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ABSTRACT

We present shape models and volume estimates of twenty asteroids based on relative photometry and adaptive optics images. We
discuss error estimation and the effects of myopic deconvolution on shape solutions. For further analysis of the information capacities
of data sources, we also present and discuss ambiguity and uniqueness results for the reconstruction of nonconvex shapes from
photometry.

Key words. methods: numerical – methods: analytical – minor planets, asteroids: general – techniques: photometric – instrumenta-
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1. Introduction

In our previous paper (Hanuš et al. 2017b), we derived three-
dimensional (3D) shape models for about 40 asteroids by com-
bining disk-integrated photometry, adaptive optics (AO) images,
and stellar occultation timings by the All-Data Asteroid model-
ing (ADAM1, Viikinkoski et al. 2015a) procedure. Occultation
chords are useful for the 3D shape construction and especially
the size estimate since they provide information on the silhouette
of the asteroid independently of the scattering law (Ďurech et al.
2011).

There are several asteroids with resolved AO images ob-
tained by the Near InfraRed Camera (Nirc2) mounted on the
W. M. Keck II telescope and optical disk-integrated photome-
try that can be used for the 3D shape model determination, but
lack observed occultation timings. In this paper, we determine
shape models and spin states for twenty such asteroids. Because
the size estimates are based exclusively on the AO data of vary-
ing quality, special attention must be paid when assessing their
uncertainties. For instance, erroneous or badly resolved images
may inflate the size of the shape model and hide details present
in other images. Since the obtainment of additional data is sel-
dom an option, effects of poor quality data must be identified
and mitigated. Statistical resampling methods facilitate the de-
tection of outlier images and the estimation of the uncertainties
of reconstruction.

Another interesting topic is the effect of myopic deconvo-
lution on constructed shape models. Since the level of detail of
full shape models is necessarily lower than the apparent resolu-
tion of AO images, it is natural to question the necessity of my-
opic deconvolution as a preprocessing step when data are used
for shape modeling. Furthermore, while deconvolution is useful
for the visual inspection of individual images, processed images
are potentially biased by prior assumptions and contaminated by

1 https://github.com/matvii/ADAM

artifacts. To investigate the usefulness of myopic deconvolution,
we construct shape models using both unprocessed and decon-
voluted images, and compare their differences.

This paper is organized as follows. In Sect. 2 we describe
the data reduction steps and outline the ADAM shape optimiza-
tion procedure. We discuss our results and comment on some
of the individual asteroids in Sect. 3. We present a procedure
for uncertainty and information content estimation, in particular
noting that the post-processing of AO images, while useful for
the visual investigation of an image, is not necessarily needed or
even desirable in 3D asteroid modeling. In Sect. 4, we further
build on the information content analysis by revisiting the case
of photometry only, with analytical results that are very scarce
for nonconvex shapes. We sum up our work in Sect. 5.

2. Methods

2.1. Data reduction

All the adaptive optics images used in this paper, together with
the calibration data, were downloaded from the Keck Observa-
tory Archive (KOA). The AO images were acquired with the
Near Infrared Camera (NIRC2) mounted at the W.M. Keck II
telescope. While the diffraction-limited angular resolution of the
telescope is 45 mas, the actual achievable detail varies with the
seeing conditions.

Raw data were processed using the typical data reduction
pipeline of dark-frame and flat-field correction followed by the
bad-pixel removal. Finally, to obtain data with sufficient signal-
to-noise ratio, several short-exposure frames were shift-added
together.

The compensation of atmospheric turbulence offered by the
AO instrument is only partial, and the point-spread function
(PSF) is partially unknown. In order to mitigate the blurring ef-
fect caused by the PSF, AO images are usually post-processed
with a myopic deconvolution algorithm.
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Deconvolution is an ill-posed problem in the sense that high-
frequency information is irrevocably lost during the imaging
process. To acquire an estimate of the original data, prior as-
sumptions adapted to the structure of the observed object must
be used. Typically, an L2−L1 regularization (e.g., total variation,
see Starck & Murtagh 2006), which smooths out small gradients
in the image and preserves large gradients, is preferred.

In this paper, we apply the AIDA (Hom et al. 2007) deconvo-
lution algorithm. The AIDA algorithm uses the Bayesian frame-
work and iterative optimization to produce an estimate of the true
image and PSF, given the initial image and the partially known
PSF obtained from the instrument.

In addition to the AO images (see Table A.1), we use the
optical lightcurves available in the Database of Asteroid Mod-
els from Inversion Techniques (DAMIT2, Ďurech et al. 2010).
While recovering nonconvex features based on lightcurves alone
is seldom possible, as we discuss below and in the correspond-
ing references, photometry is crucial for complementing the AO
data and stabilizing the shape optimization process. Moreover,
prior knowledge of the sidereal rotation period and the spin axis
orientation are useful inputs for the ADAM modeling. These are
available in DAMIT as well.

2.2. Shape modeling

An intuitively direct approach to asteroid shape reconstruction
is contour matching (Carry et al. 2010; Kaasalainen 2011), in
which the asteroid boundary contour is extracted from the de-
convolved image and compared with the corresponding plane-
of-sky model boundary. This facilitates model fitting indepen-
dently of the scattering law, but the contour identification in the
AO images is problematic due to smearing and other imaging
artifacts. Besides, the boundary of a non-convex shape observed
at high phase angles may break into disconnected contours.

In this paper we use the shape reconstruction algorithm
ADAM (Viikinkoski et al. 2015a) that has been successfully ap-
plied to many asteroids (Viikinkoski et al. 2015b; Hanuš et al.
2017a,b; Marsset et al. 2017). The method used in ADAM cir-
cumvents the boundary identification problem by minimizing
the difference between the projected model and the image in the
Fourier domain. In this way, contour extraction is not required
since the boundary is determined automatically during the opti-
mization, based on all the available data. Moreover, ADAM can
use both deconvolved and unprocessed images, making the com-
parison between reconstructed models possible.

ADAM facilitates the simultaneous use of various data
types with different weightings. In this case, we combine disk-
integrated photometry with the adaptive optics images. Utilizing
the Levenberg-Marquardt optimization algorithm (Press et al.
2007), ADAM minimizes the objective function

χ2 := λaoχ
2
ao + λlcχ

2
lc +

∑
i

λiγ
2
i , (1)

where

χ2
ao =

∑
i, j

∥∥∥∥Vi(ui j, vi j) − e2πı(ox
i ui j+oyi vi j)+si

× FPi(ui j, vi j)FM(ui j, vi j)
∥∥∥2
,

and FM(ui j, vi j) is the Fourier transform of the plane-projected
model M evaluated at the jth frequency point (ui j, vi j) of the ith

2 http://http://astro.troja.mff.cuni.cz/projects/
asteroids3D

image, Vi is the Fourier transform of the ith AO image, andFPi is
the Fourier transform of the PSF corresponding to the AO image.
The offset (ox, oy) within the projection plane and the scale si are
free parameters determined during the optimization. The term χ2

lc
is a square norm measuring the model fit (Kaasalainen & Torppa
2001) to the lightcurves. The last term corresponds to regulariza-
tion functions γi and their weights λi (Viikinkoski et al. 2015a).

Shapes are represented by triangular meshes, where the ver-
tex locations are given by the parametrization. ADAM uses two
different shape supports: octantoids (Kaasalainen & Viikinkoski
2012), which utilize spherical harmonics, and

√
3-subdivision

surfaces (Kobbelt 2000).

