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Abstract—In this paper, we maximize the energy effi-
ciency (EE) of full-duplex (FD) two-way relay (TWR) sys-
tems under non-ideal power amplifiers (PAs) and non-negligible
transmission-dependent circuit power. We start with the case
where only the relay operates full duplex and two timeslots
are required for TWR. Then, we extend to the advanced case,
where the relay and the two nodes all operate full duplex, and
accomplish TWR in a single timeslot. In both cases, we establish
the intrinsic connections between the optimal transmit powers
and durations, based on which the original non-convex EE max-
imization can be convexified and optimally solved. Simulations
show the superiority of FD-TWR in terms of EE, especially
when traffic demand is high. The simulations also reveal that the
maximum EE of FD-TWR is more sensitive to the PA efficiency,
than it is to self-cancellation. The full FD design of FD-TWR is
susceptible to traffic imbalance, while the design with only the
relay operating in the FD mode exhibits strong tolerance.

Index Terms—Energy efficiency, full-duplex, non-ideal power
amplifier, non-negligible circuit power, two-way relay.

I. INTRODUCTION

Full duplex (FD) has recently been extensively studied due
to significant advance on self-cancellation techniques [1]–[6].
The self-interference from the transmit antenna(s) of a node
to the receive antenna(s) of the same node can be suppressed
by means of passive suppression (PS) such as antenna sep-
aration [1]–[3], and active cancellation (AC) such as radio-
frequency circuit designs and digital signal processing [2]–[5].
By collectively using these techniques, a self-cancellation of
80 dB, comprising 40 dB from PS and 40 dB from AC, has
been recorded [2], [3].

Two-way relay (TWR) has also drawn extensive recent
interest, where advanced digital signal processing has been
developed to minimize the number of timeslots required for
two mutually hidden nodes to exchange data via a shared
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half-duplex (HD) relay [7], [8]. Physical-layer network cod-
ing (PNC) has been proposed to achieve the minimum num-
ber of two slots under HD settings [8]. TWR also has the
advantage of improving energy efficiency (EE), as extensively
studied in [9]–[12].

There is an opportunity to join the advantages of FD
and TWR, referred to as FD-TWR, to improve the spectral
efficiency (SE) and EE of TWR. Practical conditions need to
be taken into account, such as limited power supply in mobile
nodes, non-ideal power amplifier (PA) and non-negligible cir-
cuit power consumption. To this end, the maximization of EE
is of practical interest, especially when the relay and hidden
nodes are mobile nodes and do not have persistent power
supply. Despite the EE maximization has been extensively
studied in HD relay-assisted wireless networks [9]–[12], few
works have been carried out on HD-TWR under non-ideal PA
and non-negligible circuit power, not to mention FD-TWR.
To the best of our knowledge, the collective impact of non-
ideal PAs, non-negligible circuit power, and self-interference
on FD-TWR has not been studied heretofore.

In most cases, the non-ideal PAs and non-negligible circuit
power are non-linear to the transmit power. Under prevailing
PA models, such as traditional PA (TPA) [13], the PA power is
non-linear to the transmit power. In contrast, the non-negligible
circuit power is non-linear and non-convex, since it is typically
linear to the data rate which takes the logarithm of the transmit
power. The non-ideal PAs and non-negligible circuit power
necessitate new optimization variables, i.e., transmit durations,
apart from the transmit powers. Particularly, if the nodes
transmit excessively long, the circuit energy consumption on
reception would increase. If the nodes transmit too short, the
transmit powers would become excessively high, while the
standby energy of the circuits would grow. The EE would
degrade in either of these cases.

In this paper, the EE of FD-TWR is maximized under non-
ideal PAs and non-negligible rate-dependent circuit power. We
start with the case where only the relay is FD enabled and
can transmit to one of two end nodes while receiving from the
other. Two timeslots are required for TWR (the case is referred
to as FD-TWR-2TS). The EE maximization is formulated
with intractable non-convex constraints resulting from self-
interference at the FD relay. The necessary conditions of
the optimal solution are derived to convert the original non-
convex problem to a convex problem with respect to (w.r.t) the
transmit durations. We further extend the necessary conditions
to the advanced FD-TWR design, referred to as FD-TWR-
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1TS, where the relay and the two end nodes all operate in
the FD mode, and exploit PNC to accomplish TWR within
a single timeslot. The EE maximization of FD-TWR-1TS
is also proved to be non-convex. The necessary conditions
facilitate convexifying this problem while preserving opti-
mality. Corroborated by extensive simulations, the convex
reformulation of both FD-TWR-2TS and FD-TWR-1TS can
be readily implemented using standard CVX tools.

The contributions of this paper are summarized as follows.
• The necessary conditions of the most energy efficient

schedule for FD-TWR, which are key to convexify the
problem and preserve optimality;

• Convexification of the EE maximization for FD-TWR
under non-ideal PAs and non-negligible circuit powers,
which enables efficient solvers to solve the problem with
guaranteed convergence and optimality;

• Important findings: (a) the EE of FD-TWR is more sensi-
tive to the PA efficiency, than it is to self-cancellation; (b)
FD-TWR-1TS is susceptible to traffic imbalance, while
FD-TWR-2TS exhibits strong tolerance; (c) FD-TWR is
superior to HD-TWR in terms of EE in the case of high
data rate demand.

The rest of the paper is organized as follows. Section II
surveys the related works. Section III presents the system
model. The EE maximization problems of FD-TWR-2TS and
FD-TWR-1TS are formulated and solved in Sections IV and V,
respectively. Simulation results are provided in Section VI,
followed by a conclusion in Section VII.

II. RELATED WORK

Earlier works [9]–[12] maximized the EE of HD-TWR
under the assumption of ideal PA model and negligible circuit
power. PAs are typically non-ideal with the PA efficiency
changing with the transmit power, and the circuit powers
(i.e., baseband processing, radio-frequency (RF) generation
and the circuit standby power etc.) are non-negligible, ranging
from tens to hundreds of milliWatts [14], [15]. In [16], under
the assumption of ideal PA, non-negligible circuit power
consumption was considered when the EE of amplify-and-
forward (AF) HD-TWR was maximized. The EE was quasi-
concave over the transmit power, and maximized by using
the Dinkelbachs method. In [17], the aggregated utility of
EE and proportional fairness were maximized for OFDMA-
based HD-TWR where the circuit power in active sub-channels
was evaluated for energy consumption. In [18], the EE maxi-
mization of two timeslots decode-and-forward (DF) HD-TWR
was formulated under the non-ideal TPA model and solved
using a standard CVX toolbox. In [15], the EE maximization
was generalized under a variety of non-ideal PA models and
HD-TWR strategies (e.g., two and three timeslots TWR). The
generalized problems were converted to problems with convex
structures in the vicinities of the optimum, and solved with
guaranteed optimality.

Only a handful of works have been on focused the EE
maximization of FD-TWR, typically under the assumptions
of ideal PAs and/or constant/transmission-independent circuit
power. In [19], a non-convex problem was cast to maximize
the EE of AF FD-TWR given a SE requirement. A suboptimal
solution was developed, comprising two alternating steps.

In [20], four typical power-scaling schemes were proposed
to improve the EE of multi-pair AF FD-TWR with a massive
antenna array at the relay. With the number of antennas going
to infinity, the asymptotic SE and EE were derived. In [21],
a new Lattice code with structured binning was designed for
FD-TWR, where the relay only quantizes RF combined signals
of the end nodes by a constellation lattice and forwards the
quantized signals. The end nodes can recover their desired
signals, exploiting the meticulously designed binning.

Most existing works on the EE of FD have been on one-way
relaying, typically under the assumption of ideal PAs and/or
constant circuit power consumption. In [22], the closed-form
expressions for the achievable ergodic rates were derived for
dual-hop FD massive MIMO AF systems. In [23], discrete
stochastic optimization and the Dinkelbach method were taken
in an alternating manner to maximize the EE of a multi-cell
OFDMA network with shared FD relays in coverage overlap-
ping areas. In [24], a selective DF protocol was proposed to
select FD nodes for cooperative relay, given a required outage
threshold. In [2], a comparison study was conducted on the EE
of FD and HD dual-hop AF systems. Opportunistic relaying
mode selection in coupling with transmission power adaptation
was developed to maximize the EE. In [25], HD relay was
shown to outperform FD relay in terms of throughput under
a DF mode at a cost of the increased relay buffer. However,
this conclusion is inapplicable to advanced PNC, such as the
Lattice code (as considered in this paper), where signals are
only decoded at the destination. The relay just quantizes and
forwards the signals. The requirement of the relay buffer is
constant, depending on the quantization delay.

In different yet relevant contexts, the impact of non-ideal
PAs or non-negligible circuit power was evaluated in other
communication systems. In [13], the EE-delay tradeoff of a
proportional-fair downlink cellular system was studied under
non-ideal PAs. In [26], the power allocation was optimized
to maximize a bits-per-Joule EE in the conventional single-
hop frequency-selective channels under the assumption of non-
negligible constant circuit power. In [27], a string tautening
algorithm was proposed to produce the most energy-efficient
schedule for delay-limited traffic, first under the assumption of
negligible circuit power, and then extended to non-negligible
constant circuit powers [28] and energy-harvesting commu-
nications [29]. In [30], the rate region of a FD OFDM link
was maximized under non-ideal transceivers by modelling the
self-interference as an additive error vector magnitude (EVM)
noise which was decomposed into the equivalent noises at the
two ends of the FD link. The equivalent SINRs of the two link
directions were separately formulated and jointly maximized
by taking the sub-gradient method. However, the results of
these works are not applicable to FD-TWR, due to distinctive
system architectures.

III. SYSTEM MODEL

Consider an in-band FD-TWR point-to-point wireless net-
work [31], [32], where there are two end nodes, termed A and
B, and a relay node, termed R, indicated by the subscripts “a”,
“b” and “r”, respectively. Node R lies between nodes A and B.
All the nodes are equipped with directional antennas. Nodes
A and B do not have a direct link, and need to exchange
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traffic through node R at the same frequency [19], [20].
This scenario is typical in practice, since the three nodes are
unaligned in many cases and the directivity of the directional
antennas prevents nodes A and B from having a direct link.
In many other cases, nodes A and B are too far away and
beyond reach. The three nodes can operate in different modes,
depending on the FD-TWR strategies specified shortly. The
system bandwidth is W . Flat-fading channels are assumed
with complex channel coefficients hi,j (i, j ∈ {a, b, r}) from
node i to j. Particularly, hi,i is the complex channel coefficient
of the self-interference channel at node i, from the transmit
antenna of the node to its own receive antenna. The additive
white Gaussian noise (AWGN) has zero mean and variance
σ2
j , denoted by nj ∼ CN (0, σ2

j ).

A. Full-Duplex and Self-interference Cancellation

Under the FD mode, the self-interference can be partly
suppressed by PS and/or AC. Generally, PS, on its own, can
account for over 40 dB reduction of self-interference. Working
together with AC, it can suppress up to 80 dB. The joint use of
PS and AC is referred to as PSAC [1]. We denote the ratio of
the self-interference before and after self-cancellation as αPS
and αPSAC under PS and PSAC, respectively.

