion, we believe that the
present work represents a useful benchmark for further calcu-
lations for semiconductor quantum dots with different com-
putational methods.
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TABLE III: Energetics from PIMC simulations at T/TF = 0.025 with one sigma statistical error estimate in the parenthesis. The PIMC
energies have been extrapolated to zero time-step limit in order to provide an upper bound estimate. Energies are given in effective atomic
units.

~ω Etot Ekin Epot Eee

0.28 7.59804(10) 0.94071(9) 6.65734(3) 3.81109(5)

N = 6 0.50 11.7742(2) 1.71402(14) 10.06019(6) 5.56412(8)

1.00 20.1222(4) 3.5628(3) 16.55937(11) 8.66439(13)

0.28 25.6456(6) 2.2402(6) 23.40544(13) 14.1102(4)

N = 12 0.50 39.1413(10) 4.1325(9) 35.0088(3) 20.5842(5)

1.00 65.585(3) 8.761(2) 56.8236(6) 32.0418(11)

0.28 61.992(3) 4.304(2) 57.6879(4) 35.5890(12)

N = 20 0.50 93.915(4) 8.020(4) 85.8944(7) 51.916(2)

1.00 155.737(9) 17.194(8) 138.543(2) 80.899(4)

0.28 202.55(3) 10.42(3) 192.128(4) 121.137(13)

N = 40 0.50 304.48(4) 19.57(4) 284.910(5) 176.89(3)

1.00 499.6(3) 42.6(3) 456.924(12) 276.19(14)

0.28 401.28(8) 14.92(17) 386.33(14) 247.6(2)

N = 60 0.50 601.78(13) 31.3(3) 570.57(15) 359.5(3)

1.00 988.2(4) 75.1(6) 913.2(3) 558.7(6)

TABLE IV: Total energies from PIMC simulations extrapolated to T = 0 in comparison with other methods. The PIMC energies provide an
upper bound estimate. Energies are given in effective atomic units with one sigma statistical error estimate in the parenthesis.

~ω PIMC CCSD5 CCSD6 CCSD(T)6 DMC6

0.28 7.5927(2) 7.605555 7.6252 7.6006 7.6001(1)

N = 6 0.50 11.7659(4) 11.80093 11.8055 11.7837 11.7888(2)

1.00 20.1063(8) 20.18818 20.1737 20.1570 20.1597(2)

0.28 25.6098(13) 25.59384 25.7089 25.6324 25.6356(1)

N = 12 0.50 39.088(3) 39.14125 39.2194 39.1516 39.159(1)

1.00 65.488(5) 65.74107 65.7409 65.6886 65.700(1)

0.28 61.839(6) - 62.0664 61.9156 61.922(2)

N = 20 0.50 93.703(9) - 93.9891 93.8558 93.867(3)

1.00 155.41(2) - 155.9601 155.8571 155.868(6)

0.28 202.38(3) - - - -
N = 40 0.50 304.18(8) - - - -

1.00 498.8(4) - - - -
0.28 401.07(9) - - - -

N = 60 0.50 601.37(14) - - - -
1.00 987.9(5) - - - -
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