3. Results and discussion

We use a shape modeling approach similar to that in our pre-
vious study (Hanuš et al. 2017b): for each asteroid, we choose
initial weight terms in Eq. (1). Fixing the image data weight
λAO, we decrease regularization weights λi and the lightcurve
weight λLC until the image data fit χ2

AO ceases to improve
(Kaasalainen & Viikinkoski 2012). As the final step, the model
fit to AO images is assessed visually. This procedure is repeated
for both deconvolved and raw AO images using two shape sup-
ports. The use of different shape representations allows us to sep-
arate the effects of parametrization from the actual features sup-
ported by the data. If the available data constrain the shape suffi-
ciently, both octantoid and subdivision parametrizations should
converge to similar shapes (Viikinkoski et al. 2015a).

Given the shape models, we compute the volume-equivalent
diameter. To gauge the stability of the derived model, we use the
jackknife resampling method (Efron & Stein 1981). We produce
n additional shape models by leaving out one of the n available
AO images. For asteroids with only one observation, then obvi-
ously the jackknife method cannot be used (28 Belona, 42 Isis,
and 250 Bettina). In these cases the uncertainty estimates are
based on the variability observed with different shape supports.

In Table A.1, we have listed the mean pixel size in kilometers
(adjusted to the asteroid distance), diameters of the reconstructed
models based on both deconvolved and raw AO images, and
the variability intervals obtained by resampling. The estimated
spin parameters, together with their uncertainties, are listed in
Table 1. These uncertainty estimates result from combined vari-
ations within all the shape supports.

It is apparent that the resampling method seems to detect po-
tential outlier images (e.g. the fuzzy images of 121 Hermione),
which typically result in large variations in diameters. However,
it is also evident that not all shape uncertainty can be revealed
by resampling. For instance, sampling from a set of observa-
tions with similar observation geometries can lead to practi-
cally the same shapes even if half of the asteroid were unob-
served (see also the discussion on sampling in shape space in
Viikinkoski et al. 2015a). In general, the uncertainty in the shape
models is also affected by the image resolution; it is unreason-
able to expect the accuracy of the diameter estimate to exceed
the pixel quantization error (i.e. half of the pixel size).

We have derived shape models and estimated their sizes
for twenty asteroids. The disk-resolved data allowed us to re-
move the pole ambiguity (i.e., reject one of the two pole so-
lutions that usually fit the optical lightcurves equally well)
for four asteroids – (7) Iris, (48) Doris, (65) Cybele, and
(283) Emma. Mass estimates for most asteroids studied here
are available in the literature, so we were able to combine
those values with our volume determinations, which gave us
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Table 1. Rotation state parameters λa, βa, Pa with a reference to the corresponding publication that we used as initial inputs for the modeling with
ADAM, rotation state parameters λ, β, P derived by the ADAM algorithm, and the number of available lightcurves Nlc and disk-resolved images
Nao.

Asteroid λa βa Pa Reference λ β P Nlc Nao
[deg] [deg] [hours] [deg] [deg] [hours]

7 Iris 16 15 7.138843 Kaasalainen et al. (2002) 18 ± 4 19 ± 4 7.138843 39 14
7 Iris 196 2 7.138843 Kaasalainen et al. (2002) Rejected 39 14

12 Victoria 174 −17 8.66034 Hanuš et al. (2016) 177 ± 4 −34 ± 4 8.66034 53 8
14 Irene 95 −11 15.02986 Hanuš et al. (2011) 91 ± 7 −14 ± 4 15.02988 29 3
15 Eunomia 3 −67 6.082753 Kaasalainen et al. (2002) 0 ± 5 −67 ± 2 6.082752 48 8
23 Thalia 159 −45 12.31241 Torppa et al. (2003) 158 ± 2 −45 ± 4 12.31241 50 2
23 Thalia 343 −69 12.31241 Torppa et al. (2003) 341 ± 3 −73 ± 6 12.31241208 50 2
24 Themis 137 59 8.374187 Hanuš et al. (2016) 138 ± 4 69 ± 5 8.374187 46 4
24 Themis 331 52 8.374187 Hanuš et al. (2016) 328 ± 5 70 ± 2 8.374187 46 4
28 Bellona 102 −8 15.70785 Ďurech et al. (2011) 99 ± 4 −16 ± 6 15.70785 23 1
40 Harmonia 22 31 8.908483 Hanuš et al. (2011) 22 ± 2 38 ± 5 8.908485 23 3
42 Isis 106 40 13.58364 Hanuš et al. (2011) 108 ± 1 47 ± 3 13.58364 31 1
48 Doris 108 47 11.8901 Hanuš et al. (2016) Rejected 31 2
48 Doris 297 61 11.8901 Hanuš et al. (2016) 296 ± 3 57 ± 5 11.89010 31 2
56 Melete 103 −27 18.14817 Hanuš et al. (2016) 103 ± 1 −26 ± 2 18.14817 34 2
56 Melete 282 −5 18.14817 Hanuš et al. (2016) 283 ± 1 −3 ± 3 18.14817 34 2
65 Cybele 208 −7 6.081434 Franco & Pilcher (2015) 208 ± 1 −3 ± 3 6.081435 59 7
65 Cybele 27 −14 6.081434 Franco & Pilcher (2015) Rejected 59 7
72 Feronia 102 −55 8.09068 Hanuš et al. (2013a) 100 ± 6 −51 ± 6 8.09068 20 2

121 Hermione 4 13 5.550878 Descamps et al. (2009) 362 ± 2 13 ± 1 5.550877 48 13
146 Lucina 305 −41 18.5539 Ďurech et al. (2009) 304 ± 6 −41 ± 2 18.55387 22 2
250 Bettina 100 17 5.054420 Torppa et al. (2003) 101 ± 2 9 ± 2 5.054414 22 1
283 Emma 251 22 6.895222 Michałowski et al. (2006) 256 ± 3 23 ± 3 6.89523 29 5
283 Emma 85 37 6.895221 Michałowski et al. (2006) Rejected 29 5
354 Eleonora 144 54 4.277186 Hanuš et al. (2011) 161 ± 8 41 ± 7 4.277186 64 3
511 Davida 297 26 5.129363 Torppa et al. (2003) 299 ± 1 24 ± 1 5.129363 58 10

1036 Ganymed 190 −78 10.31284 Hanuš et al. (2015) 198 ± 10 −79 ± 1 10.31304 177 5

bulk density estimates. Unfortunately, some mass estimates are
affected by large uncertainties (72 Feronia, 354 Eleonora, or
1036 Ganymed). Derived sizes, adopted masses, asteroid taxon-
omy (Tholen 1989; Tholen & Barucci 1989; Bus & Binzel 2002;
DeMeo et al. 2009) and bulk densities are listed in Table 2.

7 Iris. Iris seems to be the third-largest S-type asteroid (af-
ter 15 Eunomia and 3 Juno). Its size of D = 216 ± 7 km
is consistent with previous estimates based on stellar occulta-
tions (D = 210 ± 30 km, Ďurech et al. 2011) or radar data
(D = 223±37 km, Ostro et al. 2010). We provide the most accu-
rate size estimate so far, which allowed us to derive a reasonably
constrained bulk density of ρ = (2.4 ± 0.5) g cm−3. This value is
typical for S-type asteroids. We note that some of the images
manifest severe ringing artifacts caused by the deconvolution al-
gorithm.

A non-convex shape model based on range-Doppler radar
images was reconstructed in Ostro et al. (2010). Due to limited
radar coverage, a significant portion of the model was based on
dynamical constraints rather than observations. While the resolu-
tion of AO images is insufficient for resolving nonconvex details
present in the radar model, the dimensions and the large-scale
features are consistent between the models.

15 Eunomia. Eunomia is the largest S-type asteroid. Its large
size together with the location in the inner main belt made Eu-
nomia a great target for imaging. Indeed, all the AO images of
Eunomia are nicely resolved. The surface is relatively smooth

without any obvious features. All this resulted in one of the
best shape models we have ever derived. Our spin solution is
similar to the one of Kaasalainen et al. (2002) based on optical
lightcurves only. Our size estimate (D = 275 ± 5 km) is slightly
larger than most previous estimates based mostly on thermal
models (∼ 250 km). The bulk density of ρ = (2.9 ± 0.2) g cm−3

corresponds to typical values within the S-types.