The residual self-interference, after self-cancellation, is
typically modeled as a zero-mean Gaussian random vari-
able [33], [34]. The residual self-interference at node i is
ei =

√
Pih̃i,ixi, where h̃i,i is the residual interference

channel coefficient after self-cancellation at node i, and xi
(E{|xi|2} = 1) is the transmit signal of the node. The variance

of the residual self-interference is Pi
∣∣∣h̃i,i∣∣∣2, where

∣∣∣h̃i,i∣∣∣2 is
dependent on the specific cancellation method implemented at
node i, e.g., PS or PSAC [35].

B. Practical Energy Consumption

The efficiency of a PA is defined to be the ratio between
the desired average transmit power and the actual power
consumed at the PA. In practice, PAs are non-ideal, and the PA
efficiency changes (in many cases, nonlinearly) along with the
output transmit power. The representative models of non-ideal
PA are TPA and envelope-tracking PA (ETPA). The energy
consumptions of TPA and ETPA are given by [13]

ΨTPA(Pi) ≈
√
PiPMAX,i

ηMAX,i
, i ∈ {a, r, b}, (1)

ΨETPA(Pi) ≈
Pi + uPMAX,i

(1 + u)ηMAX,i
, i ∈ {a, r, b}, (2)

where Pi is the mean output transmit power of node i,
PMAX,i and ηMAX,i are the maximum PA output power
and the maximum PA efficiency of node i, respectively, and
u ≈ 0.0082 is a PA dependent parameter for ETPA [13].

Let Pmax,i denote the maximum average transmit power
of node i, which is important to the calculation of energy
consumption. Typically, Pmax,i is around 7 ∼ 8 dB lower
than PMAX,i, since the peak-to-average-power ratio (PAPR),
defined by κi = PMAX,i/Pmax,i, is around 7 ∼ 8 dB in
modern communication systems. Also let ηmax,i denote the

t2 t2

Node A Node R Node B

(a) HD-TWR-2TS with PNC.

t2 t2

Node A Node R Node B

(b) FD-TWR-2TS with FD transmission.

t1 t1

Node A Node R Node B

(c) FD-TWR-1TS with FD transmission and PNC.

Fig. 1. Illustration of the three transmission strategies.

PA efficiency associated with Pmax,i. We can rewrite (1) and
(2), w.r.t. Pmax,i, as

ΨTPA(Pi) ≈
√
PiPmax,i

ηmax,i
, i ∈ {a, r, b}, (3)

ΨETPA(Pi) ≈
Pi + uκiPmax,i

(1 + uκi)ηmax,i
, i ∈ {a, r, b}, (4)

where, in the case of TPA, ηmax,i = ηMAX,i/
√
κi is derived

by setting the right-hand sides (RHSs) of (1) and (3) equal
and solving the equation for ηmax,i; in the case of ETPA,
ηmax,i = 1+u

1+uκi
ηMAX,i is derived by setting the RHSs of (2)

and (4) equal and solving the equation for ηmax,i. Clearly, the
ideal PA is a special case of ETPA by letting u = 0.

The practical circuit power is also non-negligible and
transmission-dependent. It can be decomposed into a static
component Pbase,i, which drives hardware; and a dynamic
component Pc,i, which accounts for analog and digital signal
processing. Pc,i = εR depends on the transmit (receive) data
rate R, where the coefficient ε is the power consumption per
unit data rate [36]. As such, the total transmit circuit power
can be written as

Ptx,i = Ψ[Pi(R)] + εR+ Pbase,i, i ∈ {a, r, b}. (5)

The total receive circuit power can be written as

Prx,i = εR+ Pbase,i, i ∈ {a, r, b}. (6)

The power consumption of a node being in the idle mode
(neither transmitting or receiving) is set to be constant, denoted
by Pidle,i, due to its independence of Pi.

C. TWR Transmission Strategies

Two strategies of FD-TWR are considered, namely, FD-
TWR-1TS and FD-TWR-2TS, as shown in Fig. 1. FD-TWR-
2TS is relatively basic, where only the node R is enabled with
FD, and nodes A and B operate in the HD mode. As a result,
two timeslots are required to complete TWR. FD-TWR-1TS
is much advanced, where not only node R, but nodes A and
B are also FD enabled. As a result, only a single timeslot is
required to accomplish TWR.
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Consider a fixed time frame of T seconds, within which a
round of TWR is accomplished. Let tk (k ∈ {1} in FD-TWR-
1TS, and k ∈ {1, 2} for FD-TWR-2TS) define the duration
of the k-th timeslot within T , as shown in Fig. 1, where∑
∀k tk ≤ T . The nodes switch to an idle mode after

∑
∀k tk

till the end of the frame.
For ease of understanding, we start with FD-TWR-2TS, then

move to FD-TWR-1TS.
1) FD-TWR-2TS: In this case, two timeslots are required.

Nodes A and B, each equipped with a single antenna, transmit
and receive in an alternating manner in the two timeslots, using
the HD mode. Node R, equipped with two antennas (one for
transmission and one for reception), transmits and receives
simultaneously in each timeslot using FD. Specifically, in the
first of the two timeslots, node A transmits data (xa) to the
node R which receives and immediately forwards the data (xar )
to node B; and the other way around (xb and xbr) in the second
timeslot. The DF mode is used in FD-TWR-2TS. There can
be a one-frame delay from node R receiving the signals till
node R forwarding the signals, but this pipeline delay does
not compromise the system capacity.

With the self-interference (partly) cancelled, the signal
received at node R in the first timeslot can be given by

yr =
√
Paha,rxa +

√
Pr,bh̃r,rx

a
r + nr. (7)

The signal received at node B in the first timeslot can be given
by

yb =
√
Pr,bhr,bx

a
r + nb. (8)

Likewise, the signals received at nodes R and A in the second
timeslot can be given respectively by

yr =
√
Pbhb,rxb +

√
Pr,ah̃r,rx

b
r + nr, (9)

ya =
√
Pr,ahr,ax

b
r + na, (10)

where h̃r,r =
√

1/αhr,r, E
{
|xa|2

}
= 1, E

{
|xb|2

}
= 1,

E
{
|xar |

2
}

= 1, and E
{∣∣xbr∣∣2} = 1.

As discussed in Section III-A, the residual self-interference
at node R, eir =

√
Pr,j h̃r,rx

i
r, yields CN (0, Pr,j |h̃r,r|2),

where i ∈ {a, b} and j ∈ {b, a}. This is because the
transmit and receive antennas of a FD node are typically
isolated, or carefully calibrated to eliminate the line-of-sight
(LOS). Moreover, AC can whiten self-interference during
signal processing [33], [34]. As a result, the channel between
the transmitter and the receiver at a node typically follows the
Rayleigh fading [5]. The channel capacities Ca,r and Cr,b in
the forward link direction in the first timeslot satisfy

Ca,r =
t1
T
W log2(1 +

Pa|ha,r|2

Pr,b

∣∣∣h̃r,r∣∣∣2 + σ2
r

), (11)

Cr,b =
t1
T
W log2(1 +

Pr,b|hr,b|2

σ2
b

). (12)

Likewise, the capacities Cb,r and Cr,a in the reverse link in
the second timeslot satisfy

Cb,r =
t2
T
W log2(1 +

Pb|hb,r|2

Pr,a

∣∣∣h̃r,r∣∣∣2 + σ2
r

), (13)

Cr,a =
t2
T
W log2(1 +

Pr,a|hr,a|2

σ2
a

). (14)

Finally, the actual achievable data rate in each of the two
link directions can be given by

Ca,b = min {Ca,r, Cr,b} , Cb,a = min {Cb,r, Cr,a} . (15)

2) FD-TWR-1TS: In this case, only a single timeslot is
required, as mentioned earlier. The three nodes, each equipped
with a transmit antenna and a receive antenna, operate in the
FD mode during the timeslot. Nodes A and B transmit xa and
xb to node R, respectively, meanwhile node R transmits xr to
the nodes A and B. Additionally, PNC is adopted to generate
xr as a function of xa and xb [10], [18], [34].

The received signals at the three nodes can be given by

yr =
√
Paha,rxa +

√
Pbhb,rxb +

√
Prh̃r,rxr + nr, (16)

ya =
√
Prhr,axr +

√
Pah̃a,axa + na, (17)

yb =
√
Prhr,bxr +

√
Pbh̃b,bxb + nb, (18)

where E {xi} = 0; E
{
|xi|2

}
= 1 (i ∈ {a, b, r});

√
Pih̃i,ixi

is the residual self-interference at node i ∈ {a, b, r}; and ei =
√
Pih̃i,ixi yields CN (0, Pi

∣∣∣h̃i,i∣∣∣2).
We consider nested lattice code and structured binning,

as defined by three n-dimensional lattices ΛnC , Λn1 and Λn2 .
Assume Λn1 ⊆ Λn2 ⊆ ΛnC . ΛnC is used as codewords, and
the Voronoi regions of Λn1 and Λn2 are the shaping regions of
nodes A and B. Node R also uses Λn1 as its shaping region.
Rather than recovering the exact signals of nodes A and B,
node R recovers a structured binned version of the signals
combined, by evaluating its Euclidean distance to the code-
words [21], exploiting maximum-likelihood estimation [37],
[38], or minimum mean square error (MMSE) [39]. On the
receipt of the binned signals, nodes A and B can recover the
desired signal from each other by canceling the instantaneous
self-interference and subtracting their own signals from the
binned signals [21].

There can be a one-frame delay from node R receiving the
signals till it forwarding the binned version of the signals. In
other words, the instantaneous self-interference is independent
of the signals that nodes A and B subtract from their received
binned signals, as described in [21]. Such a delay is a
pipeline delay, and does not compromise the throughput or
EE of the network under stable channel conditions. This paper
focuses on the allocation of temporal and energy resources to
maximize the EE in FD-TWR systems using nested lattice
coding. Designing nested lattice codes is beyond the scope of
the paper.

Considering the nested lattice coding with structured bin-
ning [21], the channel capacities from nodes A and B to node
R can be given by

Ca,r=
t1
T
W log2(

Pa|ha,r|2

Pa|ha,r|2+Pb|hb,r|2
+

Pa|ha,r|2

Pr

∣∣∣h̃r,r∣∣∣2+σ2
r

), (19)

Cb,r=
t1
T
W log2(

Pb|hb,r|2

Pa|ha,r|2+Pb|hb,r|2
+

Pb|hb,r|2

Pr

∣∣∣h̃r,r∣∣∣2+σ2
r

). (20)
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The data rates from node R to nodes A and B can be
respectively given by

Cr,a =
t1
T
W log2(1 +

Pr|hr,a|2

Pa

∣∣∣h̃a,a∣∣∣2 + σ2
a

), (21)

Cr,b =
t1
T
W log2(1 +

Pr|hr,b|2

Pb

∣∣∣h̃b,b∣∣∣2 + σ2
b

), (22)

where
(
Pi

∣∣∣h̃i,i∣∣∣2 + σ2
i

)
is the variance of (ei + ni), due to

the fact that ei and ni are independent.
Substituting (19)-(22) into (15), we can finally obtain the

achievable data rate in both link directions.

