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Abstract New means to improve spectral efficiency

and flexibility in radio spectrum use are in high demand

due to congestion of the available spectral resources.

Systems deploying inband full-duplex transmission aim

at providing higher spectral efficiency by concurrent

transmission and reception at the same frequency. Po-

tentially doubling system throughput, full-duplex com-

munications is considered as an enabler technology for

the upcoming 5G networks. However, system perfor-

mance is degraded due to the strong self-interference

(SI) caused by overlapping of high power transmit sig-

nal with the received signal of interest. Furthermore,

due to commonly existing radio frequency imperfec-

tions, advanced techniques capable of mitigating non-

linear SI are required. This article presents a real-time

software-defined implementation of a digital SI can-

celler for full-duplex transceivers, potentially applicable

even in mobile-scale devices. Recently, software-defined

radio has gained a lot of interest due to its higher

flexibility, scalability, and shorter time-to-market cy-

cles compared to traditional fixed-function hardware

designs. Moreover, as the performance enhancements

achieved by increasing the clock frequency is reach-

ing its limits, the current trend is towards multi-core

processors. Since contemporary mobile phones already

contain powerful massively parallel GPUs and CPUs,

feasibility of a real-time implementation on mobile pro-

cessors is studied. The reported results show that by

adopting the presented solution, it is possible to achieve

sufficient SI cancellation under time varying coupling

channel conditions. Additionally, the possibility of car-

rying out such advanced processing in a real-time fash-
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ion on the selected platforms is investigated, and the

implementation is evaluated in terms of execution time,

power, and energy consumption.

Keywords 5G · full-duplex · self-interference cancel-

lation · GPU · OpenCL

1 Introduction

In full-duplex communications, transmission and recep-

tion are carried out using the same spectral and tempo-

ral resources. Since this simultaneous use of bandwidth

for both transmission and reception can theoretically

increase the throughput by a factor of two, inband full-

duplex communication is considered a promising en-

abler for the future 5G networks [17]. However, deploy-

ment of such systems is extremely challenging due to

the strong self-interference (SI) produced as a result

of the transmit signal coupling to the receiver. Thus,

a crucial step toward achieving the promised gain in

throughput by full-duplex transmission is to effectively

attenuate the SI signal [3]. This is a complicated task, as

it is not possible to simply subtract the known trans-

mit signal from the received waveform to obtain the

signal of interest. The reason behind this is the linear

and nonlinear distortion of the signal while propagating

from transmitter to the receiver due to transceiver ana-

logue imperfections [24][16]. This makes efficient sup-

pression of the SI signal the main obstacle in realizing

full-duplex systems.

The analogue imperfections make SI cancellation

even more challenging on the mobile side compared

to the base station side, since typically low cost com-

ponents are employed in mobile devices. Furthermore,

processing resources and power consumption are limit-

ing factors in hand-held devices. Thus, effective yet less

complex solutions are required for the user equipment
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side in order to exploit the full potential of full-duplex

systems. An SI cancellation method designed for a mo-

bile station should also take the continuously chang-

ing environment around the device into consideration.

Thus, an adaptive solution should be developed to keep

track of the time-varying SI channel.

Currently, advanced processor architectures take ad-

vantage of parallel processing to achieve higher per-

formance, since performance enhancement through in-

creasing the processors’ operating frequency in a fixed

power envelope has reached technical challenges [20][9].

Thus, we take advantage of the parallel processing ca-

pabilities of multi-core GPUs and CPUs. Moreover, to

better utilize the parallel resources of the processors,

Open Computing Language (OpenCL) is used. OpenCL

is a programming standard for heterogeneous platforms,

enabling efficient access to the available parallel re-

sources [20].

In this work, a software based implementation for

the entire digital canceller, which includes an orthogo-

nalization procedure, together with a parameter learn-

ing algorithm is introduced. Such software defined radio

(SDR) implementation provides more programmabil-

ity, lower expenses, less design efforts, and thus shorter

time-to-market cycles compared to traditional fixed-

function approaches [30][13]. To demonstrate the fea-

sibility of an SDR implementation of the digital can-

celler, we worked with commercial off-the-shelf (COTS)

low-cost components, which highlight the true advan-

tages of a software-based solution. The implementation

is carried out on four multicore platforms, which are

suitable for both the network and user equipment side.

The employed platforms are Qualcomm R© AdrenoTM

430, ARM R© MaliTM-T628 MP6, ARM R© Cortex R©-A15,

and Intel R© CoreTM i7-4800MQ. The core i7 desktop

CPU was mainly used for comparison purposes, while

the rest of the processors are the main target of the

study.

