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Abstract 

From in vivo single-cell, single-RNA measurements of the activation times and subsequent steady-

state active transcription kinetics of a single-copy Lac-ara-1 promoter in Escherichia coli, we 

characterize the intake kinetics of the inducer (IPTG) from the media, following temperature shifts. 

For this, for temperature shifts of various degrees, we obtain the distributions of transcription 

activation times as well as the distributions of intervals between consecutive RNA productions 

following activation in individual cells. We then propose a novel methodology that makes use of 

deconvolution techniques to extract the mean and the variability of the distribution of intake times. 

We find that cells, following shifts to low temperatures have higher intake times, although, 

counter-intuitively, the cell-to-cell variability of these times is lower. We validate the results using 

a new methodology for direct estimation of mean intake times from measurements of activation 

times at various inducer concentrations. The results confirm that E. coli’s inducer intake times 

from the environment are significantly higher, following a shift to a sub-optimal temperature. 

Finally, we provide evidence that this is likely due to the emergence of additional rate-limiting 

steps in the intake process at low temperatures, explaining the reduced cell-to-cell variability in 

intake times. 

Introduction 

RNA and protein numbers differ between cells of monoclonal populations due to the 

stochastic nature of the chemical reactions composing gene expression (‘intrinsic’ noise) 

[1,2] and the cell-to-cell variability in the numbers of the molecules involved (‘extrinsic’ 

noise) [3]. 

Besides these ‘constant’ sources of cell-to-cell variability, recent studies have shown 

that, following the appearance of an inducer of gene expression in the media, there is an 

additional transient cell-to-cell diversity in RNA and protein numbers of the target gene [4–

6], which cannot be explained by the intrinsic and extrinsic noise of active gene expression. 

This additional source can be strong enough and the transient long enough to affect the 

phenotypic diversity of cell lineages for generations [4–12]. 

The origin of this transient phenotypic diversity has been shown to be the noise in 

the intake time of the inducers, which causes the time for transcription to be activated 

(following the introduction of the inducers in the media) to differ widely between cells [5]. 

At the RNA numbers level, this transient diversity can be higher than the diversity caused 

by the intrinsic and extrinsic noise in active transcription for long periods of time [5].  

Similarly to noise in gene expression, noise in intake times has two sources. One is 

the stochasticity of the intake process, caused by the random nature of the chemical 

reactions and the membrane crossing processes [2,6]. The other is likely a non-negligible 

degree of cell-to-cell heterogeneity in the efficiency of the mechanisms involved in the 

intake of inducers [5]. This heterogeneity can be caused by, among other, cell-to-cell 

diversity in the number of transmembrane proteins involved in the active uptake of 



inducer/repressor molecules [5]. One example is the lactose permease (LacY), which, while 

being produced by an all-or-nothing system that minimizes cellular heterogeneity, it 

nevertheless exhibits significant cell-to-cell diversity in numbers, following the appearance 

of the inducer (e.g. TMG) in the media [13].  

As natural environmental conditions fluctuate and many genes in E. coli are only 

activated in specific conditions, cellular heterogeneity in gene expression activation times 

is expected to affect significantly the phenotypic diversity of cell populations.  

One environmental parameter that we expect to have a tangible impact on both the 

mean and variability of intake times of external inducers and repressors of gene expression 

is temperature. This assumption originates from the fact that temperature affects not only 

proteins functionality and numbers in cells [14], but also the physical properties of cell 

walls, periplasm and cytoplasm (e.g. the cytoplasm’s viscosity is temperature dependent  

[15]), and these variables are expected to affect the kinetics of intake of inducers from the 

environment.  

However, there is yet no direct experimental validation and, as many variables are 

involved, model-based predictions of the quantitative degree of changes with temperature 

in inducers intake times and subsequent transcription initiation times are unreliable. 

Here, we characterize quantitatively the changes in cell-to-cell variability in gene 

expression activation times of the Lac-ara-1 promoter and, more importantly, of the intake 

times of its inducer, Isopropyl β-D-1-thiogalactopyranoside (IPTG), caused by rapid 

physical changes following temperature shifts. 

For this, we use time-lapse microscopy measurements of RNA production at the 

single-cell, single-RNA level at various temperatures, along with several recently 

developed techniques [6,14,16], including a new strategy here proposed to dissect the 

kinetics of the intake process. Our results provide novel information for the understanding 

of the effects of temperature shifts of bacterial populations at the single-cell level. 