IV. EE MAXIMIZATION OF FD-TWR-2TS

In this section, we maximize the EE of FD-TWR-2TS, given
the data rate requirements Rrl and Rfl, under non-ideal PAs
and non-negligible circuit power. Here, Rrl and Rfl are the
data rate requirements in the reverse link (i.e., from node B
to node A) and the forward link (i.e., from node A to node
B), respectively.

The EE is defined as the ratio between the average total
data rate in both link directions and the average total power
consumed by the nodes [26], as given by

ηE =
Rrl +Rfl
Etotal/T

=
(Rrl +Rfl)T

Etotal
, (23)

where the second equality indicates that the EE is equivalent to
the ratio between the number of bits to be transmitted (in both
directions) within T and the total energy required to transmit
the bits, denoted by Etotal. To this end, given the number of
bits to be sent within T , i.e., (Rrl + Rfl)T , maximizing ηE
is equivalent to minimizing Etotal.

Minimizing Etotal facilitates maximizing the EE, under
non-negligible circuit power. The reason is that, under non-
negligible circuit power, maximizing the EE may require the
nodes to transmit for part of a frame to leverage the non-
negligible signal processing energy and circuit standby energy.
The optimal transmit rate may switch to null during a frame.
The direct maximization of the EE, i.e., directly maximizing
ηE , would be unsuitable, due to such change of the data rate.

Therefore, the EE maximization can be formulated as

min
Pa,Pb,Pr,a,Pr,b,t1,t2

Etotal (P1)

s.t. min {Cb,r, Cr,a} ≥ Rrl, min {Ca,r, Cr,b} ≥ Rfl;

0 ≤ Ψ (Pi) ≤ Pmax,i, i ∈ {a, b, r};

t1 + t2 ≤ T, 0 ≤ t1 ≤ T, 0 ≤ t2 ≤ T,

where the total energy consumption Etotal = (Ptx,a+Ptx,r +
Prx,b+Prx,r)t1+(Ptx,b+Ptx,r+Prx,a+Prx,r)t2+Pidle(T−
t1 − t2) and Pidle = Pidle,a + Pidle,b + Pidle,r.

(P1) is non-convex w.r.t. the transmit powers and durations,
i.e., Pi (i ∈ {a, b, r}) and tj (j ∈ {1, 2}). This is because that
under both TPA and ETPA, the logarithmic data constraint
is non-convex in Pi and tj , due to the non-convexity nature
of logarithm. This leads to a non-convex feasible set for the
EE maximization problem of interest. Further, under TPA, the

objective of (P1) is non-convex, as can be rigorously verified
through the Hessian matrix H, as given by

H=


−Γ1(a)t1 0 0 Γ2(a) 0

0 −Γ1(r)(t1+t2) 0 Γ2(r) Γ2(r)
0 0 −Γ1(b)t2 0 Γ2(b)

Γ2(a) Γ2(r) 0 0 0
0 Γ2(r) Γ2(b) 0 0


where

Γ1(i) =
P 2
max,i

4ηmax,i(PiPmax,i)
2/3

> 0, i ∈ {a, r, b},

Γ2(i) =
Pmax,i

2ηmax,i

√
PiPmax,i

> 0, i ∈ {a, r, b}.

Clearly, H is not positive definite, given negative leading
principal minors, e.g., the first and third leading principal
minors.

To convexify (P1), we can prove that the necessary condi-
tion of the optimal solution for (P1) can be given by

Cb,r = Cr,a = Rrl, Ca,r = Cr,b = Rfl. (24)

The detailed proof is provided in Appendix A.
As a result, the optimal transmit powers, P ∗a , P ∗b , P ∗r,b and

P ∗r,a, can be rewritten as the functions of the optimal transmit
durations, t∗1 and t∗2, as given by

P ∗r,b (t∗1) =
σ2
b

|hr,b|2

(
2
RflT

t∗
1
W − 1

)
; (25)

P ∗r,a (t∗2) =
σ2
a

|hr,a|2

(
2
RrlT

t∗
2
W − 1

)
; (26)

P ∗a (t∗1)=
σ2
r

|ha,r|2

(
2
RflT

t∗
1
W −1

)
+

σ2
b

∣∣∣h̃r,r∣∣∣2
|ha,r|2|hr,b|2

(
2
RflT

t∗
1
W −1

)2

;

(27)

P ∗b (t∗2)=
σ2
r

|hb,r|2

(
2
RrlT

t∗
2
W −1

)
+

σ2
a

∣∣∣h̃r,r∣∣∣2
|hb,r|2|hr,a|2

(
2
RrlT

t∗
2
W −1

)2

.

(28)
Therefore, (P1) can be reformulated to only optimize the

transmit durations, ti (i = 1, 2), as given by

min
t

Etotal = E (t) (29)

s.t. tmin ≤ t;

1T t ≤ T,

where E(·) is the objective function denoting the overall
energy consumption. t is a column vector collecting both
the time durations to be optimized, tmin is a column vector
collecting the minimum value of each time duration tmin,i, and
1 is the all-one column vector. The minimum time durations
are specified by ti ≥ tmin,i, which can be readily calculated.

In the case of FD-TWR-2TS, tmin = [tmin,1, tmin,2]T .
tmin,1 and tmin,2 are obtained by separately setting (25)–(28)
to be no larger than the corresponding maximum transmit
powers, solving the inequalities, and choosing the intersection
of the results.

For notation simplicity, we denote λfl =
RflT
Wt1

and λrl =
RrlT
Wt2

. λfl and λrl are the spectrum efficiency in the forward
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and reverse link directions, respectively. The following theo-
rems dictate that (29) yields a convex structure under non-ideal
PAs and non-negligible circuit power.

Theorem 1: Under TPA, (29) is convex for FD-TWR-2TS.

Proof: The proof starts by substituting (25)–(28) into
the objective function of (P1). The objective function can be
rewritten as

E (t1, t2) =
√
β1,1×2

RflT

t1W +γ1×
(

2
RflT

t1W

)2

+

√
α1,1×2

RflT

t1W

 t1+
√
β1,2×2

RrlT

t2W +γ2×
(

2
RrlT

t2W

)2

+

√
α1,2×2

RrlT

t2W

 t2+

P1,1t1 + P1,2t2 + (Pidle,a + Pidle,b + Pidle,r)T,

α1,1 =
Pmax,rσ

2
b

η2max,r|hr,b|
2 , α1,2 =

Pmax,rσ
2
a

η2max,r|hr,a|
2 ,

β1,1 =
Pmax,aσ

2
r

η2max,a|ha,r|
2 , β1,2 =

Pmax,bσ
2
r

η2max,b|hb,r|
2 ,

γ1 =
Pmax,aσ

2
b

∣∣∣h̃r,r∣∣∣2
η2max,a|ha,r|

2|hr,b|2
, γ2 =

Pmax,bσ
2
a

∣∣∣h̃r,r∣∣∣2
η2max,b|hb,r|

2|hr,a|2
,

where

P1,1=Pbase,a+Pbase,b+2Pbase,r+4εRfl−Pidle,a−Pidle,b−Pidle,r,

P1,2=Pbase,a+Pbase,b+2Pbase,r+4εRrl−Pidle,a−Pidle,b−Pidle,r.

E (t1, t2) is convex, because Hessian matrix is positive
definite, as given by [

A 0
0 B

]

A =
1

4α2
1,1q1

3
2 t1

3W 2
[β2

1,1

√
α1,12λfl+γ12λfl(4p1+α1,1

√
q1)

+ β1,1(6p1+α1,1
√
q1)](α1,12λfl)

3
2R2

flT
2 log(2)2>0,

B =
1

4α2
1,2q2

3
2 t2

3W 2
[β2

1,2

√
α1,22λrl+γ22λrl(4p2+α1,2

√
q2)

+ β1,2(6p2+α1,2
√
q2)](α1,22λrl)

3
2R2

rlT
2 log(2)2>0,

where p1 =
(α1,12

λfl)
3
2 γ1

α1,1
, q1 = 2λfl

(
β1,1 + γ12λfl

)
, p2 =

(α1,22
λrl)

3
2 γ2

α1,2
, q2 = 2λrl

(
β1,2 + γ22λrl

)
Theorem 2: Under ETPA, (29) is convex for FD-TWR-2TS.

Proof: To prove this, we substitute (25)–(28) into the
objective function of (P1). The objective function can be
written as

E (t1, t2) =

{
α2,1

(
2
RflT

t1W − 1

)
+ β2,1

(
2
RflT

t1W − 1

)2
}
t1

+

{
α2,2

(
2
RrlT

t2W − 1

)
+ β2,2

(
2
RrlT

t2W − 1

)2
}
t2

+ P2,1t1 + P2,2t2 + (Pidle,a + Pidle,b + Pidle,r)T,

α2,1 =
σ2
r

(1 + uκa) ηmax,a|ha,r|2
+

σ2
b

(1 + uκr) ηmax,r|hr,b|2
,

α2,2 =
σ2
r

(1 + uκb) ηmax,b|hb,r|2
+

σ2
a

(1 + uκr) ηmax,r|hr,a|2
,

β2,1 =
σ2
b

∣∣∣h̃r,r∣∣∣2
(1 + uκa) ηmax,a|ha,r|2|hr,b|2

,

β2,2 =
σ2
a

∣∣∣h̃r,r∣∣∣2
(1 + uκb) ηmax,b|hb,r|2|hr,a|2

,

where

P2,1 =
uκaPmax,a

(1+uκa) ηmax,a
+

uκrPmax,r

(1+uκr) ηmax,r
+Pbase,a+Pbase,b

+ 2Pbase,r + 4εRfl − Pidle,a − Pidle,b − Pidle,r,

P2,2 =
uκbPmax,b

(1+uκb) ηmax,b
+

uκrPmax,r

(1+uκr) ηmax,r
+Pbase,a+Pbase,b

+ 2Pbase,r + 4εRrl − Pidle,a − Pidle,b − Pidle,r.

Similarly, the Hessian matrix of E (t1, t2) can be proved to
be positive definite. As a result, E (t1, t2) is convex.

V. EE MAXIMIZATION OF FD-TWR-1TS

In this section, we consider FD-TWR-1TS under non-ideal
PAs and non-negligible circuit powers. The EE maximization
of FD-TWR-1TS can be formulated as

min
Pa,Pb,Pr,t1

Etotal (P2)

s.t. min {Cb,r, Cr,a} ≥ Rrl, min {Ca,r, Cr,b} ≥ Rfl;

0 ≤ Ψ(Pi) ≤ Pmax,i, i ∈ {a, b, r};

0 ≤ t1 ≤ T,

where the total energy consumption is Etotal = (Ptx,a +
Ptx,b + Ptx,r + Prx,a + Prx,b + Prx,r)t1 + Pidle(T − t1) and
Pidle = Pidle,a + Pidle,b + Pidle,r.