Using the measured signals from an actual full-duplex

prototype, we demonstrate that sufficient real-time sup-

pression of the SI signal is feasible using the proposed

implementation. Furthermore, the implemented canceller

is evaluated in terms of execution time, delay, power,

and energy consumption. This article is a continuation

of the work presented in [2].

The rest of the paper is organized as follows. Sec-

tion 2 introduces some of the related work, existing in

the literature. Section 3 describes the digital SI can-

cellation method adopted in this work. Section 4 ex-

plains the implementation of digital canceller blocks,

and presents the selected platforms. Then, in Section

5, the implementation results are shown and analyzed.

Finally, conclusions are drawn in Section 6.

2 Related work

As mentioned in the previous section, sufficient cancel-

lation of the SI signal is the main challenge in achieving

a system operating effectively in full-duplex mode. This

topic has been researched extensively and various tech-

niques have been introduced in the literature.

In [21], a novel RF canceller architecture is described

which cancels both the direct antenna coupling and

multipath effects, while [3] proposes an all digital can-

cellation method. [7] uses three different methods for

SI suppression with both analogue and digital cancella-

tion. Like [7], the proposed methods in literature typ-

ically include different stages of cancellation such as,

propagation, analogue, and digital domain cancellation

[29][16]. Some studies assume that only the base station

functions in full-duplex mode, while the mobile equip-

ment remains operating in half-duplex mode. An ex-

ample of which can be found in the work presented in

[10].

Some contributions toward actual prototypes capa-

ble of full duplex communications can be found in the

literature, such as the ones described in [6], [8], [16], and

[27]. However, there are very few existing articles on

real-time implementation of digital SI cancellation.The

work in [22] implements parts of the digital cancella-

tion method proposed in [23] on an FPGA. However,

no contributions regarding a software based implemen-

tation of digital SI cancellation targeted for a mobile-

scale device, as the one reported here, can be found

in the literature. Especially this work uses COTS el-

ements and eliminates the need for custom hardware

design and additional hardware components.

Some contributions with similar arithmetic compu-

tations and implementation techniques, used for dig-

ital predistortion design, can be found in the litera-

ture. These works, found in [12,25,26], also study par-

allel processing on mobile-scale multicore processors,

in which evaluations of the achieved performance are

also reported. However, experimental measurements of

power, or energy consumption are not carried out.

3 Digital self-interference cancellation

In order to reduce the SI signal to a level not inter-

fering with the desired received signal decoding, both

radio freqncy (RF) and digital domain cancellation are

required. The former prevents the analogue-to-digital

converter and the receiver low-noise amplifier (LNA)

from saturating. However, further suppression of the SI

signal should be carried out in the digital domain to

improve system performance. The overall structure of

the full-duplex transceiver, including both the RF and
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Fig. 1 Overall structure of a full-duplex transceiver, where the grey part is implemented in software.

digital cancellation is shown in Fig. 1. In this section,

we address the latter by first introducing a model for

the SI signal.

3.1 Self-interference Modeling

The transmitter and receiver paths contain numerous

non-ideal components which distort the transmitted sig-

nal in linear and nonlinear ways. The transceiver im-

pairments include nonlinear distortion by power am-

plifiers, phase-noise of the local oscillator, quantiza-

tion noise from the analogue-to-digital converter, and

in-phase/quadrature (I/Q) imbalance of the transmit-

ter and receiver. Since the transmitter power amplifier

(PA) is usually the most significant source of nonlinear-

ity, we model the transmit signal by adopting the par-

allel Hammerstein (PH) model, commonly used for a

highly nonlinear PA. Denoting the PA input by xPA,in,

the PA output, using the PH model, can be written as

[23]:

xPA,out =

P∑
p=1
p odd

K−1∑
k=0

hPA
p (k)up(xPA,in(n− k)), (1)

where P represents the highest nonlinearity order of the

PA model,K is the memory length of the PA, hPA
p is the

pth-order model for the PA memory, and up(xPA,in(n))

is computed as |xPA,in(n)|p−1xPA,in(n) and produces

the pth-order basis function.