 

Methods 

Bacterial strains and plasmids 

 

We use E. coli strain DH5α-PRO, generously provided by I. Golding, University of Illinois, 

U.S.A. The genotype is deoR, endA1, gyrA96, hsdR17(rK- mK+), recA1, relA1, supE44, 

thi-1, Δ(lacZYA-argF)U169, Φ80δlacZΔM15, F-, λ-, PN25/tetR, PlacIq /lacI, SpR. The strain 

contains two genes, lacI and tetR, constitutively expressed under the control of Placi
q and 

PN25 promoters, respectively [17]. Relevantly, the native lac operon (lacZYA) is mutated, to 

prevent production of permease (lacY) and activation of the lactose metabolic system [18]. 

I.e., these cells lack the native positive feedback mechanism involving lactose [6,19]. 

 In addition to this strain, we also use E. coli JW0334 strain. The genotype is  F- (Δ 

(araD-araB)567 ΔlacY784 ΔlacZ4787(::rrnB-3) λ-rph-1 Δ(rhaD-rhaB)568 hsdR514) [18]. 



This strain also lacks the ability to produce lacY [18]). Here, we only make use of this strain 

to show that the changes in the target gene activation time with temperature are, 

qualitatively, only weakly strain dependent. Unless stated otherwise, measurements are 

made using DH5α-PRO cells. 

Both strains lack the ability to express lacY permease [18], which is responsible for 

a feedback response to the intake of IPTG, which would result in more complex, time-

dependent single-cell intake times, as they would not be solely determined by the induction 

level and temperature. 

Two constructs were added to DH5α-PRO cells: pROTET-K133 with PLtetO-1-

MS2d-GFP and pIG-BAC, a single-copy plasmid with PLac-ara-1-mRFP1-MS2d-96bs [20] 

(Figure 1). In the case of JW0334 cells, another reporter is used (PRHAM-MS2d-GFP), as 

these cells lack the ability to express TetR. 

 

 

Figure 1. Diagram of the target gene and its RNA tagging system, along with the intake system of 

inducers of the target gene: IPTG molecules (I) are added to the media and enter the cytoplasm by 

passing through two membrane layers, with a periplasmic space in between. When in the 

cytoplasm, they neutralize lacI repressors (R) by forming inducer-repressor complexes (RI). This 

allows PLac-ara-1 to express RNAs that include an array of 96 MS2d-binding sites. Meanwhile, 

MS2d-GFP expression is controlled by the PLtetO-1 promoter and anhydrotetracycline (aTc). Once 

produced, each target RNA is rapidly bound by multiple tagging MS2d-GFP proteins (G), and 

appears as a bright spot, significantly above background fluorescence, under the confocal 

microscope [6,20]. The tagging provides the RNA a long lifetime, with constant fluorescence, 

beyond our observation times [6]. 

Finally, it is noted that previous measurements [6] have shown that, provided full 

induction of the reporter gene (1 hour) prior to induction of the target gene, any newly 

produced target RNA molecule becomes ‘fully fluorescent’ (i.e. its RNA MS2-GFP binding 



sites become fully occupied) in less than 1 minute. These measurements were conducted in 

the same strain and media employed here. Given this, and since our microscopy time-lapse 

images are separated by 1 minute intervals, it is reasonable to assume that, once a new RNA 

appears, the full occupation of its MS2-GFP binding sites will take less time than the time 

between two consecutive images. This is agreement with measurements in [21]. 

 

Growth Conditions, Microscopy, Data Extraction on Transcription Activation Times 

 

Cells were grown overnight at 30 °C with aeration and shaking in lysogeny broth (LB) 

medium, supplemented with the appropriate antibiotics (35 μg/ml Kanamycin and 34 μg/ml 

Chloramphenicol). From the overnight cultures, cells were diluted into fresh LB medium, 

supplemented with antibiotics, to an optical density of OD600 ≈ 0.05, and allowed to grow 

at 37 °C, 250 rpm, until reaching an OD600 ≈ 0.3. Next, 100 ng.ml-1 anhydrotetracycline 

(aTc) was added to induce PLtetO-1 and produce MS2d-GFP, and 0.1% L-Arabinose to pre-

activate the target gene, controlled by PLac-ara-1 [17,20]. Afterwards, cells were centrifuged 

(8000 rpm, for 1 minute), and re-suspended in the remaining LB medium. From this, a few 

microliters of cells were taken and placed between a 3% agarose gel pad and a glass 

coverslip, before assembling the FCS2 imaging chamber (Bioptechs, see Figure S1). 

Finally, the chamber was heated to the desired temperature (24 °C, 30 °C, 37 °C and 41 °C) 

and placed under the microscope.  