(P2) is not convex due to the non-convex feasible region
posed by non-convex logarithmic data rate constraints, as well
as the non-linear transmit power constraints as discussed for
FD-TWR-2TS in Section III. As proved in Appendix B, the
necessary conditions of the optimal solution for (P2) can be
given by

Cb,r = Rrl, Ca,r = Rfl; (30)

min {Cr,a −Rrl, Cr,b −Rfl} = 0. (31)
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Fig. 2. Example for the approximate relationship justification where the
simulation parameters can be found in Table I (λ1 = λfl and λ2 = λrl).

We are particularly interested in the asymptotic case where
the data rate requirements are high, i.e., 2λfl +2λrl � 1. This
consideration is reasonable, since FD is typically exploited to
increase data rates. In the case where the data rate require-
ments are not high, this approximation of 2λfl +2λrl � 1 can
also hold to a great extent. This is because the transmit time
of the nodes, i.e., t1, is reduced to decrease circuit energy con-
sumption and increase the EE. As a result, T

t1
increases with

the decrease of Rfl
W and Rrl

W , avoiding significant decreases of
λfl =

Rfl
W

T
t1

and λrl = Rrl
W

T
t1

. This approximation is reliable
over a wide range of Rfl and Rrl, as shown in Fig. 2.

In this case, solving (19), (20) and (30), we can write the
optimal transmit powers, Pa and Pb, as the functions of t1 and
Pr, as given by

Pa (t1) = 2λfl
(2λfl + 2λrl − 1)(Pr(t1)

∣∣∣h̃r,r∣∣∣2 + σ2
r)

(2λfl + 2λrl)|ha,r|2

≈ 2λfl
Pr(t1)

∣∣∣h̃r,r∣∣∣2 + σ2
r

|ha,r|2
, (32)

Pb (t1) = 2λrl
(2λfl + 2λrl − 1)(Pr(t1)

∣∣∣h̃r,r∣∣∣2 + σ2
r)

(2λfl + 2λrl)|hb,r|2

≈ 2λrl
Pr(t1)

∣∣∣h̃r,r∣∣∣2 + σ2
r

|hb,r|2
. (33)

From (31), it can be seen that Pr is the larger of Pr,rl and
Pr,fl, which is the solution for the equality of (31) with (21)
and (22), respectively. Therefore,

Pr (t1) = max{Pr,rl;Pr,fl}. (34)

We proceed with two cases to derive the explicit transmit
powers of all the three nodes, i.e., nodes R, A, and B. First,
Pr(t1) is derived, and then substituted to (32) and (33) for
Pa(t1) and Pb(t1).

CASE I: In the case of Pr,rl ≥ Pr,fl, (21) meets the equality
for the optimal solution. Pr is solved through the equalities of
(21) and (32), as given by

Pr,1 (t1)=Pr,rl≈
2λrl

(
2λfl

∣∣∣h̃a,a∣∣∣2σ2
r+|ha,r|

2
σ2
a

)
|hr,a|2|ha,r|2−2λfl2λrl

∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2 . (35)

Note that the transmit power Pr,1 (t1) ≥ 0 is positive in

practical, thus |hr,a|2|ha,r|2 − 2λfl2λrl
∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2 > 0.

Given the channel data requirements, this imposes minimum
requirement of the self-cancellation level.

Substitute (35) into (32) and (33). We then have

Pa,1 (t1) ≈
2λfl

(
2λrl

∣∣∣h̃r,r∣∣∣2σ2
a + |hr,a|2σ2

r

)
|hr,a|2|ha,r|2 − 2λfl2λrl

∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2 , (36)

Pb,1 (t1) ≈
2λrl |ha,r|2

(
2λrl

∣∣∣h̃r,r∣∣∣2σ2
a + |hr,a|2σ2

r

)
(
|hr,a|2|ha,r|2 − 2λfl2λrl

∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2) |hb,r|2 .
(37)

CASE II: In the case of Pr,rl < Pr,fl, (22) meets the
equality for the optimal solution. Pr is solved through the
equalities of (22) and (33), as given by

Pr,2 (t1)=Pr,fl≈
2λfl

(
2λrl

∣∣∣h̃b,b∣∣∣2σ2
r+|hb,r|

2
σ2
b

)
|hr,b|2|hb,r|2−2λfl2λrl

∣∣∣h̃b,b∣∣∣2∣∣∣h̃r,r∣∣∣2 . (38)

Substitute (38) into (32) and (33). We then have

Pa,2 (t1) ≈
2λfl |hb,r|2

(
2λfl

∣∣∣h̃r,r∣∣∣2σ2
b + |hr,b|2σ2

r

)
(
|hr,b|2|hb,r|2 − 2λfl2λrl

∣∣∣h̃b,b∣∣∣2∣∣∣h̃r,r∣∣∣2) |ha,r|2 ,
(39)

Pb,2 (t1) ≈
2λrl

(
2λfl

∣∣∣h̃r,r∣∣∣2σ2
b + |hr,b|2σ2

r

)
|hr,b|2|hb,r|2 − 2λfl2λrl

∣∣∣h̃b,b∣∣∣2∣∣∣h̃r,r∣∣∣2 . (40)

Now, we can obtain the equivalent optimization problem of
(P2) in the same form as (29), with the objective changed to

E (t1) = max {E1 (t1) , E2 (t1)} , (41)

where E1(t) and E2(t) are the energy consumption in CASE
I and CASE II, respectively.

In the case of FD-TWR-1TS, tmin = tmin,1. tmin,1 can be
obtained by setting (35)–(40) to be no larger than the corre-
sponding maximum transmit powers, solving the inequalities,
and choosing the intersection of the results. Specifically, we
can rearrange the inequalities to be polynomial with all posi-
tive coefficients. Given the monotonicity of such polynomials,
one-dimensional search, such as the bisection method, can be
used to efficiently achieve tmin,1.

Theorem 3: Under TPA, (29) is convex for FD-TWR-1TS
in the case of high data rate demands.
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Proof: In the asymptotic case that 2λfl + 2λrl � 1,
exploiting the TPA model, Ei (t1) can be written as

Ei (t1) =

√
Pmax,a

η2max,a

t1

√
Pa,i (t1) +

√
Pmax,b

η2max,b

t1

√
Pb,i (t1)

+

√
Pmax,r

η2max,r

t1

√
Pr,i (t1) + P3t1 + PidleT,

where i ∈ {1, 2} and P3 = Prx+Pbase+ε(Rfl+2Rrl)−Pidle.
Ei (t1) is the positively weighted sum of t1

√
Pa,i (t1),

t1
√
Pb,i (t1) and t1

√
Pr,i (t1). We proceed to prove that each

of these three components is convex.
CASE I: In the case of Pr,rl ≥ Pr,fl, t1

√
Pa,1 (t1) and

t1
√
Pr,1 (t1) can be confirmed to be strictly convex, since

∂2
(
t1
√
Pa,1 (t1)

)
∂t1

2 > 0 ,
∂2
(
t1
√
Pr,1 (t1)

)
∂t1

2 > 0.

Next, we prove the convexity of t1
√
Pb,1 (t1). To do this,

we can rewrite t1
√
Pb,1 (t1) as

t1

√
Pb,1 (t1) =

t1

√√√√√√√√
2
RrlT

Wt1 |ha,r|2
(

2
RrlT

Wt1

∣∣∣h̃r,r∣∣∣2σ2
a+|hr,a|

2
σ2
r

)
(
|hr,a|2|ha,r|2−2

(Rrl+Rfl)T
Wt1

∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2) |hb,r|2
= d3 × x

√√√√2
1
x

(
1 + a32

1
x

)
1− b32

c3
x

= d3 × fTPA(x),

where x = (Wt1)/(RrlT ) > 0, and for notational simplicity,

a3 =

∣∣∣h̃r,r∣∣∣2σ2
a

|hr,a|2σ2
r

> 0, b3 =

∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2
|hr,a|2|ha,r|2

> 0,

c3 =
(Rrl +Rfl)

Rrl
> 1, d3 =

√
σ2
r

|hb,r|2
RrlT

W
> 0.

To prove the convexity of t1
√
Pb,1 (t1) now becomes to

prove fTPA(x) is convex over x ∈ (0,∞). The second-order
derivative of fTPA(x) can be given by

∂2fTPA (x)

∂x2
= 2−2+

1
x log (2)

2× (42)[
g3 (c3) + 4

1
x a3g1 (c3) + 21+

1
x a3g2 (c3)

]
(

1 + 2
1
x a3

)√√√√ 2
1
x

(
1+a32

1
x

)
1−b32

c3
x

(
1− b32

c3
x

)3
x3

,

where the coefficients are obtained through mathematic ma-
nipulation, as given by

g1 (c3)=4+4
c3
x b3

2(c3−2)
2
+2

c3+x

x b3
(
c3

2+2c3−4
)
,

g2 (c3)=3+4
c3
x b3

2
(
c3

2−3c3+3
)
+2

c3
x b3

(
2c3

2+3c3−6
)
,

g3 (c3)=1+4
c3
x b3

2(c3−1)
2
+2

c3+x

x b3
(
c3

2+c3−1
)
.

We first set c23+2c3−4 > 0, c23−3c3+3 > 0, 2c23+3c3−6 >
0, and c23 + c3 − 1 > 0, and then solve the inequalities. We

see that all the four polynomials are positive for c3 ∈ (
√

5−
1,∞). We prove that the second-order derivative of fTPA(x)
is positive over c3 ∈ (

√
5− 1,∞).

We can also meticulously rewrite g1(c3) and g2(c3) as

g1 (c3) = (c3 − 2)
2×(2

c3
x b3+

c3
2 + 4c3 − 8

2(c3 − 2)
2

)2

−
c3

2
(
c3

2 + 4c3 − 8
)

(c3 − 2)
4

 ,

g2 (c3) =
(
c3

2 − 3c3 + 3
)
×((

2
c3
x b3 +

2c3
2+3c3 − 6

2 (c32 − 3c3 + 3)

)2

−
c3

2
(
4c3

2+12c3−27
)

4(c32 − 3c3 + 3)
2

)
.

A sufficient condition for gi(c3), i ∈ {1, 2, 3}, all being
positive, is that c32 + 4c3 − 8 < 0, 4c3

2 + 12c3 − 27 < 0,
and c3

2 + c3 − 1 > 0. We can solve the inequalities and
obtain the feasible region, c3 ∈ (1, 2

√
3 − 2), given c3 >

1. In other words, the second-order derivative of fTPA(x) is
positive when c3 ∈ (1, 2

√
3− 2).

As a result, we prove ∂2fTPA(x)
∂x2 > 0 over c3 ∈ (1, 2

√
3 −

2)
⋃

(
√

5 − 1,∞) = (1,∞). Therefore, fTPA(x) is con-
vex. In turn, t1

√
Pb,1 (t1) is convex, and so is E1(t1), the

positively weighted sum of t1
√
Pa,1 (t1), t1

√
Pb,1 (t1) and

t1
√
Pr,1 (t1).