Now with the transmitter PA as the most prominent

cause of nonlinear distortion, the whole SI channel can

be effectively modelled using (1). Thus, the received

signal at the digital canceller input, with respect to the

original transmitted signal x(n), can be expressed as:

rx(n) =

P∑
p=1
p odd

L−1∑
l=0

hp(l)up(x(n− l)) + z(n), (2)

where L is the memory length of the effective SI chan-

nel, hp(l) contains the coefficients for the effective pth-

order SI channel, and z(n) represents the noise and

possible modeling mismatch. After estimating the un-

known SI channel coefficients, denoted here by ĥp(l),

the signal at the output of the digital canceler can be

written as:

e(n) = rx(n)−
P∑

p=1
p odd

L−1∑
l=0

ĥp(l)up(x(n− l)). (3)

Looking at equations (2) and (3), with accurate esti-

mation of the SI channel coefficients, only noise should

remain after digital cancellation, meaning that e(n) ≈
z(n). Furthermore, the estimated coefficients need to be

updated, as the surrounding environment of a mobile

device changes over time. The method used for the esti-

mation should also have low computational complexity

in order to be suitable for mobile-scale processing re-

sources. Taking the aforementioned requirements into

account, we have adopted the LMS based solution pro-

posed in [23].

3.2 Orthogonalization

Since the different basis functions, mentioned in the

previous section, are functions of the same transmit

signal, they tend to be somewhat correlated. This will

result in slow convergence of the LMS-based coefficient

estimation. To alleviate this problem, the basis func-

tions are orthogonalized using the method proposed in

[23], which is briefly described here.

The basis functions are orthogonalized using a whiten-

ing transformation matrix. This matrix can be gener-

ated by eigendecomposition of the covariance matrix Σ.

Defining the instantaneous basis function vector as:

u(n) =
[
u1(x(n)) u3(x(n)) . . . up(x(n))

]T
, (4)

with up(x(n)) = |x(n)|p−1x(n), the covariance matrix

of basis functions across different nonlinearity orders

can be defined as:

Σ = E[u(n)u(n)H ]. (5)
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Having Σ = VDVH, where diagonal matrix D con-

tains the eigenvalues of Σ, and matrix V consists of

the eigenvectors, the transformation matrix T can be

written as:

T = D− 1
2 VH . (6)

Using the transformation matrix T, the orthogonalized

basis functions can be calculated by:

ũ(n) = Tu(n). (7)

Now (3) can be re-written using the orthogonalized ba-

sis functions as follows:

e(n) = rx(n)−
P∑

p=1
p odd

L−1∑
l=0

ĥp,ort(l)ũp(x(n− l)), (8)

where ũp(x(n)) are the orthogonalized basis functions

using matrix T, and ĥp,ort(l) represents the correspond-

ing SI channel estimates. Adopting vector notations, (8)

can be expressed as:

e(n) = rx(n)−wHuort(n), (9)

where

w =
[
ĥ1,ort(0), ĥ3,ort(0), . . . , ĥP,ort(0), . . .

ĥ1,ort(L− 1), ĥ3,ort(L− 1), . . . , ĥP,ort(L− 1)
]T
,

(10)

and

uort(n) =
[
ũ(n)T , ũ(n−1)T , . . . , ũ(n−L+1)T

]T
. (11)

It is worth mentioning that the covariance matrix Σ de-

pends only on the statistical properties of the original

transmit signal, and consequently it is not time vary-

ing. Therefore, we can assume that the transformation

matrix T is computed and known beforehand.

3.3 LMS parameter learning

In this step, the effective SI channel coefficients are es-

timated using the decorrelated basis functions. This is

carried out using an LMS-based algorithm with spe-

cific step-sizes for the different nonlinear terms [31].

Both pre-cursor and post-cursor taps are considered for

a precise memory model of the SI channel. The origi-

nal learning algorithm proposed in [23] is modified so

that the estimated weights are not updated with every

sample but only after a block of N samples are pro-

cessed. This computing-friendly LMS-based approach

is described in Algorithm 1, where ũ is a vector con-

taining the orthogonalized basis functions calculated

in (7), w contains the corresponding SI channel coeffi-

cients, rx(n) is the received signal, e(n) represents the

cancelled signal, and Lpre and Lpost are the amounts of

pre-cursor and post-cursor taps, respectively. Further-

more, µ contains the step sizes, and N controls how

often w is updated.

Algorithm 1 LMS-based adaptive nonlinear digital

cancellation.
1: Initialize:
2: w← [0 . . . 0]
3: n← Lpost

4: while transmitting do

5: uort(n) =
[
ũ(n + Lpre)T . . . ũ(n− Lpost)

T
]T

6: e(n) = rx(n)−w(n)Huort(n)
7: if (n mod N == 0) then
8: w(n + 1)← w(n) + µe∗(n)uort(n)
9: end if

10: n← n + 1
11: end while

4 Implementation

4.1 Implemented blocks

In this section, the blocks, implemented in software, for

the digital SI canceller, shown in Fig. 2 are described

in short.