We observed that, in the absence of IPTG, the cells produce the same (spurious) 

amount of RNA, with or without Arabinose (data not shown), in agreement with previous 

studies [20]. However, pre-induction by Arabinose much prior to induction by IPTG, 

enhances slightly the RNA production rate [16,18]. As such, we pre-induced cells with 

Arabinose [17,20] 45 minutes prior to introducing IPTG in the media. As such, we pre-

induced cells with Arabinose [17].  This implies that, by the time IPTG is added, the cells 

already contain a constant amount of Arabinose. This is ensured by the presence of 

Arabinose in the original media and by the constant replenishment of this media during 

microscopy measurements (Methods and Figure S1). Thus, we do not expect any potential 

feedback mechanism associated to the Arabinose intake process to influence the 

transcription activation times measured here, following the introduction of IPTG in the 

media. 

Cells were visualized by a 488 nm argon ion laser (Melles-Griot), and an emission 

filter (HQ514/30, Nikon) using a Nikon Eclipse (Ti-E, Nikon) inverted microscope with a 

100x Apo TIRF (1.49 NA, oil) objective. Fluorescence images were acquired by C2+ 

(Nikon), a point scanning confocal microscope system, and Highly Inclined and Laminated 

Optical sheet (HILO) microscopy, using an EMCCD camera (iXon3 897, Andor 

Technology). The laser shutter was open only during exposure time to minimize 

photobleaching. All images were acquired with NIS-Elements software (Nikon). While 

imaging, cells were supplied with a constant flow of fresh LB medium (pre-warmed to the 



same temperature as in the chamber), containing 1 mM of IPTG, 0.1% of L-Arabinose, and 

100 ng.ml-1 of aTc, using a peristaltic pump (Bioptechs), at a rate of 0.1 mL min-1. Images 

were taken once per minute for 2.5 hours. At each moment, we imaged 6 specific locations, 

to attain information on multiple lineages. 

After performing a semi-automated cell segmentation and lineage construction [22], 

the moment of production of the first RNA by each cell lineage was obtained by selecting 

cells absent of RNA spots at the start of the imaging period (i.e., without leaky expression), 

and then detecting by visual inspection (from fluorescence images) when the first 

production occurs in each branch of each lineage (Figure 2B), after introducing the 

inducers. 

Aside from visual inspection, fluorescent RNA spots and their intensities were also 

detected from the confocal images using the Gaussian surface-fitting algorithm proposed 

in [23] specifically for the purpose of detecting and quantifying MS2-GFP tagged RNAs. 

We found no significant difference between using this automatic algorithm and the visual 

inspection of the moment when the first RNA appears. 

 

Figure 2. Data collection: (A) Cells are placed under the microscope at t=0 min and continuously 

supplemented with fresh medium. The reporter system (MS2d-GFP) is induced in liquid culture at 

t = -45 min. At t = 0 min, with the cells already having sufficient MS2d-GFP proteins for accurate 

RNA detection, transcription of the target RNA for MS2d-GFP is induced. (B) Illustration of RNA 

production events (circles) in cell lineages. Shown are the time for the first RNAs to appear (t0) 

and the subsequent time intervals between consecutive RNA production events (Δt) in single cells. 

A dotted line indicates when the inducer of the target promoter is introduced. 

As a side note, we found the rate of leaky expression to be very weak (less than 1 

spot per ~20 cells prior to induction). 



Finally, we note that the data on time intervals between consecutive RNA 

productions in individual cells used here was entirely obtained from [15]. There, time lapse 

microscopy was conducted on cells of the same strain, with the same constructs, and under 

the same induction and growth conditions as the ones used here. 

 

Quantitative PCR for mean RNA quantification 

 

Quantitative PCR (qPCR) was used to attain the induction curve of PLac-ara-1 as a function 

of IPTG concentration at 37 °C (for details, see Supplementary Material). This induction 

curve is shown in Figure S2. Visibly, for 0.5 mM IPTG and above, PLac-ara-1 is fully induced. 

 

Estimation of intake times by deconvolution from empirical data on activation times and 

active transcription interval duration 

The empirical method of MS2-GFP tagging of RNA allows for new RNAs 

containing multiple MS2-GFP binding sites to be detected shortly after they are produced 

[20]. From this data, one can directly extract the time intervals between consecutive RNA 

productions in individual cells following induction, as well as the time for the first RNA to 

be produced once inducers are added in the media. However, one cannot directly measure 

the time that inducers take to enter the cells and activate the target promoter. To obtain this 

information, we next propose a methodology based on deconvolution techniques for 

extracting this information from the data. 