CASE II: In the case of Pr,rl < Pr,fl, t1
√
Pb,2 and t1

√
Pr,2

are convex, as proved in CASE I. We rewrite t1
√
Pa,2 as

t1

√
Pa,2 (t1) =

t1

√√√√√√√√
2
RflT

Wt1 |hb,r|2
(

2
RflT

Wt1

∣∣∣h̃r,r∣∣∣2σ2
b+|hr,b|

2
σ2
r

)
(
|hr,b|2|hb,r|2−2

(Rrl+Rfl)T
Wt1

∣∣∣h̃b,b∣∣∣2∣∣∣h̃r,r∣∣∣2) |ha,r|2

=

√
σ2
r

|ha,r|2
RflT

W
y

√√√√√√√
2

1
y

(
1 +
|h̃r,r|2σ2

b

|hr,b|2σ2
r

2
1
y

)
1− 2

(Rrl+Rfl)
Rfly

|h̃b,b|2|h̃r,r|2
|hr,b|2|hb,r|2

,

where y = (Wt1)/(RflT ) > 0 for notational simplicity.
We can see that t1

√
Pa,2(t1) has the same structure as

t1
√
Pb,1(t1). The only difference is the positive coefficients.

To this end, we can evaluate the convexity of t1
√
Pa,2(t1)

in the same way, as we did on t1
√
Pb,1(t1), and prove the

convexity of t1
√
Pa,2(t1). The detailed proof is suppressed

due to limited space.
Given that both E1 (t1) and E2 (t1) are convex, E (t1) =

max {E1 (t1) , E2 (t1)} is convex under the TPA model.

Theorem 4: Under ETPA, (29) is convex for FD-TWR-1TS
in the case of high data rate demands.

Proof: In the asymptotic case that 2λfl + 2λrl � 1,
exploiting the ETPA model, Ei(t1) can be written as

Ei (t1) =
t1Pa,i (t1)

(1 + uκa) ηmax,a
+

t1Pb,i (t1)

(1 + uκb) ηmax,b

+
t1Pr,i (t1)

(1 + uκr) ηmax,r
+ P4t1 + PidleT,
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where i ∈ {1, 2} and P4 =
uκaPmax,a

(1+uκa)ηmax,a
+

uκbPmax,b

(1+uκb)ηmax,b
+

uκrPmax,r

(1+uκr)ηmax,r
+ Prx + Pbase + ε (Rfl + 2Rrl)− Pidle.

Ei (t1) is the positively weighted sum of t1Pa,i (t1),
t1Pb,i (t1) and t1Pr,i (t1). We proceed to prove that each of
these three components is convex.

CASE I: In the case of Pr,rl ≥ Pr,fl, t1Pa,1 (t1) and
t1Pr,1 (t1) are both convex, as can be readily extended from
the proof of Theorem 3. t1Pb,1 (t1) can be written as

t1Pb,1 (t1) =

t1

2
RrlT

Wt1 |ha,r|2
(

2
RrlT

Wt1

∣∣∣h̃r,r∣∣∣2σ2
a + |hr,a|2σ2

r

)
(
|hr,a|2|ha,r|2−2

(Rrl+Rfl)T
Wt1

∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2) |hb,r|2
= e4 × x

2
1
x

(
1 + a42

1
x

)
1− b42

c4
x

= e4 × fETPA(x),

where x = (Wt1)/(RrlT ) > 0, and for notational simplicity,

a4 =

∣∣∣h̃r,r∣∣∣2σ2
a

|hr,a|2σ2
r

> 0, b4 =

∣∣∣h̃a,a∣∣∣2∣∣∣h̃r,r∣∣∣2
|hr,a|2|ha,r|2

> 0,

c4 =
(Rrl +Rfl)

Rrl
> 1, e4 =

σ2
r

|hb,r|2
RrlT

W
> 0.

To prove the convexity of t1Pb,1 (t1) now becomes to prove
fETPA(x) is convex over x ∈ (0,∞). The second-order
derivative of fETPA(x) can be expressed as

∂2fETPA (x)

∂x2
= 2

1
x log (2)

2×[
1+4

c4
x b4

2(c4−1)
2
+2

c4
x b4

(
c4

2+2c4−2
)
+2

1
x a4g4 (c4)

]
(

1− b42
c4
x

)3
x3

,

(43)

where g4 (c4) is given by

g4 (c4) = 4 + 4
c4
x b4

2(c4 − 2)
2

+ 2
c4
x b4

(
c4

2 + 4c4 − 8
)
.

We first set c42 + 2c4 − 2 > 0 and c42 + 4c4 − 8 > 0, and
solve the inequalities. We obtain c4 ∈ (2

√
3− 2,∞); in other

words, we prove that the second-order derivative of fETPA(x)
is positive over c4 ∈ (2

√
3− 2,∞).

We can also rewrite g4(c4) as

g4 (c4) = (c4 − 2)
2×(2

c4
x b4 +

c4
2+4c4 − 8

2(c4 − 2)
2

)2

−
c4

2
(
c4

2 + 8c4 − 16
)

4(c4 − 2)
4

 .

We then set c42 + 2c4− 2 > 0 and c42 + 8c4− 16 < 0. We
solve the inequalities and obtain c4 ∈ (1, 4

√
2−4), given c4 >

1. In other words, the second-order derivative of fETPA(x) is
positive for c4 ∈ (1, 4

√
2− 4).

As a result, ∂2fETPA(x)
∂x2 > 0 over c4 ∈ (1, 4

√
2 −

4)
⋃

(2
√

3−2,∞) = (1,∞). fETPA(x) is convex. Therefore,
t1Pb,1 (t1) is convex, and so is E1(t1), as well.

CASE II: In the case of Pr,rl < Pr,fl, t1Pb,2 (t1) and
t1Pr,2 (t1) are convex due to the fact that the second-order

derivatives of these are positive. t1Pa,2 (t1) can be rewritten
as given by

t1Pa,2 (t1) =

t1

2
RflT

Wt1 |hb,r|2
(

2
RflT

Wt1

∣∣∣h̃r,r∣∣∣2σ2
b + |hr,b|2σ2

r

)
(
|hr,b|2|hb,r|2−2

(Rrl+Rfl)T
Wt1

∣∣∣h̃b,b∣∣∣2∣∣∣h̃r,r∣∣∣2) |ha,r|2

=
σ2
r

|ha,r|2
RflT

W
y

2
1
y

(
1 +
|h̃r,r|2σ2

b

|hr,b|2σ2
r

2
1
y

)
1− 2

(Rrl+Rfl)
Rfly

|h̃b,b|2|h̃r,r|2
|hr,b|2|hb,r|2

,

where y = Wt1
RflT

> 0.
We see that t1Pa,2(t1) has the same structure as t1Pb,1(t1).

The only difference is the positive coefficients. We can eval-
uate the convexity of t1Pa,2(t1) in the same way, as we have
done on t1Pb,1(t1), and prove the convexity of t1Pa,2(t1). The
detailed proof is suppressed due to limited space.

Given that both E1 (t1) and E2 (t1) are convex, E (t1) =
max {E1 (t1) , E2 (t1)} is convex under the ETPA model.

VI. SIMULATION RESULTS

In this section, simulations are carried out to evaluate the
maximum EE of FD-TWR. As dictated in Theorems 1, 2, 3
and 4, the non-convex EE maximization of FD-TWR under
non-ideal PAs and non-negligible circuit power can be re-
formulated to convex optimizations with optimality preserved
and variables reduced (i.e., w.r.t. the transmit durations only).
The convex equivalents can be solved using standard solvers,
such as the barrier method, the exterior penalty method and
the sequential quadratic programming (SQP) method. For
illustration purpose, we use the barrier method.

For comparison purpose, we also simulate the maximum EE
of HD-TWR (the details are provided in Appendix C). The
frame duration is T = 10 ms, unless otherwise specified. The
PA efficiency ηmax,i is set to 0.35 [40], which is within the
reasonable range between 0.311 and 0.388 [41]. Reciprocal
channels are assumed between every pair of nodes, i.e.,
hi,j = hj,i for all i 6= j. The noise is independent but
identically distributed (i.i.d.) at all the nodes, i.e., σ2

i = σ2, ∀i.
The PA consumption simulated is in the order of dozens of
Watts [40], depending on the distance of the transmitter and
receiver, as well as the efficiency of the PA. The circuit power
ranges from tens to hundreds of milliWatts, comprising mainly
baseband processing and RF generation [40]. Other simulation
parameters are specified in Table I, with reference to other
works [15], [18], [30] and 3GPP LTE specifications [42]. For
fair comparison, we ensure that all schemes involved achieve
the same required data rates in both link directions over the
fixed time frame T .

Fig. 3 plots the maximum EE of FD-TWR, as the self-
cancellation capability of FD-TWR improves. The HD-TWR
is plotted in blue for reference purpose. We can see FD-TWR-
1TS can substantially outperform FD-TWR-2TS under a wide
spectrum of self-cancellation capability, while the gap between
the two schemes decreases as the self-cancellation improves.
As shown in the figures, when the self-cancellation level is
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TABLE I
SIMULATION PARAMETERS

Parameters Values
System bandwidth W 10 MHz
Noise power spectral density (N0) – 174 dBm/Hz
Distance between nodes (da,r , dr,b) 50, 50 m
Distance between antennas (da,a, db,b, dr,r) 5, 5, 5 cm
Average path loss between nodes in dB (Li,j ) 103.8 + 21 log10 d
Cancellation amount (αPS , αPSAC ) 40, 60 dB
Idle power consumption (Pidle,a,Pidle,r ,Pidle,b) 30, 15, 5 mW
Static circuit power consumption (Pbase,i) 100, 50, 20 mW
Dynamic circuit factor (ε) 50 mW/Gbps
Maximum output power (Pmax,i) 46, 37, 23 dBm
Maximum PA efficiency (ηmax,i) 0.35, 0.35, 0.35
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Fig. 3. The optimal EE versus the self-cancellation capability of FD-TWR,
where Rfl +Rrl = 65 Mbps.

high, i.e., the self-interference becomes negligible, the EEs
of both FD-TWR-1TS and -2TS stabilize and flat out. As the
self-cancellation level decreases, FD-TWR-2TS exhibits faster
degradation than FD-TWR-1TS. This is because FD-TWR-
1TS allows every node to transmit over the entire time frame.
The transmit power of the nodes can be lower than that in
FD-TWR-2TS, and in turn, produces less self-interference. In
this sense, weak self-cancellation capability can still keep the
nodes to receive properly in FD-TWR-1TS. In contrast, the
transmit durations of the source/destination nodes are much
shorter in FD-TWR-2TS. The required transmit powers of the
nodes are much higher, due to the exponential-linear tradeoff
between the transmit power and time. This results in strong
self-interference, which cannot be properly cancelled at the
low self-cancellation level. In other words, FD-TWR-2TS is
more sensitive to the self-cancellation level.