Basis functions calculation The first step is to cal-
culate the nonlinear transformations of the original trans-

mit signal. The pth-order basis function is computed

for each sample as up(n) = |x(n)|p−1x(n). In this im-

plementation, highest considered nonlinearity order is

P = 3.

Polyphase filtering As shown in Fig. 1, the trans-

mit signal is oversampled before generating the basis

functions. Thus the calculated basis functions can be

resampled to the final cancellation signal sample rate.

Assuming a decimation factor equal to D, only every

D-th sample is kept after appropriate lowpass filtering.

To eliminate the unnecessary computations, we have

designed a polyphase filter to perform the resampling

task. This results in a more efficient implementation

as the filtering is not performed on all original signal

samples. An illustration of the adopted polyphase fil-

ter with downsampling factor D can be seen in Fig. 3,

where F0, . . . , FD−1 are sub-filters of length M . The

total length for the polyphase filter is equal to M ×D.
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Fig. 2 Implemented blocks for a third-order digital SI canceller, shown also in the grey part in Fig. 1.

This work employs a polyphase filter with total length

of 20, having downsampling factor D = 10, and sub-

filter length M = 2.

The OpenCL implementation for the polyphase fil-

ter was carried out with both vector and scalar data

types. With careful re-arrangement of the filter coef-

ficients, the data loads can be carried out in a more

efficient way. Fig. 4 illustrates an example implementa-

tion and work-load distribution for the polyphase filter.

In this figure, the data and the coefficients are loaded

as vectors of length four into vectors x and p, respec-

tively. After multiplication and summation, each work-

item produces one output sample y[n]. In Fig. 4, k de-

notes the polyphase filter length, k = M ×D, number

of work groups is represented by n, and a local size of

16 is assumed for a clearer presentation.

Computing orthogonalization matrix This step is

done according to equations (4) to (6). However, as

mentioned in the previous section the transformation

matrix depends only on the statistical properties of the

transmit signal, and does not change over time. Thus,

we have assumed that the transformation matrix T

is precomputed to reduce complexity and unnecessary

computations. Having nonlinearity order P = 3, T is a

2× 2 matrix.

Basis function orthogonalization After going through

the polyphase filter, the basis functions are orthogo-

nalized using the precomputed matrix T, according to

...

F0

F1

FD-1

x(n)

n = 0, D, ..

n = 1, D+1, ..

n = D-1, 2D-1, ..

...

∑

 

y(n)

Fig. 3 Functional structure of a polyphase filter with dec-
imation factor D, where y(n) represents the signal samples
after downsampling and filtering x(n).

equation (7). This helps the LMS learning process to

converge faster.

LMS filtering The orthogonalized basis functions are

filtered with the SI channel coefficient estimates. The

filter length, i.e., the SI channel memory, is defined as

L = (Lpre+Lpost+1)×(P+1
2 ). Then the filtered results

are subtracted from the received signal to produce the

cancelled signal. This corresponds to the computations

from line 6 in Algorithm 1. The SI channel coefficients

are updated after a block of N samples are processed

using the SI channel coefficients update kernel.

SI channel coefficients update Having the cancelled

signal samples and step sizes µ, the SI channel esti-

mates are updated as described in lines 7-10 in Algo-

rithm 1. The selected step size is equal to 0.01 and 0.001

for the linear and third order terms, respectively. To re-

duce the computations, this step is also modified such

that the coefficients are only updated after processing

every N sample. This is done so that the LMS filter

kernel would not have to wait for updated coefficients

after processing every single sample. Less frequent up-

dating of the coefficients reduces the dependency of the

two kernels, the LMS filter and SI channel coefficients

update kernels, and helps to increase parallelism, hav-

ing larger blocks of input samples for the LMS filter

kernel.

4.2 Platforms

In this work, three mobile scale multi-core processors

and one desktop CPU are selected as the processing

platforms. These are commercial off-the-shelf products

that are currently employed in some of the available

devices in the market. These platforms are briefly in-

troduced in the following.
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work group n (wg = n)

work item 0 (wi = 0)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 1 (wi = 1)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 15 (wi = 15)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work group 0 (wg = 0)

work item 0 (wi = 0)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 1 (wi = 1)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 15 (wi = 15)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

Fig. 4 OpenCL kernel structure and workload distribution for the polyphase filter.