23 Thalia. We have two images with almost identical observing
geometries. Based on visual estimation of the fit, the second pole
from Table 1 seems more likely.

24 Themis. Our spin state solution of Themis is consistent
with the previous determinations of Higley et al. (2008) and
Hanuš et al. (2016). We present the first non-radiometric size of
Themis of D = 215± 15 km, which is somewhat larger than pre-
vious estimates. The low bulk density of ρ = (1.1±0.4) g cm−3 is
in agreement with the C/B taxonomic classification. The quality
of AO images is not sufficient for differentiating between poles.
However, the first pole from Table 1 seems marginally better.

65 Cybele. Asteroid Cybele is a member of the so-called Cy-
bele group of minor bodies, which orbit outside the main belt at
semi-major axis of ∼3.5 au. Our spin state and shape model solu-
tion is in agreement with the previous convex shape model deter-
mination of Franco & Pilcher (2015). However, the AO data al-
lowed us to remove the pole ambiguity leaving us with a unique
solution. Our size of D = 296 ± 25 km is significantly larger
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Table 2. Bulk density estimates based on our volume estimated by the ADAM shape modeling from combined optical lightcurves and disk-resolved
images.

Asteroid Da Reference D M Reference T1 T2 ρ

[km] [km] [1018 kg] [g cm−3]

7 Iris 203 ± 24 Hanuš et al. (2013b) 216 ± 7 12.9 ± 2.1 Carry (2012) S S 2.4 ± 0.5
7 Iris 203 ± 24 Hanuš et al. (2013b) Rejected

12 Victoria 124 ± 8 Carry (2012) 115 ± 3 2.5 ± 0.5 Carry (2012) S L 3.1 ± 0.6
14 Irene 149 ± 17 Hanuš et al. (2013b) 155 ± 6 2.8 ± 1.0 Fienga et al. (2014) S S 1.4 ± 0.5
15 Eunomia 254 ± 27 Hanuš et al. (2013b) 275 ± 5 31.4 ± 1.8 Carry (2012) S S 2.9 ± 0.2
23 Thalia 107 ± 12 Hanuš et al. (2013b) 120 ± 8 2.0 ± 0.1 Carry (2012) S S 2.2 ± 0.4
23 Thalia 107 ± 12 Hanuš et al. (2013b) 120 ± 8 2.0 ± 0.1 Carry (2012) S S 2.2 ± 0.4
24 Themis 184 ± 11 Carry (2012) 215 ± 15 5.9 ± 1.9 Carry (2012) C B 1.1 ± 0.4
24 Themis 184 ± 11 Carry (2012) 215 ± 15 5.9 ± 1.9 Carry (2012) C B 1.1 ± 0.4
28 Bellona 121 ± 11 Hanuš et al. (2013b) 135 ± 7 2.6 ± 0.1 Carry (2012) S S 2.0 ± 0.3
40 Harmonia 123 ± 12 Hanuš et al. (2013b) 113 ± 7 S S
42 Isis 97 ± 10 Hanuš et al. (2013b) 102 ± 4 1.6 ± 0.5 Carry (2012) S L 2.8 ± 1.0
48 Doris 212 ± 11 Carry (2012) Rejected
48 Doris 212 ± 11 Carry (2012) 223 ± 23 6.1 ± 3.0 Carry (2012) CG Ch 1.1 ± 0.6
56 Melete 114 ± 8 Carry (2012) 119 ± 5 4.6 ± 1.0 Carry (2012) P Xk 5.2 ± 1.3
56 Melete 114 ± 8 Carry (2012) 119 ± 5 4.6 ± 1.0 Carry (2012) P Xk 5.2 ± 1.3
65 Cybele 248 ± 18 Carry (2012) 296 ± 25 13.6 ± 3.1 Carry (2012) P Xc 1.0 ± 0.3
65 Cybele 248 ± 18 Carry (2012) Rejected
72 Feronia 74 ± 6 Hanuš et al. (2013b) 84 ± 10 3.3 ± 8.5 Carry (2012) TDG − −

121 Hermione 187 ± 6 Descamps et al. (2009) 196 ± 15 5.0 ± 0.3 Carry (2012) C Ch 1.26 ± 0.30
146 Lucina 119 ± 11 Hanuš et al. (2013b) 131 ± 15 C Ch
250 Bettina 119 ± 11 Hanuš et al. (2013b) 109 ± 5 M Xk
283 Emma 133 ± 10 Carry (2012) 142 ± 14 1.4 ± 0.0 Marchis et al. (2008) X C 0.9 ± 0.3
283 Emma 133 ± 10 Carry (2012) Rejected
354 Eleonora 154 ± 6 Carry (2012) 169 ± 30 7.2 ± 2.6 Carry (2012) S Sl 2.8 ± 1.8
511 Davida 289 ± 21 Conrad et al. (2007) 311 ± 5 33.7 ± 5.7 Fienga et al. (2014) C C 2.1 ± 0.4

1036 Ganymed 36 ± 3 Hanuš et al. (2015) 38 ± 3 0.15 ± 0.12 Fienga, privat com. S S 5.2 ± 4.4

Notes. The table gives previous size (surface- or volume-equivalent diameter) estimate Da and its reference, volume-equivalent diameter D of the
shape solution derived here by ADAM, adopted mass M and its reference, the Tholen (T1, Tholen 1989; Tholen & Barucci 1989) and SMASS II
(T2, Bus & Binzel 2002) taxonomic classes, and our density determination ρ.

than the estimate of Carry (2012) based on interpretation of var-
ious literature values. The only non-radiometric solution avail-
able so far published by Müller & Blommaert (2004) is based
on a thermophysical modeling of thermal infrared data and re-
ports D = 273 ± 11 km. This value, though, based only on an
ellipsoidal shape and rather preliminary pole solution, is smaller
than our estimate, but still agrees within the large uncertainties.
The bulk density of ρ = (1.0 ± 0.3) g cm−3 is low, but still rea-
sonable, for a C-complex object. The only reliable bulk density
of another P-type asteroid is available for asteroid (87) Sylvia
(ρ = 1.34 ± 0.21 and 1.39 ± 0.08 g cm−3, Berthier et al. 2014;
Hanuš et al. 2017b). Both values are rather consistent. We note
that the mass estimate of Cybele is based on astrometric obser-
vations only, so it might not be fully reliable.

The diameter of the octantoid model constructed from raw
images is approximately ten percent larger than the others (cf.
Table A.1), which is typically indicative of discrepancies in
the data. By discarding the most likely outlier image, we obtain
somewhat smaller diameter estimate D = 284 ± 25 km, where
the uncertainty estimate is again affected by the octantoid model.

121 Hermione. A C-type asteroid Hermione is actually a bi-
nary system with a ∼12 km large moon (Merline et al. 2002).

Our rotation state results are consistent with previous solutions
of Descamps et al. (2009), Kaasalainen & Viikinkoski (2012),
Hanuš et al. (2016). We drop images that are badly smeared
or are inconsistent with other observations. Of the 13 avail-
able images, we use nine for shape determination. Some of
the images suggest nonconvex features, but they are not visible
in all of the images. By further reducing the data set, a non-
convex shape model similar to Descamps et al. (2009) can be
constructed.