We notice that HD-TWR can be more energy efficient than
FD-TWR, when the relay and the source/destination nodes
have poor self-cancellation capability, e.g., ≤ 40 dB if the
traffic is balanced in the forward and reverse links, as shown
in the upper figure of Fig. 3. The reason is that the residual
self-interference is too large and results in a substantial loss
of data rate. In turn, the EE of FD-TWR degrades.

We also notice that unbalanced traffic deteriorates the EE
degradation, and HD-TWR is much more susceptible to the
traffic imbalance than FD-TWR. For FD-TWR-1TS, this is
because the transmission and reception of all the FD nodes
are aligned within the same time duration. The EE of the un-
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Fig. 4. EE comparison between different transmission strategies w.r.t data
rate demand under the ETPA model.

balanced links decreases, because of excessively high transmit
power over relatively short time in the high-rate direction, and
excessively long transmission time incurring excessive circuit
energy consumption in the low rate direction. For HD-TWR,
the transmissions of the relay to both source/destination nodes
also need to be aligned. Compared to FD-TWR-1TS, HD-
TWR has much shorter time durations in which transmissions
are aligned, incurring higher transmit power and lower EE, as
shown in the lower figure of Fig. 3. Interestingly, FD-TWR-
2TS is not much affected by the traffic imbalance. This is
because the FD relay receives and relays the same traffic from
one node at any instant. The increasingly unbalanced traffic
only enlarges difference of time durations allocated to the two
link directions at the relay, and does not affect the transmit
power of the relay.

Fig. 4 plots the maximum EE of FD-TWR-1TS and -2TS, as
well as HD-TWR, as the total rate requirement increases under
the self-cancellation levels of 40 and 60 dB. We see that FD-
TWR is superior to HD-TWR in terms of EE when the data
requirement is high. Particularly, FD-TWR-1TS can maintain
the same EE of 50 Mbits/J as HD-TWR, while doubling the
data rate region of HD-TWR, from 55 Mbps to 110 Mbps.
We also see that the self-cancellation level plays an important
role in FD-TWR. Not only does it affect the maximum EE, but
also affects the data rate that can be supported by the network.
Reducing the level leads to a loss of both the EE and data
rate. The traffic imbalance between the two link directions
can further reduce the EE and data rate.

An interesting finding in Fig. 4 is that HD-TWR can outper-
form both the FD-TWR schemes, when the data requirement
is low. This is the case where the traffic demand is low and
the radio resource is abundant. Only part of the time frame is
allocated to data transmission in HD-TWR, and the energy can
be most efficiently planned to leverage the PA consumption,
circuit consumption, and data transmission. In contrast, FD-
TWR has to align the transmission and reception of the FD
nodes within the same time duration, incurring the loss of EE,
as discussed in Fig. 3.

Fig. 5 corroborates the above findings by evaluating the
optimized transmit powers and time durations. We see in
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Fig. 5. The optimal resource allocation results under non-ideal PA and
non-negligible circuit power, where PS (αPS = 40 dB) is adopted and
Rfl/Rrl = 1.

Fig. 5(a) that, when the traffic demand is less than 50 Mbps,
the average transmit time within a frame is less than the entire
frame for HD-TWR. This is the case where HD-TWR has the
chance to separately optimize the transmit power of each link
(the transmit power is yet to increase exponentially, as evident
from Fig. 5(b)), achieving the higher EE than FD-TWR.

We note that the optimal transmit time under non-negligible
transmission-dependent circuit power is less than the entire
time frame under low data requirements. The conclusion
drawn is that the proposed algorithm can optimize the transmit
time as such that the energy consumed for data transmission
(including the PA consumption and transmission-dependent
circuit operation) is leveraged with the energy consumed in
the idle-state circuit.

We also notice that the optimal transmit time of FD-TWR-
1TS is not always across the entire frame, even in the ideal
case of negligible circuit power and ideal PAs. The reason
is that FD-TWR-1TS needs to operate at a relatively high
transmit power to overcome both the self-interference and
noise. If the transmission lasts over the entire frame, the
transmit power would be lower. The self-interference would

also decrease. The receiver noise would become dominant over
the self-interference, which could require extra transmit power
to suppress the noise given the required data rate and thus
reduce the EE.

Fig. 6 shows the impact of PA efficiency, self-cancellation
and traffic imbalance on the EE maximization, where the
ETPA model is considered for illustration purpose. From
Fig. 6(a), we can see that FD-TWR can be much more tolerant
to the imbalance of traffic than HD-TWR, and the difference
of EE between FD-TWR and HD-TWR grows quickly, as
the imbalance increases. We also see that FD-TWR-2TS is
more robust against the traffic imbalance, compared to FD-
TWR-1TS. Particularly, Fig. 6(a) shows consistently across the
spectrum of PA efficiency that FD-TWR-1TS is suitable for
balanced traffic, while FD-TWR-2TS can provide higher EE
in the case of severely unbalanced traffic. Fig. 6(b) confirms
this with consistent results across a wide spectrum of self-
cancellation capability. As given earlier, the reason is that FD-
TWR-1TS needs to explicitly align the transmission durations
of all the nodes. Unbalanced traffic results in excessively high
transmit power requirement in some of the links and energy-
inefficiently, excessively long transmit duration in the other
links, thus compromising the EE.

In addition, Fig. 6(c) reveals that the PA efficiency has a
dominant effect over the self-cancellation capability, in the
case of balanced traffic. This is because a high level of self-
cancellation can reduce the the transmit power requirement
which is only part of the total PA consumption. In contrast,
increasing the PA efficiency can reduce the total PA con-
sumption effectively, thereby resulting in more noticeable EE
improvement.

VII. CONCLUSION

In this paper, the EE maximization of FD-TWR is for-
mulated under practical non-ideal PAs and non-negligible
transmission-dependent circuit power. Reformulations of the
problems are carried out by deriving the necessary conditions
of the optimal solutions, and then rigorously proved to be
convex. Extensive simulations show the superiority of FD-
TWR in terms of EE when traffic demand is high. The simu-
lations also reveal that the maximum EE of FD-TWR is more
sensitive to the PA efficiency than it is to self-cancellation.
Also, a full FD design of FD-TWR, i.e., FD-TWR-1TS, is
susceptible to unbalanced traffic, while the design with only
the relay operating in FD mode, i.e., FD-TWR-2TS, exhibits
strong tolerance to traffic imbalance.

APPENDIX A
PROOF OF THE NECESSARY CONDITION OF (P1)

Proof: We can rewrite the rate constraints in (P1), as
given by

Ca,r =
t1
T
W log2(1 +

Pa|ha,r|2

Pr,b

∣∣∣h̃r,r∣∣∣2 + σ2
r

) ≥ Rfl, (44)

Cr,b =
t1
T
W log2(1 +

Pr,b|hr,b|2

σ2
b

) ≥ Rfl, (45)
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Fig. 6. The impact of PA efficiency, self-cancellation and traffic imbalance under ETPA model where Rfl +Rrl = 60 Mbps.

Cb,r =
t2
T
W log2(1 +

Pb|hb,r|2

Pr,a

∣∣∣h̃r,r∣∣∣2 + σ2
r

) ≥ Rrl, (46)

Cr,a =
t2
T
W log2(1 +

Pr,a|hr,a|2

σ2
a

) ≥ Rrl. (47)

Assume that (P1) is feasible, i.e., Pmax,i, i ∈ {a, b, r},
and/or T are sufficiently large to accommodate Rfl and
Rrl. We confirm that these constraints are all active at the
optimal solution for (P1), i.e., equalities are taken in all
the constraints. This can be proved by assuming the optimal
solution, denoted by {P ∗a , P ∗b , P ∗r,a, P ∗r,b, t∗1, t∗2}, is inside the
feasible solution region where 0 ≤ P ∗i ≤ Ψ−1(Pmax,i) and
0 ≤ P ∗r,i ≤ Ψ−1(Pmax,r) for i ∈ {a, b}; 0 ≤ t∗1 + t∗2 ≤ T ; and
some or all of the constraints (44)–(47) are inactive.

Under this assumption, given t∗1 and t∗2 (t∗1 + t∗2 ≤ T ),
we can reduce P ∗r,b to P ∗r,b

′ and P ∗r,a to P ∗r,a
′ until equalities

can be taken in (45) and (47), respectively. We can proceed
to reduce P ∗a to P ∗a

′ and P ∗b to P ∗b
′ until equalities are

taken in (44) and (46), respectively. As a result, the total
energy consumption is reduced. Clearly, 0 ≤ P ∗a

′ < P ∗a ,
0 ≤ P ∗b

′ < P ∗b , 0 ≤ P ∗r,a
′ < P ∗r,a, and 0 ≤ P ∗r,b

′ < P ∗r,b;
in other words, {P ∗a

′, P ∗b
′, P ∗r,a

′, P ∗r,b
′, t∗1, t

∗
2} is also a feasible

solution for (P1). This contradicts with the assumption that
{P ∗a , P ∗b , P ∗r,a, P ∗r,b, t∗1, t∗2} is the optimal solution. The neces-
sary conditions of the optimal solution for (P1) are proved.

As a matter of fact, given any pair of feasible t1 and t2
(t1 + t2 ≤ T ), Pa, Pb, Pr,a and Pr,b are all minimized (and
so is the total energy consumption) if and only if (44)–(47)
all take equalities. The minimized powers all satisfy the rate
constraints (44)–(47), but may violate the power constraints
of Pmax,i. In this case, we adjust t1 and t2, until the powers
satisfy the power constraints and the total energy consumption
is minimized over {t1, t2}, as described in Section IV. It is
possible that (P1) is infeasible, that is, for any possible t1
and t2, the minimized powers violate the power constraints;
in other words, by no means can the system of interest meet
the data rate requirements Rfl and/or Rrl. The data rate
requirements need to be reduced, which is beyond the scope
of this paper.

APPENDIX B
PROOF OF THE NECESSARY CONDITION OF (P2)

Proof: The rate constraints in (P2) can be rewritten as

Ca,r=
t1
T
W log2(

Pa|ha,r|2

Pa|ha,r|2+Pb|hb,r|2
+

Pa|ha,r|2

Pr

∣∣∣h̃r,r∣∣∣2+σ2
r

)≥Rfl,

(48)

Cb,r=
t1
T
W log2(

Pb|hb,r|2

Pa|ha,r|2+Pb|hb,r|2
+

Pb|hb,r|2

Pr

∣∣∣h̃r,r∣∣∣2+σ2
r

)≥Rrl,

(49)

Cr,a =
t1
T
W log2(1 +

Pr|hr,a|2

Pa

∣∣∣h̃a,a∣∣∣2 + σ2
a

) ≥ Rrl, or (50a)

Cr,b =
t1
T
W log2(1 +

Pr|hr,b|2

Pb

∣∣∣h̃b,b∣∣∣2 + σ2
b

) ≥ Rfl. (50b)

Assume that (P2) is feasible, i.e., Pmax,i, i ∈ {a, b, r},
and/or T are sufficiently large to accommodate Rfl and Rrl.
We confirm that both (48) and (49) are active, and at least one
of (50a) and (50b) is active, at the optimal solution for (P2).
This can be proved by assuming that the optimal solution,
denoted by {P ∗a , P ∗b , P ∗r , t∗1}, is inside the feasible solution
region where 0 ≤ P ∗i ≤ Ψ−1(Pmax,i) for i ∈ {a, b, r};
0 ≤ t∗1 ≤ T ; and some or all of the constraints (48)–(50)
are inactive.