Qualcomm R© AdrenoTM 430 Adreno 430 is a mobile

GPU by Qualcomm, and is available in the Snapdragon

810 System on Chip (SoC). This GPU is designed for

mobile-scale devices and can run at 500 MHz, 600 MHz,

or 650 MHz clock frequency [28]. Very little information

about Adreno’s architecture is publicly available, but

it seems that it can approximately support 200 floating

point operations in one clock cycle. To run the digital

canceller blocks on Adreno 430, a commercial Android

phone was used.

ARM R© MaliTM-T628 MP6 Similar to Adreno, Mali is

a mobile-scale GPU and runs at a 600 MHz clock fre-

quency [5]. Mali-T628 is a part of the Samsung Exynos

5 Octa (Exynos 5422) SoC. This GPU can scale from

one to eight cores. Each core can handle up to eight

floating point operations per cycle [15]. In this work,

Odroid XU3 board [14] was used to access Mali.

ARM R© Cortex R©-A15 The Cortex-A15 MPCore is a

low power multicore processor that can have one to four

cores [4]. This multicore processor can be found, for ex-

ample in the Exynos 5 Octa (Exynos 5422) SoC. It

runs at 1.4 GHz clock frequency. Each of the four cores

has one NEON (advanced Single Instruction Multiple

Data instruction set) and vector floating point unit. The

same Odroid XU3 board was used for implementing the

digital canceller on A15 CPU.

Intel R© CoreTM i7-4800MQ Unlike the other three pro-

cessing units mentioned above, the Intel Core i7 is a

desktop CPU. This processor has four cores and can

run at up to 3.7 GHz [18].

5 Evaluation and analysis

In this section, the implementation results of the digi-

tal canceller blocks introduced in the previous section

are presented. First, using the data from an actual full-

duplex prototype system, described in [23] and [24], we

demonstrate that the presented digital cancellation im-

plementation can efficiently suppress the self-interference

signal. Then, we evaluate this solution in terms of ex-

ecution time, power, and energy consumption to study

the feasibility of such software-based implementation

using the four aforementioned COTS processors.

Software tailoring: To optimize the implementation,

the kernels are tailored for each platform. Having a

scalar or vector based implementation, the different pos-

sible vector lengths, and workload distribution between

the OpenCL work-items are the factors that greatly af-

fect the execution time of each processing task.

Different kernel designs on Mali showed that em-

ploying floating point vectors of length four yields the

best results. Running the kernels on A15, different vec-

tor lengths and in some cases the scalar based imple-

mentation show similar results. However, execution of

the kernels is fastest when the workload is distributed

such that there are two work groups. The kernels de-

signed for the Core i7 use vectors of length 16, and in

most cases perform more efficiently when the process-

ing is divided among eight work groups. Similar to Mali,

Adreno achieves higher performance when using vectors

of length four. Furthermore, workload should be spread

among four work groups. The implementation results

presented in the following section are obtained having
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Fig. 5 The instantaneous power of the SI signal, averaged
over 1000 samples, of linear (P = 1) and third order (P = 3)
digital canceller output signal, implemented on the Adreno
430, with respect to time, for N = 1, N = 128, and N = 256.

designed the most efficient kernel implementation for

each platform.

5.1 Digital SI canceller performance

After the sampled data, collected from the real full-

duplex prototype system, was processed on the plat-

forms, the cancelled signal was used to plot Fig. 5. In-

put buffers of 10, 1280 and 2560 samples are considered,

which means that after downsampling by a factor of 10

and orthogonalization, one sample or blocks of 128 and
256 samples are processed before updating the canceller

coefficients. When creating the plots in Fig. 5, Lpre and

Lpost are set to 8 and 7, respectively. Having total chan-

nel length L = (Lpre + Lpost + 1) × (P+1
2 ), L is equal

to 16 for the linear canceller and 32 for the third order

canceller.

This figure shows that the implemented canceller is

capable of sufficient suppression of the SI signal, close to

the receiver noise floor (-90 dBm). Allowing more time

to converge will result in almost perfect SI cancellation.

Being able to cancel the third order nonlinear SI, the

third order canceller shows superior performance com-

pared to the linear one. Comparing the curves in Fig. 5,

it can be seen that less frequent updating of the SI chan-

nel coefficients has resulted in slower convergence of the

LMS-learning algorithm. However,the difference is rel-

atively small, especially after the initial learning phase,

indicating that less frequent updating of the channel

coefficients is a feasible option for controlling the com-

putational complexity of the digital canceller.