Given the model above, the mean time for the first RNA to appear in a cell following 

the addition of inducers in the media (here named t0) depends on the time for inducers to 

enter the cell (reactions (1-2) in Supplementary Material) [4,5], here denoted as tint. Also, 

it depends on the time for RNA production by an active promoter (which depends on the 

rate-limiting steps in transcription) [24,25], determined by reactions (3-6) in 

Supplementary Material, and here represented by ∆t since, under full induction, this time 

should equal the time between consecutive RNA productions in active promoters [5]. In 

particular, we have: 

0 intt t t   (1) 

 

As the inducer intake and the production of the first RNA are independent, 

consecutive processes, one can use deconvolution to obtain a distribution of values of t int 

(and, thus, mean and variance) from the data. Namely, for each temperature, one can 

deconvolve the probability density function (PDF) of the ∆t distribution from the PDF of 

the t0 distribution, provided that these two distributions are known [26].  

For this, we estimate the PDFs of ∆t and t0 distributions as their best-fitted gamma 

distributions to the respective empirical distributions. We choose the gamma distribution 

as a model, since such distributions allow the mean and the variance to change 

independently, thus facilitating the fitting to the empirical distribution [14].  



First, we use the gamma fits to the empirical ∆t distributions reported in a previous 

work [14]. This fit used censored intervals between productions of consecutive transcripts 

extracted from live-cell measurements. The censoring accounts for the effects of finite 

sampling rate (60 s sampling interval), and thus improves the accuracy of the parameter 

estimation [27]. It also accounts for right-censored intervals, to compensate for the 

truncation of the right tail of the ∆t distribution due to the finite cell division times. This 

fitting follows the maximum likelihood criteria [14]. 

Afterwards, to the measured t0 distributions, we apply the same censored fitting 

procedure, but without right-censoring (as t0 durations are not restricted by cell lifetime). 

Finally, we obtain the PDF of the tint distribution using the Fast Fourier Transform (FFT) 

deconvolution method, as proposed by Sheu and Ratcliff [26], except that we do not apply 

frequency filtering, since our estimated t0 and ∆t PDFs do not contain high-frequency noise.  

As outlined by Sheu and Ratcliff [26], the result of the deconvolution may contain negative 

values, even though the PDF, by definition, cannot have values below zero. Those negative 

values should be interpreted as resulting from the uncertainty in the best-fit gamma 

distributions to t0 and ∆t empirical data, which, in turn, originates from uncertainty in the 

t0 and ∆t measurements. However, even if the selected models do not precisely depict the 

PDFs of the corresponding processes, the results of the deconvolution are still interpretable, 

even though the uncertainty in the deconvolution product is undefined [26]. Here, to allow 

such interpretation, we set the negative values of the tint PDF to zero. 

To estimate the uncertainty of our findings, we constructed bootstrap 95% 

confidence intervals (CIs) for mean and noise of the tint distribution using non-parametric 

resampling of t0 and ∆t empirical data [28,29]. For this, for each temperature condition, we 

perform 2000 random resamples with replacement of the t0 and ∆t empirical distributions 

(using an original amount of samples), and obtain the tint PDF for each resampled pair of t0 

and ∆t distributions, which then allows obtaining the bootstrap distributions of the mean 

and CV2 (squared coefficient of variation) of the tint PDFs. We take 0.05 and 0.95 

percentiles of those distributions as the 95% CIs of the estimated mean and CV2 of the tint 

distribution. 

 

Estimation of intake times using Lineweaver-Burk equation 

 

Aside from the method above, we make use of the Lineweaver-Burk equation [30] to 

estimate mean intake times. For this, from (1) and the model of gene expression (reactions 

1-6 in Supplementary Material), note that as the amount of inducers in the media is 

increased, in a first stage, the inducers inside the cell will increase in number. As such, 

during this stage, both tint and ∆t will decrease with increasing inducer concentration. 

However, beyond a certain concentration of inducers in the media, further increases in this 

concentration will no longer lead to increases in the rate of RNA production (i.e. when the 

regime of full induction is reached), due to the rate-limiting steps in transcription and the 



finite number of RNA polymerases inside the cell (reaction 6 in Supplementary Material). 

This well-known fact is also demonstrated here by Figure S2, which shows that, beyond a 

certain inducer concentration (both in the microscopy measurements and the qPCR 

measurements) the rate of RNA production no longer increases with further increases in 

the IPTG concentration in the media. 