Under this assumption, given t∗1 and P ∗r , we certainly can
reduce P ∗a and P ∗b in an alternating manner until equalities
are taken in both (48) and (49). Specifically, fixing P ∗b and
reducing P ∗a leads to a reduction of Ca,r in the left-hand
side (LHS) of (48) and a growth of Cb,r in the LHS of (49);
while fixing P ∗a and reducing P ∗b leads to a reduction of Cb,r
and a growth of Ca,r. Nevertheless, this process is surely
convergent upon both (48) and (49) taking the equalities, since
P ∗a and P ∗b are not only strictly monotonically decreasing but
also lower bounded by

P ∗a ≥

(
2
RrlT

Wt∗
1 − P ∗a |ha,r|

2

P ∗a |ha,r|
2
+P ∗b |hb,r|

2

)
P ∗r

∣∣∣h̃r,r∣∣∣2+σ2
r

|ha,r|2

>

(
2
RrlT

Wt∗
1 −1

)
σ2
r

|ha,r|2
> 0,

(51)
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P ∗b ≥

(
2
RflT

Wt∗
1 − P ∗b |hb,r|

2

P ∗a |ha,r|
2
+P ∗b |hb,r|

2

)
P ∗r

∣∣∣h̃r,r∣∣∣2+σ2
r

|hb,r|2

>

(
2
RflT

Wt∗
1 −1

)
σ2
r

|hb,r|2
> 0.

(52)

Given P ∗a and P ∗b taking equalities in (48) and (49), we
can proceed to reduce P ∗r until either of (50a) and (50b) takes
equality. Both Ca,r and Cb,r on the LHS of (48) and (49)
grow. Given P ∗r , we continue to reduce P ∗a and P ∗b till (48)
and (49) take equalities again, as described above. This process
is surely convergent, i.e., (48), (49), and (50a) or (50b), can
all take equalities, since P ∗r is not only strictly monotonically
decreasing but also lower bounded by

P ∗r≥max

(2
RrlT

Wt∗
1 −1)

P ∗a

∣∣∣h̃a,a∣∣∣2+σ2
a

|hr,a|2
; (2

RflT

Wt∗
1 −1)

P ∗b

∣∣∣h̃b,b∣∣∣2+σ2
b

|hr,b|2


>max

{
(2

RrlT

Wt∗
1 −1)

σ2
a

|hr,a|2
; (2

RflT

Wt∗
1 −1)

σ2
b

|hr,b|2

}
> 0.

(53)
As a result, all P ∗a , P ∗b and P ∗r can be continually reduced

to a fixed point where both (48) and (49) are active and
at least one of (50a) and (50b) is active. Clearly, the fixed
point is a feasible solution for (P2), and requires less energy
than the assumed optimal solution. This contradicts with the
assumption that the assumed solution {P ∗a , P ∗b , P ∗r , t∗1} is the
optimal feasible solution for (P2). The necessary conditions
of the optimal solution for (P2) are proved.

We note that, given any t1 ≤ T , Pa, Pb and Pr are all
minimized (and so is the total energy consumption) if and
only if (48)–(50) are all active. The minimized powers all
satisfy the rate constraints (48)–(50), but may violate the
power constraints of Pmax,i. In this case, we adjust t1, until
the powers satisfy the power constraints and the total energy
consumption is minimized over t1 ∈ [0, T ], as described
in Section V. It is possible that (P2) is infeasible, that is,
for any possible t1, the minimized powers violate the power
constraints; in other words, by no means can the system of
interest meet the data rate requirements Rfl and/or Rrl. The
data rate requirements need to be reduced.

APPENDIX C
ENERGY EFFICIENCY OF HD-TWR-2TS

PNC is also adopted in HD-TWR and two timeslots are
required to accomplish TWR. During the first timeslot, nodes
A and B transmit signal to node R simultaneously. The
received signal at node R can be given by

yr =
√
Pa ha,r xa +

√
Pb hb,r xb + nr. (54)

With nested lattice code, the achievable data rates satisfy

Ca,r =
t1
T
W log2(

Pa|ha,r|2

Pa|ha,r|2 + Pb|hb,r|2
+
Pa|ha,r|2

σ2
r

), (55)

Cb,r =
t1
T
W log2(

Pb|hb,r|2

Pa|ha,r|2 + Pb|hb,r|2
+
Pb|hb,r|2

σ2
r

). (56)

During the second timeslot, node R forwards the combined
signal xr to nodes A and B. Thus, the received signal at nodes
A and B can be given by

yi =
√
Prhr,ixr + ni, i ∈ {a, b} . (57)

By cancelling the self-interfere, the achievable data rates at
nodes A and B in the second timeslot satisfy [21]

Cr,a =
t2
T
W log2(1 +

Pr|hr,a|2

σ2
a

), (58)

Cr,b =
t2
T
W log2(1 +

Pr|hr,b|2

σ2
b

). (59)

The EE maximization problem has the same form as that of
FD-TWR-2TS, but the total energy consumption is different,
as given by

Etotal = (Ptx,a + Ptx,b + Prx,r) t1 (60)
+ (Prx,a + Prx,b + Ptx,r) t2 + Pidle (T − t1 − t2) ,

where Pidle = Pidle,a + Pidle,b + Pidle,r. The necessary
conditions can also be given by (30) and (31), as can be proved
in the same way as FD-TWR-1TS. The optimal transmit
powers, Pa, Pb and Pr, are written as

Pa (t1) =

(
λ1 −

λ1
λ1 + λ2

)
σ2
r

|ha,r|2
, (61)

Pb (t1) =

(
λ2 −

λ2
λ1 + λ2

)
σ2
r

|hb,r|2
, (62)

Pr (t2) = max

{
(λ3 − 1)

σ2
b

|hr,b|2
, (λ4 − 1)

σ2
a

|hr,a|2

}
, (63)

where λ1 = 2
RflT

Wt1 , λ2 = 2
RrlT

Wt1 , λ3 = 2
RflT

Wt2 and λ4 = 2
RrlT

Wt2

for notational simplicity.
By substituting (61)–(63) into the optimization of HD-

TWR-2TS, we can obtain the equivalent objective function
under the TPA model, as given by

E(t1, t2) = [

√
Pmax,a

η2max,a

√
Pa(t1)+

√
Pmax,b

η2max,b

√
Pb(t1)+P1]t1

+ [

√
Pmax,r

η2max,r

√
Pr(t2) + P2]t2

+ (Pidle,a + Pidle,b + Pidle,r)T,

where P1 = Prx,r + Pbase,a + Pbase,b + ε(Rfl + Rrl) −
Pidle, P2 = Prx,a+Prx,b+Pbase,r+εmax{Rfl, Rrl}−Pidle;
and the equivalent objective function under the ETPA model,
as formulated by

E(t1, t2) = [
Pa(t1)

(1 + uκa)ηmax,a
+

Pb(t1)

(1 + uκb)ηmax,b
+ P1]t1

+ [
Pr(t2)

(1 + uκr)ηmax,r
+ P2]t2 + PidleT,

where P1 =
uκaPmax,a

(1+uκa)ηmax,a
+

uκbPmax,b

(1+uκb)ηmax,b
+Prx,r+Pbase,a+

Pbase,b + ε(Rfl + Rrl) − Pidle and P2 =
uκrPmax,r

(1+uκr)ηmax,r
+

Prx,a + Prx,b + Pbase,r + εmax{Rfl, Rrl} − Pidle.
It can be proved that E(t1, t2) is quasi-convex under the

TPA model and convex under the ETPA model. The detailed
proofs are suppressed due to the limited space.



14

REFERENCES

[1] G. Liu, F. Yu, and H. Ji et al., “In-band full-duplex relaying: A survey,
research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17,
no. 2, pp. 500-524, Jan. 2015.

[2] Z. Wei, X. Zhu, and S. Sun et al., “Full-duplex vs. half-duplex amplify-
and-forward relaying: which is more energy efficient in 60 GHz dual-hop
indoor wireless systems?,” IEEE J. Sel. Areas Commun., vol. 33, no. 12,
pp. 2936-2947, Dec. 2015.

[3] A. Sabharwal, P. Schniter, and D. Guo et al., “In-band full-duplex
wireless: challenges and opportunities,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 9, pp. 1637-1652, Sep. 2014.

[4] E. Ahmed, A. M. Eltawil and A. Sabharwal, “Rate gain region and
design tradeoffs for full-duplex wireless communications,” IEEE Trans.
Wireless Commun., vol. 12, no. 7, pp. 3556-3565, Jul. 2013.

[5] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characteri-
zation of full-duplex wireless systems,” IEEE Trans. Wireless Commun.,
vol. 11, no. 12, pp. 4296-4307, Dec. 2012.

[6] Y. Liu, L. Lu, G. Y. Li et al., “Joint user association and spectrum
allocation for small cell networks with wireless backhauls,” IEEE
Wireless Commun. Lett., vol. 5, no. 5, pp. 496-499, Oct. 2016.

[7] B. Rankov, and A. Wittneben, “Achievable rate regions for the two-way
relay channel,” in Proc. IEEE ISIT, pp. 1668-1672, Jul. 2006.

[8] M. P. Wilson, K. Narayanan, and H. D. Pfister et al., “Joint physical
layer coding and network coding for bidirectional relaying,” IEEE Trans.
Inf. Theory, vol. 56, no. 11, pp. 5641-5654, Nov. 2010.

[9] H. Kim, N. Lee, and J. Kang, “Energy efficient two-way AF relay system
with multiple-antennas,” in Proc. IEEE VTC-Fall, pp. 1-5, Sep. 2011.

[10] M. Zhou, Q. Cui, and R. Jäntti et al., “Energy-efficient relay selection
and power allocation for two-way relay channel with analog network
coding,” IEEE Commun. Lett., vol. 16, no. 6, pp. 816-819, Jun. 2012.

[11] F. Parzysz, M. Vu, and F. Gagnon, “Energy minimization for the
half-duplex relay channel with decode-forward relaying,” IEEE Trans.
Commun., vol. 61, no. 6, pp. 2232-2247, Jun. 2013.

[12] C. Sun, and C. Yang, “Energy-efficient hybrid one-way and two-way
relay transmission,” IEEE Trans. Veh. Technol., vol. 62, no. 8, pp. 3737-
3751, Oct. 2013.

[13] M. Hossain, K. Koufos, and R. Jäntti, “Minimum-energy power and
rate control for fair scheduling in the cellular downlink under flow level
delay constraint,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp.
3253-3263, Jul. 2013.

[14] S. Cripps, “RF power amplifiers for wireless communications,” 2nd ed.
Norwood, MA: Artech House, 2006.