5.2 Execution time analysis

In this section, the execution times related to the dif-

ferent building blocks of the SI digital canceller running

on four different platforms, introduced in Section 4.2,

are reported. A key factor in using OpenCL and mul-

ticore platforms with single instruction, multiple data

(SIMD) or single program, multiple data (SPMD) op-

timized hardware is being able to take advantage of

the available data parallelism. High performance can

be achieved when parallel elements of the processor

are utilized efficiently and the work load is distributed

properly between these elements. We add to the in-

herent parallelism of the algorithms by increasing the

amount of data processed in each kernel call. As a re-

sult, the processing time for each signal sample is de-

creased. Furthermore, vector lengths and workload dis-

tribution are adjusted for each implemented block on

each platform so that kernel executions are carried out

more efficiently.

The execution times for each digital canceller block

implemented on the four platforms are presented in Ta-

bles 1 - 4. It should be noted that the reported times do

not include data transfer, as SoC design can be easily

made so that the processing unit sees the same memory

as the radio hardware. The tables show the result us-

ing different buffer sizes for both linear and third order

cancellers.

As the buffer lengths increase, the processing time

related to one data sample decreases. In many cases,

the processing time is approximately reduced by a fac-

tor of two, when the buffer size is doubled. This is the

case for the “orthogonalization” and “weight update”

kernels. However, the two filtering kernels, “polyphase”

and “LMS”, achieve lower speed-up due to their inher-

ent lack of parallelism, stemming from the summation

step of convolution in the filters. The size of the buffers

fed to the first block are chosen as powers-of-two mul-

tiplied by D = 10, which is the downsampling factor.

Moreover, the “basis functions” kernel’s execution

speed does not scale linearly with the buffer size. This

can be explained by the input buffer size of this ker-

nel which is ten times bigger than that of the “or-

thogonalization” and “weight update” kernels, which

are executed after downsampling. This larger amount

of data could saturate the available parallel resources

of the cores, resulting in a slower speed-up. The effect

of increasing the buffer size on the overall achieved per-

formance is illustrated in Fig. 6. With longer buffers,

the production rate improves less as the processing re-

sources reach saturation.

The presented results show that Mali and A15 are

only capable of processing the signal at rates lower than
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Table 1 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on Adreno
430 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 1,89 - 1,50 - 1,37 - 1,21
Polyphase 23 44,10 16 30,5 13,75 26,50 12,21 22,75
Orthogonalization 11 18 5,50 11,50 2,75 5,75 2,25 4,75
LMS filter 23 32,76 17 23,28 14,25 20,05 12,75 18,32
Weight update 11 11 5,50 5,50 2,75 2,85 1,38 1,27

Total [ns] 68 107,75 44 72,28 33,50 56,52 28,59 48,30
Rate [MHz] 14,71 9,29 22,73 13,84 29,85 17,69 34,98 20,70

Table 2 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on Cortex
A15 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 34,76 - 17,96 - 10,25 - 5,85
Polyphase 312,50 622,50 207,03 411,52 122,07 242,49 77,63 152,94
Orthogonalization 320,31 328,12 164,02 164,06 82,03 84,96 44,92 45,41
LMS filter 398,43 476,56 222,65 306,64 134,76 214,84 92,77 167,96
Weight update 265,62 242,18 142,57 125 83 81,05 42,96 40,52

Total [ns] 1296,8 1704,1 736,27 1025,2 421,86 633,59 258,28 412,68
Rate [MHz] 0,77 0,59 1,36 0,97 2,37 1,57 3,87 2,41
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Fig. 6 Sample production rate increase with regards to
buffer size on the four platforms for both linear and third
order cancellers.

15 MHz, even with large input data buffers. However,

linear digital cancellation can be carried out on the

Adreno 430 GPU and the Core-i7 CPU at rates over

20 MHz, having buffer sizes of 5120 samples. Further-

more, the Core-i7 and the Adreno 430 can perform third

order digital cancellation for a 20 MHz waveform with

buffer size of 5120, and 20480 samples, respectively.

Comparing the linear and third order cancellers in

Tables 1 - 4, it can be seen that the polyphase filtering

in the third order canceller takes approximately twice

as much time as in the linear one. This is due to the

fact that in case of a third order canceller, two filtering

kernels are employed for both the linear and third or-

der basis functions. The calculation of third order basis

functions, carried out by the “basis functions” kernel is

redundant in the linear canceller. The rest of the imple-

mented blocks require equal or slightly more time for

the third order canceller, as they only differ in a few

multiplications and/or additions.