511 Davida. The Keck disk-resolved images of Davida have
already been used for the rotation state and ellipsoidal shape
model determination by Conrad et al. (2007). Our shape mod-
eling, which also includes includes also a comprehensive optical
lightcurve dataset is consistent with that of Conrad et al. (2007),
apart from our size (D = 311 ± 5 km) is larger by about seven
percent (cf., D = 289 ± 21 km). The resulting bulk density of
ρ = (2.1 ± 0.4) g cm−3 is relatively high considering Davida
is a C-type asteroid. On the other hand, such high bulk density
is similar to those of other large C-type asteroids (1) Ceres and
(10) Hygiea (Park et al. 2016; Hanuš et al. 2017b). This could
suggest that Davida’s interior is inhomogeneous in composition.
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1036 Ganymed. We derived a first shape model of a NEA based
on ground-based disk-resolved images. Ganymed is the largest
NEA, but also the smallest minor body that was spatially re-
solved by 10 m-class telescopes equipped with adaptive optics
systems. On the other hand, the low mass and a non-existence
of a known moon resulted into a poor mass estimate and our
bulk density is, therefore, essentially meaningless. Our size of
D = 38±3 km is similar to the size of D = 36±3 km derived by
an analysis of the WISE thermal infrared data in the means of a
thermophysical model performed by Hanuš et al. (2015).

4. Uniqueness and non-uniqueness in photometry

From the discussion and results above, we see that it is important
to have a general understanding of the information content or ca-
pacity of a given type of data set and source. This concerns espe-
cially the uniqueness and the resolution level of the solution. For
instance, the use of post-processed AO data does not necessarily
extract more information from the raw AO data when making
a physical model. Since photometry is the most important data
source for targets without much disk-resolved data, we consider
in this section the information limits of photometry.

Information content analysis, including uniqueness proofs
of the reconstructions of bodies based on various projection-
like data sources as well as the weighting of those sources (in,
e.g., the simultaneous use of AO and photometry), has been pre-
sented in a number of works (see, e.g., Kaasalainen & Lamberg
2006; Kaasalainen 2011; Viikinkoski & Kaasalainen 2014;
Nortunen et al. 2017, and references therein).

We revisit here the reconstruction of nonconvex shapes from
photometry only. The numerical results discussed, for example,
in Kaasalainen & Torppa (2001); Ďurech & Kaasalainen (2003);
Kaasalainen & Ďurech (2006) give a good practical overview of
the inverse problem. The problem, however, is more mathemat-
ical than computational, so any non-uniqueness or uniqueness
proofs are invaluable for understanding the information capacity
of the data. Here we present fundamental results that require a
somewhat special setup, but they provide insight into the general
problem, and are among the very rare proofs that can be given
about the problem in the first place.

In the following, the term illuminated projection area de-
notes the total area of the projections of the visible and illumi-
nated (hereafter VI) parts of a body in the viewing direction
(from which the illumination direction can differ). Brightness
data is the generalization of this, where the surface elements
contributing to the illuminated projection area are each weighted
by a scattering function depending on the local viewing and il-
lumination conditions (the scattering of illuminated projection
areas is called geometric). Brightness data are also called gen-
eralized projections (Kaasalainen & Lamberg 2006). In two di-
mensions, the body is a planar curve and the projection area is
the sum of the widths of the VI parts of the curve seen from the
viewing direction.

Tangent-covered bodies or TCBs are bodies for which each
point on the surface has at least one tangent that does not inter-
sect any other part of the body (but can be tangent to them). The
tangent hull of a body is the set of surface points for which the
above criterion is true, augmented by their tangents to form a
closed, connected surface of a TCB. By a concavity, we mean a
part of the surface of a body that is not part of its tangent hull. As
discussed in Kaasalainen (2011), tangent-covered bodies (and
the tangent hull of a body, also called its profile hull) are recon-
structable from their disk-resolved silhouette or profile curves.
TCBs are thus the set of all convex bodies and all nonconvex

bodies without concavities. By definition, bodies with concavi-
ties are not TCBs, a TCB is identical to its tangent hull, in three
dimensions convex bodies are a subset of TCBs, and in two di-
mensions the sets of convex bodies and TCBs are identical.

Two-dimensional nonconvex bodies cannot be uniquely de-
termined from their brightness data. By definition, the tangent
hull of a 2D body is its convex hull, so any nonconvexities of
a 2D body are concavities. Each concavity is covered by a line
that is part of the convex hull, and all parts of a line have the
same visibility and illumination. Thus the effect of the concavity
on brightness data can be replaced by smaller concavities, cov-
ered by the same line, that are isomorphic to the original con-
cavity whose length along the line is equal to combined lengths
of the smaller concavities. It is also possible to have concavi-
ties of different shapes along the same line that together produce
a shadow effect that can be attributed to one concavity of still
another shape (see below). Therefore the brightness data of any
nonconvex 2D body can be reproduced by infinitely many other
nonconvex versions. We call this scale ambiguity.

Concavities of 3D bodies cannot be uniquely determined
from the brightness data of the bodies. For simplicity, we as-
sume here any concavity to be contained in a plane that is part
of the convex hull of the body. This is simply to avoid lengthy
discussions of special shadowing conditions that are not mate-
rial to the argument. Then the 3D case is a direct generalization
of the scale ambiguity of the 2D case: the effect of the concav-
ity on brightness data can be replaced by smaller isomorphic (or
possibly other) concavities in the plane whose combined surface
area is equal to that of the concavity. We assume that the plane
is suitably larger than the part of it occupied by the concavity so
that the smaller concavities can be arranged within the plane. We
note that this arrangement is also non-unique: even if one uses
a size constraint for the concavities, their locations in the plane
cannot be deduced from brightness data.

An interesting corollary of this non-uniqueness is that even a
large-scale concavity is actually indistinguishable from a locally
rugged surface: in other words, a concavity within a plane can be
replaced by the same plane with scattering properties caused by
small-scale roughness (cf. the discussion in Kaasalainen 2004).

A subset of tangent-covered bodies can be determined from
their illuminated projection areas at least with a simple scale
constraint. Here we show that the set of bodies essentially recon-
structable from their illuminated projection areas is larger than
the set of convex surfaces. “Essentially” here means the use of a
natural constraint. The uniqueness proof for the brightness data
of convex bodies is discussed in Kaasalainen & Lamberg (2006)
and references therein.

Proving anything about the integrals over a nonconvex body
dependent on directions is notoriously difficult for the simple
reason that such integrals are not usually analytically calcula-
ble, requiring numerical ray-tracing or the finding of the roots of
equations containing high-order functions. Therefore we must
resort to a number of special assumptions, considering first the
case in two dimensions. We can construct a proof there, since
in 2D the location of the shadow boundary point is essentially
the same as its projection area (length in 2D). In 3D, the shadow
boundary is resolved in 2D (see Kaasalainen 2011), and the area
requires the computation of an integral (as would brightness data
in 2D).

Our reconstruction consists of three parts: 1. the unique-
ness of a concavity up to scaling in 2D, 2. the separation of the
uniqueness of this shape and that of the rest of the 2D curve, and
3. the transformation of the 2D curve into a 3D TCB, and the
scale constraints.
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1. For simplicity, we consider an isolated concave section S
of a curve C in the xy-plane, with end points on the x-axis, one
at the origin and the other at (L, 0), and the rest of S is below
the x-axis. We are interested in the shadow caused by the end
point at (0, 0). Let the illumination direction be φ and the view-
ing direction θ, with φ − θ = α. When α , 0, S can be uniquely
reconstructed by finding the point (xs, ys) on S separating the
shadow and the illuminated part for successive values of φ and
θ. We require S to be star-like with respect to the origin: this en-
ables simple shape parametrization and yields only one shadow
and one illuminated section on the concavity. Further, we require
VI parts of S to cover the whole of the line between (xs, ys) and
(L, 0) projected in θ, and that there are θ covering the whole of
the motion of (xs, ys) from (0, 0) to (L, 0) as θ increases. A sim-
ple sufficient but by no means necessary arrangement for this is
to let S be an inverted convex curve with the angles between the
y-axis and the tangents of S both α/2 at (0, 0) and (L, 0).