Meanwhile, the time taken by the cell to intake inducers should continue to decrease 

with increases in inducer concentration in the media, even in the regime of full induction 

of transcription. Namely, in theory, for an infinite amount of inducers in the media, tint 

should equal zero. In this regime, following the introduction of infinite number of inducers 

in the media, the total mean time taken to produce the first RNA will be equal to the duration 

of subsequent intervals between consecutive RNA productions, i.e.: 

 

  0t IPTG t    (2) 
 

Thus, provided that the decrease in tint with the decrease of the inverse of the inducer 

concentration is linear (as assumed in our model reactions (1) and (2) in Supplementary 

Material), we can derive tint in the ‘control condition’ using the Lineweaver-Burk equation 

[30] as follows: 

 

2 1

int

0 02

1 2
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In equation (3), 
10t and 

1[IPTG] are, respectively, the mean t0 and the inducer 

concentration in the control condition. Meanwhile, 
20t  and 

2[IPTG] are the corresponding 

values in a condition where the inducer concentration differs from the control, and is above 

the minimum concentration to achieve maximum RNA production rate. 

Also, one can calculate 95% CIs for the obtained mean tint value based on the method 

of propagation of errors [31]. 

As a side note, this methodology is similar to the usage of  plots, from which, by 

fitting a line to the results of measurements of the transcription rate for increasing RNA 

polymerase concentrations one can extract the duration of the events following the initiation 

of the open complex formation [16,24,32]. 

 

Inference of the number and duration of the sequential steps in the intake process by fitting 
with a sum of exponential steps 

 

Our model of intake (reactions (1) and (2) in Supplementary Material) assumes 2 steps, 

each with a duration following an exponential distribution, in agreement with 

measurements at optimal temperatures [5,6]. However, as noted, our modelling strategy 

allows considering the possibility that, at different temperatures, additional or less steps 

may be rate-limiting.  



To determine the number of steps, one can perform fittings of d-steps models (each 

step following an exponential distribution) for increasing number of steps, until adding a 

step no longer improves the fitting. In such a model, as more steps are added and if the 

overall mean duration of the d-steps process is kept constant, the variance of the durations 

between events will decrease. The closer the d-exponential steps distribution is to a gamma 

distribution with a shape parameter set to d, the smaller will be its variance. 

The d-exponential step model was chosen due to how we model transcription, 

namely, as a set of consecutive of chemical reactions, each of which having a distribution 

of intervals between consecutive occurrences that is expected to follow an exponential 

distribution. Also, there is significant accumulated evidence that, in E. coli, this model fits 

very well, in a statistical sense, the empirical distributions of many promoters [5,6,16,33–

35]. 

Here we perform this fitting to a d-steps model for each temperature condition. For 

this, by deconvolution of the empirical data, we obtain a distribution of the duration of the 

intake process. From it, we determine the maximum likelihood fit of a model with d 

statistically independent steps, whose time lengths each follow an exponential distribution, 

with possibly different rates. 

The likelihoods are compared using the likelihood ratio test, and the model with 

smallest d that cannot be rejected at the significance level 0.01 is selected in favor of a 

higher order model. 

Note that this method does not allow determining the order of the steps, only their 

number and durations. Note also that, while changing temperature may not alter the number 

of rate-limiting steps, it may instead (or also) cause them to no longer be well modeled by 

elementary reactions as our model assumes. In that case, we expect the fitting to d 

exponential steps to require a higher number of steps than if the steps were elementary.  

Results and Conclusions 

PLac-ara-1 transcription activation kinetics is temperature dependent 

 

We first studied, at the single cell level, the temperature dependence of the kinetics of 

transcription activation of PLac-ara-1 by IPTG. All empirical data were obtained from 

observing individual cells over time, using MS2d-GFP tagging of the target RNA, 

fluorescence microscopy, and image analysis techniques (Methods). 

For this, we placed E. coli cells (DH5α-PRO) with a single-copy plasmid coding for 

the RNA target for MS2d-GFP under the control of PLac-ara-1, and fully activated its 

expression by adding IPTG (1 mM) to the media (Figure S2) while already under 

microscope observation (Figure 2). The MS2d-GFP reporters, expressed by a multi-copy 

plasmid, were induced prior to this, so that cells were flooded with MS2d-GFP by the time 

PLac-ara-1 was induced (Methods). 



From the time series obtained (~2.5 hour long, with images taken every minute), for 

each temperature, we extracted t0, the time taken by individual cells to produce the first 

RNA, following the addition of inducers in the media (Methods). Note that only one such 

event per lineage is considered and that cells already with one or more RNAs at the start of 

the observation period were discarded. 

From these data, we calculated the mean, standard error, and CV2 of t0 values. 