5.3 Delay analysis

As discussed previously, to add to the available par-

allelism of the algorithm and utilize the parallel re-

sources of the processors more efficiently, we increase

the amount of data processed in each kernel, having

longer input buffers. The disadvantage of this approach

are longer delays for the system as larger blocks of data

must be processed in each kernel call. The overall de-

lays related to different buffer sizes for each platform
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Table 3 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on
Mali-T628 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 3,41 - 2,49 - 2,21 - 2,02
Polyphase 46,14 90,11 39,66 77,68 36,08 71,09 33,2 64,85
Orthogonalization 19,33 40,97 10,36 21,62 5,43 12,31 2,46 6,7
LMS filter 65,79 87,16 44,52 72,32 37,83 55,51 28,48 50,41
Weight update 30,51 25,19 16,08 16,84 6,15 8,44 3,43 4,54

Total [ns] 161,77 246,84 110,62 190,95 85,49 149,56 67,57 128,52
Rate [MHz] 6,18 4,05 9,04 5,23 11,70 6,68 14,80 7,78

Table 4 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on Core
i7 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 1,92 - 0,66 - 0,55 - 0,48
Polyphase 20,78 39,86 12,02 22,34 9,64 17,97 6,12 11,38
Orthogonalization 5,93 7,42 3,71 4,45 2,22 2,59 1,29 2,22
LMS filter 23,75 22,26 12 12,90 9,64 10,02 6,30 6,49
Weight update 5,93 7,42 3,71 3,71 1,85 1,85 0,92 0,92

Total [ns] 56,39 78,88 31,44 44,06 23,35 32,98 14,63 21,49
Rate [MHz] 17,73 12,67 31,80 22,69 42,82 30,32 68,35 46,53

are listed in Table 5. This delay is calculated as:

overall delay = Tbasisfunctions × buffer size

+ Tpolyphase ×
buffer size

D

+ Torthogonalization ×
buffer size

D

+ TLMS filter ×
buffer size

D

+ Tweight update ×
buffer size

D
,

(12)

where Tkernel is the processing time for one signal sam-

ple of “kernel”, and D is the downsampling factor.

The calculated overall delay is equal to 25, 6 µs for

a third order SI canceller implemented on Core i7 and

70, 5 µs on Adreno 430 with input buffer sizes of 5120

and 10240, respectively. These delays can be consid-

ered more than reasonable, when compared, e.g., to

the inherent receiver processing latency of LTE user

equipment (UE) which is, in minimum, 1 ms due to

the downlink reference symbol structure as well as the

adopted codeword mapping and interleaving process-

ing. Furthermore, the specifications [11] allow an ad-

ditional processing time of 3 ms for sending downlink

hybrid ARQ (HARQ) acknowledgement within uplink

L1/L2 control signaling. Thus, a balance can be achieved

in the delay and sample production rate trade-off for a

real application.

5.4 Power consumption analysis

Power measurement is not possible on Adreno 430 and

Core i7, as no tools are provided for this purpose on the

employed platforms. However, the Odroid XU3 board is

equipped with sensors which allow measuring the power

consumed by the Mali GPU, the DRAM, and both A7

and A15 CPUs. It is possible to probe the sensor data

at discrete time instances. Thus, to provide a more reli-

able power consumption estimate, we take 200 samples

of the sensor data in intervals of 100 ms. As the kernels

are very small, they should be repeatedly run during

this 20s interval. This keeps the processor cores occu-

pied by the intended kernel. Then, the data from the

sensors is averaged over the 20s period. However, any

program running in the background, such as the oper-

ating system could partly account for the CPU/GPU

power consumption. Thus, the processors idle power,

i.e., power consumption while not running any kernels,

are computed and subtracted from the measured re-

sults.

Fig. 7 shows the average power measured when run-

ning the kernels for processing 5120 signal samples,

as the consumed power by the GPU and CPU does

not change significantly with different buffer lengths.

It can be seen that there is very little or no difference

in power consumption between the linear and third or-
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Table 5 Overall delay in microseconds for different buffer lengths on all four platforms.