[15] Q. Cui, T. Yuan, and W. Ni, “Energy-efficient two-way relaying under
non-ideal power amplifiers,” IEEE Trans. Veh. Technol., vol. 66, no. 2,
pp. 1257-1270, Feb. 2017.

[16] S. Kim, and Y. Lee, “Energy-efficient power allocation for OFDM
signaling over a two-way AF relay,” IEEE Trans. Veh. Technol., vol.
64, no. 10, pp. 4856-4863, Nov. 2014.

[17] C. Xiong, L. Lu, and G. Y. Li, “Energy-efficient OFDMA-based two-
way relay,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3157-3169, Sep.
2015.

[18] Q. Cui, T. Yuan, and X. Tao et al., “Energy efficiency analysis of two-
way DF relay system with non-ideal power amplifiers,” IEEE Commun.
Lett., vol. 18, no. 7, pp. 1254-1257, Jul. 2014.

[19] H. Chen, G. Li, and J. Cai, “Spectral-energy efficiency tradeoff in full-
duplex two-way relay networks,” to appear IEEE Syst. J., 2017.

[20] Z. Zhang, Z. Chen, and M. Shen et al., “Spectral and energy efficiency
of multi-pair two-way full-duplex relay systems with massive MIMO,”
IEEE J. Sel. Areas Commun., vol. 34, no. 4, pp. 848-863, Apr. 2016.

[21] W. Nam, S. Chung, and Y. Lee, “Capacity of the Gaussian two-way
relay channel to within 1/2 bit,” IEEE Trans. Inf. Theory, vol. 56, no.
11, pp. 5488-5494, Nov. 2010.

[22] X. Jia, P. Deng, and L. Yang et al., “Spectrum and energy efficiencies
for multiuser pairs massive MIMO systems with full-duplex amplify-
and-forward relay,” IEEE Access, vol. 3, pp. 1907-1918, Oct. 2015.

[23] G. Liu, F. Yu, and H. Ji et al., “Energy-efficient resource allocation in
cellular networks with shared full-duplex relaying,” IEEE Trans. Veh.
Technol., vol. 64, no. 8, pp. 3711-3724, Aug. 2015.

[24] M. Khafagy, A. Ismail, and M. Alouini et al., “Energy-efficient co-
operative protocols for full-duplex relay channels,” in Proc. IEEE
GLOBECOM, pp. 362-367, Dec. 2013.

[25] N. Zlatanov, and R. Schober, “Buffer-aided half-duplex relaying can
outperform ideal full-duplex relaying,” IEEE Commun. Lett., vol. 17,
no. 3, pp. 479-482, Mar. 2013.

[26] G. Miao, N. Himayat, and G. Y. Li, “Energy-efficient link adaptation
in frequency-selective channels,” IEEE Trans. Commun., vol. 58, no. 2,
pp. 545-554, Feb. 2010.

[27] X. Wang, and Z. Li, “Energy-efficient transmissions of bursty data
packets with strict deadlines over time-varying wireless channels,” IEEE
Trans. Wireless Commun., vol. 12, no. 5, pp. 2533-2543, May 2013.

[28] Z. Nan, X. Wang, and W. Ni, “Energy-efficient transmission of delay
limited bursty data packets under non-ideal circuit power consumption.”
in Proc. IEEE ICC, pp. 4957-4962, Jun. 2014.

[29] X. Chen, W. Ni, and X. Wang et al., “Provisioning quality-of-service
to energy harvesting wireless communications.” IEEE Commun. Mag.,
vol. 53, no. 4, pp. 102-109, Apr. 2015.

[30] W. Li, J. Lillegerg, and K. Rikkinen, “On rate region analysis of half-and
full-duplex OFDM communication links,” IEEE J. Sel. Areas Commun.,
vol. 32, no. 9, pp. 1688-1698, Sep. 2014.

[31] W. Ni, I. B. Collings, and X. Wang et al., “Multi-hop point-to-point FDD
wireless backhaul for mobile small cells,” IEEE Wireless Commun., vol.
21, no. 4, pp. 88-96, Aug. 2014.

[32] W. Ni, and I. B. Collings, “Adaptive adjacent-frequency interference
mitigation in multi-hop point-to-point FDD wireless backhaul networks,”
IEEE Commun. Lett., vol. 16, no. 12, pp. 1988-1991, Dec. 2012.

[33] T. Riihonen, S. Werner, and R. Wichman, “Hybrid full-duplex/half-
duplex relaying with transmit power adaptation,” IEEE Trans. Wireless
Commun., vol. 10, no. 9, pp. 3074-3085, Sep. 2011.

[34] H. Cui, M. Ma, and L. Song et al., “Relay selection for two-way full
duplex relay networks with amplify-and-forward protocol,” IEEE Trans.
Wireless Commun., vol. 13, no. 7, pp. 3768-3777, Jul. 2014.

[35] K. Nasr, J. Cosmas, and M. Bard et al., “Performance of an echo
canceller and channel estimator for on-channel repeaters in DVBT/H
networks,” IEEE Trans. Broadcast., vol. 53, no. 3, pp. 609-618, Sep.
2007.

[36] C. Xiong, G. Li, and S. Zhang et al., “Energy- and spectral-efficiency
tradeoff in downlink OFDMA networks,” IEEE Trans. Wireless Com-
mun., vol. 10, no. 11, pp. 3874-3886, Nov. 2011.

[37] R. D. Buda, “The upper error bound of a new near-optimal code,” IEEE
Trans. Inf. Theory, vol. 21, no. 4, pp. 441-445, Jul. 1975.

[38] R. D. Buda, “Some optimal codes have structure,” IEEE J. Sel. Areas
Commun., vol. 7, no. 6, pp. 893-899, Aug. 1989.

[39] U. Erez, and R. Zamir, “Achieving 1/2 log (1+SNR) on the AWGN
channel with lattice encoding and decoding,” IEEE Trans. Inf. Theory,
vol. 50, no. 10, pp. 2293-2314, Oct. 2004.

[40] S. Cui, A. J. Goldsmith, and A. Bahai, “Energy-constrained modulation
optimization,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2349-
2360, Sep. 2005.

[41] G. Auer, O Blume, and V Giannini, “D2.3: Energy efficiency analysis
of the reference systems, areas of improvements and target breakdown,”
EARTH INFSO-ICT, ver. 2.0, 2012.

[42] 3GPP TR 36.104, “Base Station (BS) radio transmission and reception,”
v11.8.2, Apr. 2014. [online] http://www.3gpp.org.

Qimei Cui (M’09-SM’15) (cuiqimei@bupt.edu.cn)
received the B.E. and M.S. degrees in Electronic En-
gineering from Hunan University, Changsha, China,
in 2000 and 2003, respectively. She received her
Ph.D. degree in Information and Communications
Engineering from Beijing University of Posts and
Telecommunications (BUPT), Beijing, China in
2006. She was a full professor in School of Infor-
mation and Communication Engineering at BUPT
in 2016. She was guest professor in Department
of Electronic Engineering of University of Notre

Dame in the United States in 2016. Her main research interests include
spectral-efficiency or energy-efficiency based transmission theory and net-
working technology for 4G/5G broadband wireless communications and
green communications. She serves as guest editor of EURASIP Journal on
Wireless Communications and Networking, Technical Program Committee
(TPC) Member of some International Conferences such as IEEE ICC, IEEE
WCNC, IEEE PIMRC, IEEE ICCC, IEEE WCSP 2013, IEEE ISCIT 2012 etc.
She was once awarded the only Best Paper Award at IEEE ISCIT 2012, Best
Paper Award in IEEE WCNC 2014, the Honorable Mention Demo Award at
ACM MobiCom 2009, and the Young Scientist Award at URSI GASS 2014
etc.



15

Yuhao Zhang received the B.E. degree in commu-
nication engineering from the Beijing University of
Posts and Telecommunications, Beijing, China, in
2015, where he is currently pursuing the M.S. de-
gree in information and communication engineering.
His research interests include energy efficiency of
wireless networks and cooperative communications.

Wei Ni (M’09-SM’15) received the B.E. and Ph.D.
degrees in Electronic Engineering from Fudan Uni-
versity, Shanghai, China, in 2000 and 2005, respec-
tively. Currently he is a Senior Scientist, Team and
Project Leaders at CSIRO, Australia. He also holds
adjunct positions at the University of New South
Wales (UNSW), Macquarie University (MQ) and
the University of Technology Sydney (UTS). Prior
to this he was a postdoctoral research fellow at
Shanghai Jiaotong University (2005-2008), Deputy
Project Manager at the Bell Labs R&I Center,

Alcatel/Alcatel-Lucent (2005-2008), and Senior Researcher at Devices R&D,
Nokia (2008-2009). His research interests include stochastic optimization,
game theory, graph theory, as well as their applications to network and
security. Dr Ni serves as Editor for Hindawi Journal of Engineering since
2012, secretary of IEEE NSW VTS Chapter since 2015, Track Chair for VTC-
Spring 2017, Track Co-chair for IEEE VTC-Spring 2016, and Publication
Chair for BodyNet 2015. He also served as Student Travel Grant Chair for
WPMC 2014, a Program Committee Member of CHINACOM 2014, a TPC
member of IEEE ICC14, ICCC15, EICE14, and WCNC10.

Mikko Valkama (S’00-M’02-SM’15) was born in
Pirkkala, Finland, in 1975. He received the M.Sc.
and Ph.D. degrees (Hons.) in electrical engineer-
ing from the Tampere University of Technology
(TUT), Finland, in 2000 and 2001, respectively. His
Ph.D. dissertation was entitled Advanced I/Q Signal
Processing for Wideband Receivers: Models and
Algorithms. In 2003, he was a visiting PostDoctoral
Researcher with the Communications Systems and
Signal Processing Institute, San Diego State Uni-
versity, San Diego, CA, USA. He is currently a

Full Professor and Laboratory Head with the Laboratory of Electronics and
Communications Engineering, TUT. His general research interests include
radio communications, communications signal processing, estimation and de-
tection techniques, signal processing algorithms for flexible radios, cognitive
radio, full-duplex radio, radio localization, 5G mobile cellular radio networks,
digital transmission techniques, such as the different variants of multicarrier
modulation methods and OFDM, and radio resource management for ad-hoc
and mobile networks. In 2002, he received the Best Ph.D. Thesis Award by
the Finnish Academy of Science and Letters.

Riku Jäntti (M’02-SM’07) received the M.Sc de-
gree (with distinction) in electrical engineering in
1997 and the D.Sc degree (with distinction) in
automation and systems technology in 2001, both
from Helsinki University of Technology (TKK).
Currently, he is an Associate Professor (tenured) in
communications engineering and the Head of the
Department of Communications and Networking at
Aalto University School of Electrical Engineering,
Finland. Prior to joining Aalto (formerly known as
TKK) in August 2006, he was Professor Pro Tem

with the Department of Computer Science, University of Vaasa. His research
interests include radio resource control and optimization for machine type
communications, cloud based radio access networks, spectrum and coexistence
management and RF inference. He is a senior member of IEEE and Associate
Editor of IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. He is
also an IEEE VTS Distinguished Lecturer (Class 2016).