Finally, we performed Kolmogorov-Smirnov (KS) tests to compare each distribution of t0 

values with the distribution at 37 °C (named ‘control’ condition). Results are shown in 

Table 1. 

 

Table 1. Measurements of t0 vs temperature. Shown are the number of measurements (Nt0
), 

mean (𝜇t0
) standard error (SE) and CV2 of the distribution of t0 values (CVt0

2 ). The table 

also shows the p-value from the KS tests comparing the t0 distributions at each temperature, 

with the distribution at 37 ˚C (control). For p-values smaller than 0.01, the null hypothesis 

that the two sets of data are from the same distribution can be rejected. 

 

From the data in Table 1, we find that for temperatures lower than 37 °C, the 

activation time t0 differs significantly from the control (in a statistically sense), with its 

mean (𝜇t0
) being higher and its CVt0

2  (surprisingly) being lower for lower temperatures. 

Qualitatively similar results were obtained (Table S1) using the E. coli JW0334 

strain (see section ‘Bacterial strains and plasmids’). 

 

Cell-to-cell variability of tint decreases with decreasing temperature 

 

Next, we investigate how the time for inducers to enter the cell, t int, changes with 

temperature. For this, besides the data above, we make use of the data from [14], which 

consists of empirical distributions of intervals between consecutive RNA productions by 

active promoters in individual cells (Δt), under the same temperature conditions as above. 

These data therefore informs on the kinetics of active transcription (i.e. is not affected by 

intake times). 

As mentioned in Methods, in accordance to our model (reactions 1-6 in 

Supplementary Material) and equation 1, the time for the production of the first RNA in 

each cell, following the introduction of inducers in the media (t0), should consist of the time 

for the intake of the inducer by the cell (tint) and the time taken by the active promoter to 

produce the first RNA (∆t). As these processes are consecutive and independent, it should 

T (˚C) Nt0
 𝜇t0

± SE (s) CVt0

2  KS-test for t0 values vs 37 ˚C (p-value) 

24 93 2743 ± 102 0.13 < 0.01 

30 162 3020 ± 119 0.25 < 0.01 

37 60 2109 ± 215 0.63 - 

41 93 2379 ± 144 0.34 0.19 



be possible to obtain the time-length for intake of the inducers (tint) by deconvolving Δt 

from t0. 

For this, we performed model fitting with censoring to the data from live-cell 

measurements of t0 (Table 1) and used the model fitting of empirical Δt values from [14]. 

In Figure 3, we show the empirical distribution and the best gamma fits of t0.  

 

Figure 3. Empirical distribution of t0 (histogram), along with the best gamma fit to t0 

(dashed line) and the deconvolved tint (solid line), as function of temperature.  

 

Next, we obtained the tint distribution for each temperature condition from the 

deconvolution of Δt from t0 (Methods). Results for the mean and CV2 values of the 

distributions of tint obtained from this deconvolution are shown in Table 2, along with the 

95% CI. It is noted that the values at 37 °C are in agreement with previously reported 

measurements [5,6]. 

Meanwhile, the deconvolved distributions are shown in Figure 3. From these, we 

find a clear change in the shape of the tint distribution as temperature is lowered. 

 

Table 2. Mean and CV2 of the deconvolved tint, along with the 95% CI for each temperature 
condition. 

 

T (˚C) 𝜇t𝑖𝑛𝑡̂  (s) 95% CI of 𝜇t𝑖𝑛𝑡̂  (s) CVt𝑖𝑛𝑡̂
2  95% CI of CVt𝑖𝑛𝑡̂

2  

24 1548 [1316, 1799] 0.10 [0.06, 0.18] 

30 1369 [1113, 1671] 0.32 [0.20, 0.48] 

37 986 [726, 1329] 0.52 [0.28, 0.95] 

41 1083 [807, 1402] 0.37 [0.23, 0.63] 



From Table 2, we find that the mean duration of the intake process, 𝜇t𝑖𝑛𝑡̂
, is the 

lowest while the variability, CVt𝑖𝑛𝑡̂

2 , is the highest at 37 °C. Meanwhile, at the lowest 

temperature tested (24 °C) the opposite occurs (𝜇t𝑖𝑛𝑡̂
 is the highest and CVt𝑖𝑛𝑡̂

2  is the lowest). 

Also, from the values of t0 (Table 1) and tint (Table 2), we find that the dynamics of 

intake plays a major role in the dynamics of transcription activation in all temperature 

conditions, both regarding the mean duration of activation and its cell-to-cell variability. 

Thus, it is not a surprise that tint behaves similarly to t0 with changes in temperature. 