The shadow point (xs, ys) is the intersection point of two lines
L1 and L2. L1 is the shadow line through the origin in φ, and
L2 is the line in θ such that its distance from the corresponding
line through (L, 0) is the observed illuminated projection length
l. Thus (see Fig. 1)

xs = −d cos φ = x0 − s cos θ, ys = −d sin φ = −s sin θ, (2)

where d and s are the length parameters of the lines L1 and L2,
respectively, and L2 passes through x0 for which

l = (L − x0) sin θ. (3)

Combining these, one obtains the unique solution for d, and thus
(xs, ys) at given θ, α, L, and observed l. Parametrizing l with the
usual polar angle ϕ, obtained directly from ϕ = φ − π, we have

d(ϕ) sinα = L sin θ − l(θ), θ = ϕ − α + π, 0 ≤ θ ≤ π − α, (4)

so

[x(ϕ), y(ϕ)]S = [d(ϕ) cosϕ, d(ϕ) sinϕ], (5)

and d(ϕ) = 0 for some values of θ when l(θ) = L sin θ; d(ϕ) > 0
for some interval of ϕ ending at ϕ = 2π when d = L and l = 0.

This result formally shows the scale ambiguity: d is only
unique if there is one concavity with d, since otherwise one may
define∑

i

di sinα =
∑

i

Li sin θ − l(θ),
∑

i

Li = L,
∑

i

di = d, (6)

so scaled-down arrangements of adjacent concavities with simi-
lar or various di(ϕ) will produce the same l(θ).

2. Recall that any convex curve can be defined by its cur-
vature function C(ψ), where the direction angle of the outward
surface normal is given by 0 ≤ ψ < 2π. The length element is
ds = C(ψ) dψ, so the points [x(ψ), y(ψ)] on the curve are given
by

x(ψ) = −

∫ ψ

0
C(ψ′) sinψ′ dψ′, y(ψ) =

∫ ψ

0
C(ψ′) cosψ′ dψ′.

(7)

The observed projection length of the VI part of the curve at θ is

l(θ) =

∫ π/2

−π/2+α

C(ψ + θ) cosψ dψ. (8)

Fig. 1. Sketch of the geometry of the nonconvex shape in the xy-plane.

Expanding C(ψ) =
∑

n an cos nψ + bn sin nψ, n ≥ 0, a1 =
b1 = 0, and similarly l(θ) =

∑
n cn cos nθ + dn sin nθ, we have

(Ostro & Connelly 1984; Kaasalainen 2016)

cn = anIc
n(α) + bnI s

n(α), dn = bnIc
n(α) − anI s

n(α), (9)

where

Ic
n(α)=

∫ π/2

−π/2+α

cos nψ cosψ dψ,

I s
n(α)=

∫ π/2

−π/2+α

sin nψ cosψ dψ, (10)

so the solution of the inverse problem is

an =
Ic
ncn − I s

ndn

(Ic
n)2 + (I s

n)2 , bn =
I s
ncn + Ic

ndn

(Ic
n)2 + (I s

n)2 · (11)

The denominator (Ic
n)2 + (I s

n)2 is nonzero at 0 < α < π, so the
convex curve is uniquely obtained from the l(θ)-data at any α.

When the integral defining l(θ) mixes parts of S and other
parts of C, there is no simple way to parametrize C so as to allow
analytical computations of l(θ). Thus we separate the observa-
tions of S from the rest of the curve C denoted by R = C\S. We
assume that R is convex and without linear sections. Then, de-
noting the angle interior to C between the x-axis and the tangent
of R at the origin and (L, 0) by, respectively, γ0 and γL, we must
have γ0 ≤ α, γL ≤ α. With these assumptions, either parts of S
or parts of R are VI at any given θ. The data from S cannot be
mimicked by a convex curve since they are like those of a line
for some range of θ.

Given a full range of observations l(θ) of C, one can proceed
as follows. First find the values of θ at which l(θ) vanishes at
the given α. Assuming R not to contain straight lines ending at
sharp corners elsewhere, there are two intervals (or points) in θ
with l(θ) = 0, one ending at θ = 0 and one starting at θ = α
(the lengths of the intervals are α − γ0 and α − γL). Between
these, l(θ) is sinusoidal for an interval of θ starting at the end
of one interval of l = 0: l = L sin θ. This reveals the existence
of the corners at the origin and (L, 0). It also fixes the xy-frame
in our convention, and gives the size of S: L = l/ sin θ from
the sinusoidal interval. After the shadow effect appears at some
θ, the shape profile of S is uniquely obtained from l(θ) data at
0 ≤ θ ≤ π − α. Observations of l(θ) in the range π − α ≤ θ ≤ 2π
are sufficient to determine C(ψ) of R (or any convex curve) in
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the interval 3π/2 − α ≤ ψ ≤ 3π/2 + α since C(ψ) in this interval
does not affect l(θ) at other values of θ. For this range of θ, these
data are exactly the same as those from C with S, a straight line
from the origin to (L, 0), would be.

This concludes the determination of C up to the scale ambi-
guity on S: one obtains R and the shape S, but there is no way
of telling from l(θ) whether the data are due to S or smaller con-
cavities on the line section L0 between the origin and (L, 0).

3. Next we define a class of 3D bodies by extending the 2D
curve C to apply to some interval z0 ≤ z ≤ z1, and covering
the cylindrical shape of height z1 − z0 with planes at z0 and z1.
This surface is a TCB, and we call the shape class cylindrical
TCBs. Concavities in 2D are changed into saddle surfaces rather
than concavities in 3D, with much richer information possibil-
ities. Viewing directions along the z-axis then reveal the true
area A between the real concavity curve and L0: if AP is the
observed projected area of the body and AC the area contained
inside the curve formed of R and L0, A = AC − AP. This infor-
mation strongly constrains the possible scale ambiguities. Now
we must have

∑
i Ai = A in addition to

∑
i Li = L for each con-

cavity i, and the combined area of many concavities is smaller
than the area of one due to the quadratic scaling of the areas Ai
with respect to the lengths Li. Also, viewing and illumination
directions other than those along the z-axis or in the xy-plane of-
fer additional information. In these other observing geometries,
scale ambiguity is at least partly removed for the saddle-surface
versions of the concavities, but it is difficult to show the exact
properties analytically.

If A equals the area AS by S (on the whole of L0) or is close
to it, the assumption of one concavity is well justified. Indeed, if
A = AS , only one occurrence of the concavity shapeS is possible
if only this shape is considered. A simple way to enforce the as-
sumption is to attribute almost all area A to one scaled concavity
S and fill the remaining length on L0 by negligibly small-scale
roughness.

The above construction applies also to arrangements other
than that of S and R. For example, the profiles of the concave
sides of a “nonconvex Reuleaux triangle” are solvable at least
for α ≥ π/6. Viewing directions tilted from the z-axis can be
used to isolate the area information for each concave section of
the surface by placing them in the opposite azimuthal direction.

Not all tangent-covered bodies can be uniquely determined
from their brightness data. Even the use of all observing geome-
tries and size constraints cannot resolve the case where sections
on L0 are without concavities (just straight lines). Then it is im-
possible to say where the sections and concavities are along the
line. Another example of TCB ambiguity: consider the surface
of a wedge-shaped 3D tangent-covered body (or a convex body
with a wedge-like part), with two intersecting planes forming the
wedge. A new tangent-covered surface can be formed by making
a tangent-covered hole that is contained between the two planes.
The hole need not be cylindrical as long as it is tangent-covered
so that the new body is still a TCB. If the hole is suitably smaller
than the wedge, all brightness data of the body can be repro-
duced by having a collection of smaller isomorphic holes within
the wedge arranged such that their combined area equals that of
the original concavity. This is possible because the wedge shape
allows an infinite number of isomorphic holes to be created (two
parallel planes instead of a wedge would not allow this). A corol-
lary of this is that a hole can be replaced by arbitrarily small-
scale perforation.