Buffer length 2560 5120 10240 20480

Nonlinearity order P=1 P=3 P=1 P=3 P=1 P=3 P=1 P=3

Mali 41,41 71,04 56,63 109,24 87,54176 173,51 42,08 300,44
A15 331,99 516,34 376,97 607,65 431,9846 743,26 42,08 952,07
i7 14,43 24,61 16,09 25,6 23,9104 38,83 42,08 52,85
Adreno 17,40 31,93 22,52 43,91 34,304 70,50 59,38 121,22
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Fig. 7 Consumed power by Mali and A15 running the lin-
ear and third order digital canceller kernels with input buffer
length of 5120.

der canceller. As basis functions calculation is not re-

quired in the linear cases, only the measurements from

the third order canceller are visible in the figure. The

bars labelled as “total” correspond to the average power

measured when running the complete digital canceller

chain, which is slightly higher than the average power

of all implemented blocks.

Comparing the results from the two processing plat-

forms, it can be seen that A15 uses approximately 20

times more power compared to Mali when executing
the same kernels. This can be explained by the higher

clock frequency of the CPU (1.4 GHz compared to 600

MHZ), as well as the extra hardware on the CPU chip

dedicated to the more general purpose computing. In-

creasing parallelism saves power by reducing the clock

frequency for the same throughput. This reduces the

switching activity, and more importantly the voltage

which has quadratic effects to the power[1].

Mali consumes roughly an average of 104 mW run-

ning the third order digital canceller blocks with input

buffer of 5120 samples. This can be considered negligi-

ble compared to the power consumption of e.g., an LTE

receiver, which according to [19] is close to a couple of

watts.

5.5 Energy consumption analysis

To better evaluate the feasibility of the proposed so-

lution, it is also important to investigate the energy
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Fig. 8 Consumed energy by Mali and A15 running the lin-
ear and third order digital canceller kernels with input buffer
length of 5120.

consumption of the implemented canceller. Since bat-

tery life depends on energy consumption, it is especially

critical in hand-held devices. Furthermore, energy con-

sumption comparison leads to fairer analysis compared

to power, as we normalize the execution time.

We have used the measured average powers and the

delays when processing 5120 samples for each kernel,

and calculated the energy consumption. The results are

shown in Fig 8, in which the missing bars correspond

to linear cases, where basis function calculation is re-

dundant. As delay increases with longer buffers and

power consumption remains the same, it can be con-

cluded that energy consumption increases with longer

buffers.

Using higher power and slower execution of tasks

has resulted in higher energy consumption by A15 com-

pared to Mali. Total energy used by the third order can-

celler, implemented on Mali, and processing 5120 signal

samples is approximately 9 µJ.

6 Conclusion

In this paper, we proposed a software-based implemen-

tation of a nonlinear digital SI canceller for full-duplex

transceivers, using an adaptive cancellation algorithm,

suitable for mobile-scale devices. To demonstrate the

feasibility of a real-time SDR implementation, general-

purpose low cost COTS processing platforms were se-

lected, reducing the design time and costs compared
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to custom hardware design. The implementation was

carried out on multicore processors and software tai-

loring was done using OpenCL to achieve high perfor-

mance. The ability of the designed canceller to suffi-

ciently suppress the SI signal was shown using the data

from a real full-duplex RF test-bench. Then the imple-

mentation was evaluated in terms of execution time, de-

lay, power, and energy consumption to investigate the

feasibility of a real-time digital canceller suitable for

hand-held devices. The results showed that the Qual-

comm Adreno 430, a mobile-scale GPU, and the Intel

Core i7, a desktop CPU, can run the proposed digi-

tal canceller with the required sample rate for, e.g., a

20 MHz LTE band. However, there is a trade-off be-

tween the achievable SI cancellation rate and the sys-

tem delay, as longer data buffers are required for high

sample production rates. The results also showed that,

although the delay is shorter with a real-time linear SI

canceller, it converges much slower and may not reach

sufficient SI cancellation levels. As a proof of suitability

to mobile platforms, also power and energy consump-

tion of the implemented digital canceller were measured

on Exynos 5422 SoC, and the Mali-T628 GPU showed

more promising results compared to the Cortex-A15 for

a mobile-scale device. It can be concluded that a real-

time programmable implementation of a nonlinear dig-

ital canceller can be realized using the Adreno GPU,

on the user equipment side, and the Core i7 CPU on

the base station side. In the continuation of this work,

we aim at adopting a platform which would allow di-

viding the workload between the CPU and one or more

GPUs, and as a result achieving higher sample produc-

tion rates with shorter delays. Furthermore, another in-

teresting topic for future work is to use OpenCL to pro-

gram an FPGA for digital SI cancellation and compare

performance results of GPU and multicore processors

in terms of time, power, and energy consumption.
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