Finally, note that the fact that noise is reduced with decreasing temperature suggests 

that the process becomes more sub-Poissonian, which could occur, e.g., if the number of 

the rate-limiting steps in the intake process increases with decreasing temperature.  

As a side note, we also conducted similar experiments in the absence of IPTG, so as 

to estimate the level of toxicity due to induction by 1 mM IPTG. We found no difference 

in cell growth rate between the two conditions, and thus conclude that the levels of toxicity 

are not significant. 

 

Validation of the inferred mean tint using the Lineweaver-Burk equation 

 

It is possible to empirically validate the mean value of the deconvolved t int using the 

Lineweaver-Burk equation (Methods). For this, from individual cells at 24 °C, 37 °C and 

41 °C, we measured the time between the moment of induction and the moment when the 

first RNA is produced for IPTG concentrations of 1 mM and of 0.5 mM. Note that both of 

these concentrations suffice to reach maximum induction in cells under the microscope (as 

shown in Figure S2). Because of this, ∆t does not differ between the two conditions, and 

only affects tint. From the measurements of t0 in these two induction levels at a given 

temperature, using the Lineweaver-Burk equation, one can extrapolate the value of t0 for 

infinite inducer concentration, which allows estimating the mean intake time at that 

temperature (Table 3). 

 

Table 3. Mean tint (𝜇t𝑖𝑛𝑡
) obtained from the Lineweaver-Burk equation and 95% CI of 𝜇t𝑖𝑛𝑡

 

for various temperatures.  

 

From Table 3, we find that, in accordance with the results of deconvolution (Table 

2), the mean tint is highest at 24 °C, and is similar at 37 °C and 41 °C, being slightly smaller 

at 37 °C. 

T (˚C) 𝜇t𝑖𝑛𝑡
 (s) 95% CI of 𝜇t𝑖𝑛𝑡

 (s) 

24 2434 [1949, 2918] 

37 1322 [842, 1801] 

41 1459 [1113, 1804] 



Quantitatively, we find that these values are ~ 35% larger (for 37 °C and 41 °C) and 

~50% for 24 °C than those in Table 2. This is expected, as the deconvolution method is 

known to underestimate the peak value of the PDF [26].  

Finally, we note that the value at 37 °C is also in clear agreement with a previous 

estimation of intake times at this temperature [6]. 

 

Number and duration of the rate-limiting steps of the intake process differs with 
temperature  

 

To investigate the hypothesis that temperature affects the number and duration of the rate-

limiting steps of the intake process, next, from the deconvolved t int distributions of each 

temperature condition, we estimated the number and duration of these steps in maximum 

likelihood sense (Methods). 

For this, we generalize the model of intake depicted by reactions (1) and (2) in 

Supplementary Material to a d-steps model, each exponentially distributed in duration, so 

that the number and duration of the rate-limiting steps are allowed to differ between the 

temperature conditions. 

Results of this estimation are shown in Table 4, where we present the number and 

duration of the steps of the best fit model, along with the log-likelihood values. Meanwhile, 

in Table S2, we show the results for each condition when assuming specifically 1, 2, 3, and 

4 steps, along with the p-values of the tests comparing pairs of models that are used to select 

the best model. Finally, in Figure 4 we show the best fit to the deconvolved t int for each 

condition. 

Table 4. Rate-limiting steps in the intake process determined by maximum likelihood estimation. 

Shown are the number of steps, the log-likelihood, the durations of the steps of the inferred models 

for each condition, and the CV2 of the best fit. We fit the models to 105 random samples from the 

deconvolved tint distribution. Note that there is no implied temporal order of the steps. 

 

T (˚C) No. Steps Steps Durations Log-likelihood CVt𝑖𝑛𝑡̂
2  

24 ≥4 (387, 387, 387, 386) -774461 0.25 

30 3 (457, 457, 457) -801201 0.33 

37 2 (667, 319) -783576 0.56 

41 3 (532, 532, 20) -783350 0.48 



 

Figure 4. Deconvolved tint distributions (solid line) and their best-fit d-steps model (dashed line). 

Importantly, this result is in agreement with previous studies using data from cells at 37 °C 

[5]. 

 

From Tables 4 and S1, for all conditions, the test rejects the 1-step model in favor 

of a higher order model. This is expected, given the existence of the two membranes in the 

cell walls of E. coli cells and the time that inducers are expected to take to cross the 

periplasm in between [6]. 

Also, interestingly, the 2-steps model is the preferred one for cells at 37 °C and 41 

°C (the step with a 20 s duration for the 41 °C condition can be disregarded, as the 

microscopy images are separated by 60 s intervals). 