Even when formally removable, ambiguities lead to insta-
bilities near limit conditions. For example, if the straight line
on which two scale-ambiguous concavities are adjacent is bent

between the concavities, the above uniqueness results are ob-
tained for both separately. However, this requires α to be at least
as large as π−β where β is the bending angle. A small β is a typ-
ical depiction for many nearby nonconvex features on asteroid
surfaces, so reconstructions are unstable even at high α.

The reconstruction of a nonconvex body from its brightness
data is fundamentally non-unique. Scale and location ambigu-
ities are inherent to the inverse problem. Nevertheless, the re-
constructable class of bodies from brightness data is, in a cer-
tain sense and with constraints, larger than the set of convex
shapes especially due to the projection area information from
TCBs. This corroborates the numerical success in simulations
such as those in Ďurech & Kaasalainen (2003). However, the re-
construction of nonconvex bodies from photometry has neither
the fundamental uniqueness properties of the convex case nor
the Minkowski stability that pertains to the global shape and
applies to both data and model errors. These aspects are illus-
trated by, for example, the case of the asteroid Eros. Eros, with
its sizable nonconvex TCB-like feature, can be roughly approx-
imated by the simple cylindrical model when viewed from the
direction of its rotation axis. One might thus expect its photom-
etry to yield a unique nonconvex solution. Even so, as discussed
in Kaasalainen & Ďurech (2006), the convex model fits the data
as well as a nonconvex one and, above all, better than the real
shape with usual scattering models. There are various nonconvex
shapes that fit the data equally well. This underlines the ambigu-
ous properties and the instabilities of the photometry of noncon-
vex bodies and the need for large α.

A convex surface actually represents merely a nonconvex
case in which regularization suppressing local nonconvex fea-
tures has been given infinite weight. This, however, does not gen-
erally deteriorate the fit as discussed in Ďurech & Kaasalainen
(2003); so far, the only asteroid requiring a nonconvex shape
to explain its photometry is Eger (Ďurech et al. 2012). All oth-
ers can be explained down to the noise level by convex shapes,
which means that, from the point of view of regularization the-
ory, there is no optimal regularization weight. It is therefore
best to use full weight to avoid the inevitable instabilities and
nonuniqueness at lower weights. Statistically, no result between
the two extreme weights can be shown to be the best one, so
the safest result is a convex shape because of its strong unique-
ness and stability properties. From the Bayesian point of view,
the problem is the lack of proper statistics to cover the sys-
tematic data and model errors (dominating over the data noise)
and the difficulty of finding shape sampling covering the whole
of the shape space (single or a few shape supports cannot do
this properly in the sense of Markov chain Monte Carlo; see
Viikinkoski et al. 2015a).

5. Conclusions

We have determined the spins and shape models of about twenty
asteroids and estimated their diameters (see Tables 1 and 2).
Derived bulk densities are usually consistent within the aster-
oid’s taxonomic classifications – ∼1−2 g cm−3 for C-complex
members and ∼2–3 g cm−3 for S-complex asteroids. The notable
exception is slightly larger bulk density of the C-type asteroid
(511) Davida, which is similar to bulk densities of the largest
C-type asteroids (1) Ceres and (10) Hygiea. This might suggest
at least some degree of differentiation.

However, one should keep in mind that a model is always a
sample of a set of probable solutions based on an amalgamation
of data, prior assumptions and subjective judgment. Provided the
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data coverage and quality is sufficient, it is possible to construct
a plausible model that could have produced the observed data.
Nevertheless, one should be careful when drawing conclusions
based on model features. For instance, based on only one image,
one can seldom conclusively deduce whether an apparent local
detail is due to imaging artifacts or actual surface features (e.g.,
shadowing effects from craters).

We have used the jackknife resampling method to generate a
set of plausible models, but the number of samples is strictly lim-
ited to the number of data images. The obvious next step would
be the use of the bootstrap method, which is tantamount to set-
ting the image data weights randomly. This would allow a more
complete sampling of the solution space, but would require man-
ual intervention, since not all the models produced by the boot-
strap method are physically plausible. Besides, this is still not
sufficient for sampling the solutions since the available shape
representations are constrained.

Based on the sample of asteroids in this paper, the shape
models constructed from deconvolved and raw AO images are
visually almost indistinguishable. There is no apparent reason
to prefer deconvolved data in shape reconstruction: the decon-
volution process does not uncover any additional information.
Rather, it may introduce spurious details. Moreover, the sharp
cutoffs caused by deconvolution determine the position of the
boundary contour beforehand, while it would be more natural to
relegate that choice to the shape optimization algorithm, which
sees all the data. Discrepancies in the diameters could be at-
tributed to inherent uncertainties present in the data, and should
be taken into account when estimating the size uncertainty.

With the advent of the SPHERE adaptive optics system,
inconsistencies caused by the myopic deconvolution in shape
modeling are likely to disappear. Indeed, results obtained in
Viikinkoski et al. (2015b), Hanuš et al. (2017a), Marsset et al.
(2017) already demonstrate that the quality of SPHERE images
easily surpasses that of older Keck data as a result of greatly
improved Strehl ratio. However, data from the older AO instru-
ments continue to be useful in the foreseeable future, since they
often provide complementary information due to a long range of
observation epochs.

Tangent-covered bodies offer the least ambiguous informa-
tion for reconstruction from lightcurves only. We have shown
that at least a subclass of TCBs can be thus reconstructed (with
suitable constraints and accepting a number of ambiguities).
However, we also showed that not all TCBs are reconstructable
from photometry, and unlike convex bodies, nonconvex shapes
have fundamental ambiguities in this context also when α > 0.
This is important for understanding the inherent ambiguity and
instability of nonconvex solutions from photometry, and why the
combination of photometry and even one AO image is already
considerably more informative than lightcurves only. This ap-
plies both to size estimation and to the extraction of local surface
features. On the other hand, at least a few AO images at vari-
ous geometries are much more conclusive than one. Indeed, as
shown in Kaasalainen (2011), boundary curves of images (that
contain the bulk of information) allow the unique reconstruc-
tion of a class of bodies more extensive than that of TCBs (for
α > 0; for α = 0, this class is exactly TCBs). In addition to
ruling out wrong shape possibilities and making the result more
robust against imaging errors, a set of images allows the actual
resolution level of the full 3D model to approach the potential of
the AO resolution.
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Nortunen, H., Kaasalainen, M., Ďurech, J., et al. 2017, A&A, 601, A139
Ostro, S. J., & Connelly, R. 1984, Icarus, 57, 443
Ostro, S. J., Magri, C., Benner, L. A. M., et al. 2010, Icarus, 207, 285
Park, R., Konopliv, A., Bills, B., et al. 2016, in EGU General Assembly

Conference Abstracts, 18, 8395
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 2007,

Numerical Recipes, The Art of Scientific Computing, 3rd edn. (New York:
Cambridge University Press)

Starck, J.-L., & Murtagh, F. 2006, Astronomical Image and Data Analysis
(Springer)

Tholen, D. J. 1989, in Asteroids II, eds. R. P. Binzel, T. Gehrels, & M. S.
Matthews, 1139

Tholen, D. J., & Barucci, M. A. 1989, in Asteroids II, eds. R. P. Binzel,
T. Gehrels, & M. S. Matthews, 298

Torppa, J., Kaasalainen, M., Michałowski, T., et al. 2003, Icarus, 164, 346
Viikinkoski, M., & Kaasalainen, M. 2014, Inverse Problems and Imaging, 8, 885

Viikinkoski, M., Kaasalainen, M., & Ďurech, J. 2015a, A&A, 576, A8
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Appendix A: Additional tables and figures

In this appendix we list the disk-resolved AO observations used
for shape modeling (Table A.2) and the diameters with their un-
certainties estimated using the resampling method (Table A.1).
Figures A.1–A.20 show the deconvolved AO images and the
model projections. Images are numbered from left to right, cor-
responding to the observation dates listed in Table A.2.