Meanwhile, at lower temperatures, higher order models (3 or more steps) are 

preferred, indicating that other steps become rate-limiting (in agreement with the 

deconvolution results), and/or that the steps duration may no longer follow an exponential 

distribution.  

In this regard, we interpret the fact that a 4-steps model did not suffice to model the 

24 °C condition (see Figure 4) as evidence for a significant change in the kinetics of intake 

with temperature, which renders the multi-step, exponentially distributed model incapable 

of fully capturing the dynamics. We hypothesize that this may be the consequence of 

increased viscosity of the cytoplasm and periplasm [14], along with changes in the physical 

properties and functionality of the intake ‘machinery’ in the cell walls. 



Note that the CV2 values of the best fits for 30 °C, 37 °C and 41 °C match the 

estimated values of the corresponding tint distributions deconvolved from the fits to the 

empirical data. While the best fit in 24 °C condition has higher CV2 than the deconvolved 

tint (which is expected from the fact that the 4-steps model did not suffice to model the 24 

°C condition), the trend in CV2 of the deconvolved distributions and of their best fits is the 

same. 

Finally, note that, in several cases, the time scales of the steps are identical. This 

may be due to an unknown artefact of the inference method or be representative of the real 

kinetics of intake of this inducer.  

Discussion 

In this work, we studied the single-cell dynamics of intake of IPTG, an inducer of the 

promoter PLac-ara-1, as a function of temperature. Rather than focusing on biological cellular 

adaptations, we focused solely on rapid physical changes due to temperature shifts in the 

process of inducer intake and consequent transcription kinetics. 

For this, we first measured in vivo the time taken by individual cells to produce the 

first RNA, following the start of induction. From this, and previously collected data on the 

dynamics of RNA production by PLac-ara-1 [14], we applied two novel, independent methods 

to obtain the single-cell intake kinetics of the inducers, for each temperature condition. 

These methods’ results were consistent with one another. 

From this, first, we established that the response of the distribution of intake times 

of individual cells to temperature changes remains similar to that of the distribution of 

transcription activation times as temperature is changed, much due to the fact that most of  

the activation time is spent in the intake process in all conditions. Interestingly, the mean 

value of these distributions increases while their variability decreases for decreasing 

temperatures.  

Since the intake process is bound to consist of multiple consecutive steps (in the 

case of IPTG, it was previously shown to be well modeled by a 2-step process for cells at 

37 °C [5,6], we hypothesize that the decrease in variability could be the result of the 

emergence of additional rate-limiting steps in this process with decreasing temperature. The 

results of the maximum likelihood estimation tests support this view.  

Further, they suggest that, at the lowest temperature condition tested here, the 

process is, from a dynamical point of view, ‘too complex’ to be well fitted by a sum of a 

small number (less than 5) of exponential steps. We hypothesize that this clear evidence 

that the duration of one of the steps of the intake process becomes non-exponential-like at 

low temperatures. There are several potential causes for this (and perhaps multiple causes), 

and they are likely not accounted by our model (else, the increase in number of exponential 

steps would have allowed to fit the data well). We expect these potentials causes to range 

from malfunctioning of the porins in the membrane responsible for the diffusive intake of 



the inducers, increased viscosity of the cytoplasm and periplasm, alteration of the physical 

properties of the outer and inner membranes, etc. 

It is worth noting that the application of the Lineweaver-Burk equation to extract the 

mean value of the intake times is a methodology that has not been previously used, but we 

expect it to be of use in future works as well. It requires measuring transcription activation 

times for various inducer concentrations (at least 2) above the minimum concentration 

required for maximum induction. It is limited by the fact that the speed of intake is assumed 

to change linearly with the inverse of the inducer concentration, which may not always be 

the case. However, we expect this to be the case within certain ranges of inducer 

concentrations for simpler intake (mostly diffusion-based), mechanisms. Thus, it should be 

applicable to the study of a wide range of cellular intake mechanisms. 

Overall, we conclude that different environmental conditions cause significant 

changes in the single-cell distributions of intake times of transcription inducers, which is 

expected to have a significant effect on the degree of heterogeneity in cell populations and 

cell lineages, due to the longevity of the transients during which this phenomenon has a 

strong effect in RNA numbers. 

In the future, one important aspect that requires further research is the cause for the 

reduced cell-to-cell diversity in response times with decreasing temperatures, which we 

believe to be due to the emergence of rate-limiting steps in the intake process. Which steps 

and how they emerge are open questions, whose answers will help better understanding the 

robustness of the intake systems of E. coli. 
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