Table A.1. Models diameters and uncertainty estimates.

Asteroid ∆p Drw ∆Drw Ddc ∆Ddc

7 Iris 8.3 220 220 217–223 213 212 209–217
12 Victoria 6.9 116 117 115–118 113 115 113–116
14 Irene 11.9 158 159 151–161 151 154 148–158
15 Eunomia 10.7 276 278 274–279 271 275 270–275
23 Thalia 15.6 114 115 113–118 126 124 120–130
24 Themis 16.2 215 225 200–243 207 211 199–229
28 Bellona 11.7 129 133 – 134 143 –
40 Harmonia 10 113 112 105–120 113 115 114–116
42 Isis 6.6 102 106 – 98 100 –
48 Doris 18.7 210 214 196–234 238 229 218–241
56 Melete 10 114 116 – 122 124 –
65 Cybele (7 im.) 21.3 297 314 288–323 285 288 281–303
65 Cybele (6 im.) 21.5 278 305 265–314 276 278 268–294
72 Feronia 8 85 86 81–94 83 83 80–95
121 Hermione (13 im.) 17.8 199 200 197–204 193 192 190–223
121 Hermione (9 im.) 18.3 193 193 189–200 193 193 188–196
146 Lucina 13.1 133 133 128–159 129 129 127–144
250 Bettina 15.8 109 111 – 116 118 –
283 Emma 12.3 148 147 142–156 136 138 134–148
354 Eleonora 16.1 162 164 151–203 172 177 165–214
511 Davida 14.9 312 313 309–315 308 309 306–315
1036 Ganymed 3.3 39 39 38–41 37 37 36–37

Notes. The mean pixel size in the AO images is ∆p (in km), Drw and
Ddc are the model diameters based respectively on raw and deconvolved
images with two different parametrizations. Columns ∆Drw, dc show the
diameter variability estimated with the jackknife method.

Fig. A.1. 7 Iris.

Fig. A.2. 12 Victoria.

Fig. A.3. 14 Irene.

Fig. A.4. 15 Eunomia.

Fig. A.5. 23 Thalia, poles 1 and 2.

Fig. A.6. 24 Themis.

A117, page 9 of 14

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731456&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731456&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731456&pdf_id=4
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731456&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731456&pdf_id=6
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731456&pdf_id=7


A&A 607, A117 (2017)

Fig. A.7. 28 Bellona.

Fig. A.8. 40 Harmonia.

Fig. A.9. 42 Isis.

Fig. A.10. 48 Doris.

Fig. A.11. 56 Melete, poles 1 and 2.

Fig. A.12. 65 Cybele.

Fig. A.13. 72 Feronia.

Fig. A.14. 121 Hermione.

Fig. A.15. 146 Lucina.

Fig. A.16. 250 Bettina.

Fig. A.17. 283 Emma.
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Fig. A.18. 354 Eleonora.

Fig. A.19. 511 Davida.

Fig. A.20. 1036 Ganymed.
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Table A.2. List of disk-resolve images obtained by the NIRC2 at Keck II telescope used for the shape modeling with ADAM.

Date UT Filter Exp Airmass RA Dec r Reference or PI

7 Iris
2005-07-17 07:53:59 Kp 0.6 1.37 16 13 01 −20 56 49 2.01 Marchis
2009-08-16 07:50:06 PK50_1.5 20.0 1.32 18 17 57 −19 00 54 1.70 Marchis
2009-08-16 08:15:57 PK50_1.5 5.0 1.36 18 17 57 −19 00 54 1.70 Marchis
2002-09-27 09:54:15 Kp 0.36 1.29 21 45 43 −3 03 48 1.14 Merline
2002-12-29 04:35:18 H 0.845 1.13 23 19 49 00 44 34 1.88 Margot
2006-11-17 07:06:23 K 0.181 1.26 03 10 48 23 19 01 0.85 Engineering
2006-11-17 07:13:20 H 0.1 1.24 03 10 48 23 19 00 0.85 Engineering
2006-11-17 07:18:58 J 0.2 1.22 03 10 48 23 18 59 0.85 Engineering
2006-11-17 07:53:59 Kp 0.11 1.12 03 10 47 23 18 45 0.85 Engineering
2006-11-17 07:57:52 H 0.1 1.11 03 10 47 23 18 46 0.85 Engineering
2006-11-17 08:02:23 J 0.12 1.10 03 10 47 23 18 45 0.85 Engineering
2006-11-17 08:24:30 Kp 0.08 1.06 03 10 45 23 18 32 0.85 Engineering
2006-11-17 08:27:22 H 0.08 1.06 03 10 45 23 18 32 0.85 Engineering
2006-11-17 08:30:57 J 0.1 1.05 03 10 45 23 18 32 0.85 Engineering

12 Victoria
2003-06-05 12:41:58 Ks 0.4 1.44 17 18 22 −16 37 28 0.93 Merline
2003-06-11 06:17:31 Kp 0.2 2.78 17 13 05 −15 49 31 0.91 Engineering
2003-06-11 07:31:21 Kp 0.2 1.71 17 13 02 −15 49 02 0.91 Engineering
2003-06-11 09:22:35 Kp 0.2 1.27 17 12 57 −15 48 37 0.91 Engineering
2003-06-11 10:17:28 Kp 0.2 1.23 17 12 55 −15 48 10 0.91 Engineering
2003-06-11 11:49:42 Kp 0.2 1.35 17 12 51 −15 47 39 0.91 Engineering
2003-06-11 12:41:43 Kp 0.2 1.56 17 12 48 −15 47 14 0.91 Engineering
2010-06-28 06:02:11 PK50_1.5 2.903 1.21 14 46 41 −13 05 01 1.20 Marchis

14 Irene
2005-07-17 07:08:51 Kp 2.0 1.29 15 21 45 −15 45 58 1.74 Marchis
2005-07-17 07:16:40 Kp 0.544 1.30 15 21 45 −15 45 58 1.74 Marchis
2009-06-07 09:33:36 Kp 0.5 1.35 13 45 52 −1 12 34 1.47 Merline

15 Eunomia
2002-09-28 12:00:05 Kp 0.4 1.50 22 46 39 12 14 45 1.27 Merline
2007-12-15 13:49:04 Kp 0.181 1.04 07 53 06 24 21 00 1.52 Engineering
2007-12-15 14:06:07 Kp 0.181 1.07 07 53 05 24 20 58 1.52 Engineering
2007-12-15 14:21:18 Kp 0.181 1.09 07 53 04 24 20 54 1.52 Engineering
2007-12-15 14:36:30 Kp 0.181 1.12 07 53 04 24 20 53 1.52 Engineering
2007-12-15 15:04:43 Kp 0.181 1.20 07 53 03 24 20 49 1.52 Engineering
2007-12-15 16:05:04 Kp 0.181 1.48 07 53 01 24 20 43 1.52 Engineering
2008-01-21 12:07:00 Kp 0.181 1.22 07 14 12 22 37 15 1.51 Engineering

23 Thalia
2009-08-16 12:08:31 PK50_1.5 10.0 1.24 00 02 49 −15 15 28 2.16 Marchis
2009-08-16 12:15:19 PK50_1.5 10.0 1.23 00 02 49 −15 15 28 2.16 Marchis

24 Themis
2001-12-27 08:39:34 Kp 2.0 1.00 04 43 15 23 03 15 1.98 Merline
2003-06-05 07:44:11 Ks 5.0 1.29 11 53 34 00 59 26 2.43 Merline
2012-12-24 06:21:00 H 60.0 1.14 04 14 45 21 55 34 2.04 Margot
2010-06-28 11:04:11 PK50_1.5 20.0 1.38 20 14 03 −20 55 24 2.52 Marchis

28 Bellona
2007-04-03 13:31:47 Kp 3.0 1.25 13 40 15 02 49 36 1.62 Marchis

30 Urania
2010-06-28 08:02:14 PK50_1.5 5.0 1.40 16 27 30 −24 15 12 1.61 Marchis

37 Fides
2009-08-16 07:03:28 PK50_1.5 20.0 1.53 19 36 55 −25 42 35 1.96 Marchis

Notes. For each observation, the table gives the epoch, filter, exposure time, airmass, RA and Dec of the asteroid, distance to the Earth r and the
reference or the PI of the project within which were the data obtained.
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Table A.2. continued.

Date UT Filter Exp Airmass RA Dec r Reference or PI

40 Harmonia
2001-12-27 11:21:54 Kp 0.5 1.10 05 37 33 22 43 02 1.28 Merline
2003-06-05 10:14:51 Ks 1.0 1.44 14 21 39 −9 12 28 1.45 Merline
2009-02-10 07:28:45 Kp 30.0 1.02 07 09 06 25 29 43 1.44 Engineering

42 Isis
2005-07-17 10:51:46 Kp 0.8 1.54 20 07 09 −29 56 29 0.92 Marchis

48 Doris
2003-06-05 07:34:20 Ks 5.0 1.31 11 34 41 03 45 38 2.86 Merline
2010-06-28 08:19:01 PK50_1.5 8.0 1.63 19 06 53 −13 13 48 2.32 Marchis

53 Kalypso
2002-03-07 13:02:56 Kp 5.0 1.27 11 10 11 08 58 21 1.35 Merline

56 Melete
2003-06-05 10:26:26 Ks 4.0 1.35 14 42 12 −6 05 54 1.29 Merline
2008-09-19 13:05:41 PK50_1.5 20.0 1.02 02 08 24 11 37 15 1.49 Marchis

65 Cybele
2002-09-27 07:37:48 Kp 10.0 1.58 19 30 25 −19 54 47 2.73 Merline
2002-09-28 06:45:48 Kp 10.0 1.40 19 30 52 −19 54 59 2.74 Merline
2002-09-28 06:55:36 H 12.0 1.42 19 30 52 −19 55 00 2.74 Merline
2002-09-28 07:11:00 Kp 12.0 1.47 19 30 52 −19 55 06 2.75 Merline
2002-09-28 07:18:40 Kp 8.0 1.51 19 30 52 −19 55 06 2.75 Merline
2003-08-10 14:53:57 Kp 8.0 1.06 01 01 02 04 28 28 2.82 Merline
2010-06-28 14:45:28 PK50_1.5 40.0 1.76 02 40 04 12 56 53 4.13 Marchis

72 Feronia
2005-07-17 11:09:51 Kp 1.1 1.12 20 38 01 −7 21 39 1.01 Marchis
2002-09-28 15:30:05 Kp 5.0 1.55 02 08 08 14 08 39 1.22 Merline

121 Hermione
2003-12-06 12:26:43 Kp 10.0 1.02 07 38 49 26 19 43 2.57 Marchis
2003-12-06 13:55:55 Kp 15.0 1.03 07 38 48 26 19 46 2.57 Marchis
2003-12-07 12:28:01 Kp 10.0 1.01 07 38 20 26 23 08 2.56 Marchis
2005-01-15 14:21:45 Kp 15.0 1.01 11 35 46 12 31 20 3.19 Marchis
2005-01-15 12:42:08 Kp 15.0 1.09 11 35 47 12 31 35 3.19 Marchis
2007-08-02 07:30:51 Kp 5.0 1.46 17 22 47 −26 43 07 2.67 Marchis
2008-09-19 07:32:15 PK50_1.5 15.0 1.53 23 21 12 −16 25 21 2.03 Marchis
2008-09-19 10:10:15 PK50_1.5 12.0 1.24 23 21 07 −16 25 41 2.03 Marchis
2009-08-16 15:02:37 PK50_1.5 40.0 1.21 04 48 44 20 11 35 3.27 Marchis
2002-09-28 14:56:32 Kp 5.0 1.45 02 04 46 03 22 32 2.02 Merline
2002-09-28 15:03:08 H 5.0 1.49 02 04 46 03 22 32 2.02 Merline
2002-09-28 15:05:54 J 5.0 1.51 02 04 46 03 22 32 2.02 Merline
2002-09-28 15:12:02 Kp 5.0 1.55 02 04 46 03 22 30 2.02 Merline

146 Lucina
2005-07-17 08:10:47 Kp 6.0 1.41 16 41 00 −23 20 33 1.74 Marchis
2010-06-28 10:29:22 PK50_1.5 30.0 2.62 21 58 45 −25 53 44 1.88 Marchis

250 Bettina
2008-09-19 08:00:49 PK50_1.5 10.0 1.45 00 00 47 −9 25 33 2.20 Marchis

258 Tyche
2010-11-30 08:38:14 PK50_1.5 30.0 1.03 03 01 26 05 17 12 1.30 Marchis

283 Emma
2003-07-14 13:23:23 Kp 6.0 1.26 21 24 10 −14 13 39 1.76 Merline
2003-07-14 13:39:43 H 6.0 1.29 21 24 10 −14 13 39 1.76 Merline
2003-08-10 11:20:19 H 2.0 1.27 21 02 58 −14 18 56 1.66 Merline
2003-08-14 09:56:31 H 5.0 1.21 20 59 33 −14 21 13 1.66 Margot
2003-08-17 11:26:42 Kp 5.0 1.38 20 56 57 −14 22 36 1.67 Merline
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Table A.2. continued.

Date UT Filter Exp Airmass RA Dec r Reference or PI

354 Eleonora
2007-08-02 09:08:59 PK50_1.5 6.0 1.20 20 08 53 −12 09 26 2.08 Marchis
2002-05-07 13:57:06 H 3.0 1.10 19 02 14 −3 48 38 2.31 Margot
2002-05-08 13:42:48 H 2.0 1.10 19 02 15 −3 45 46 2.30 Margot

511 Davida
2001-12-27 05:00:29 Kp 5.0 1.32 23 55 36 −17 26 41 2.98 Merline
2002-09-22 15:28:12 H 4.0 1.07 06 34 38 14 25 57 2.55 Dumas
2002-09-22 15:37:16 Kp 4.0 1.05 06 34 38 14 25 57 2.55 Dumas
2002-12-29 12:03:31 H 2.0 1.06 06 50 11 19 28 10 1.62 Margot
2007-11-01 06:11:50 Kp 1.8 2.06 01 59 35 −13 11 05 1.87 Engineering
2007-11-01 07:24:57 Kp 1.8 1.46 01 59 33 −13 11 08 1.87 Engineering
2007-11-01 07:40:28 Kp 1.8 1.40 01 59 32 −13 11 12 1.87 Engineering
2007-11-01 08:37:46 Kp 1.8 1.24 01 59 30 −13 11 14 1.87 Engineering
2007-11-01 10:06:29 Kp 1.8 1.20 01 59 27 −13 11 17 1.87 Engineering
2002-12-27 11:03:14 Kp 1.0 1.00 06 52 02 19 12 18 1.62 Marchis

1036 Ganymed
2011-10-23 07:06:19 Kp 0.181 1.42 02 03 49 21 04 20 0.38 Merline
2011-10-23 08:39:25 Kp 0.181 1.09 02 03 51 21 00 16 0.38 Merline
2011-11-13 05:26:30 Kp 0.25 1.84 02 12 21 00 25 33 0.51 Armandroff

2011-11-13 07:57:11 H 0.25 1.11 02 12 23 00 21 27 0.51 Armandroff

2011-11-13 10:04:47 Kp 0.25 1.10 02 12 25 00 17 51 0.51 Armandroff
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