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In this work, we propose new field-free estimators of static field-gradient polarizabilities for finite
temperature path-integral Monte Carlo method. Namely, dipole–quadrupole polarizability A, dipole–
dipole–quadrupole polarizability B, and quadrupole–quadrupole polarizability C are computed for
several up to two-electron systems: H, H�, He, Li+, Be2+, Ps2, PsH, H+

2 , H2, H+
3 , and HeH+. We

provide complementary data for ground state electronic properties within the adiabatic approximation
and demonstrate good agreement with available values in the literature. More importantly, we present
fully non-adiabatic results from 50 K to 1600 K, which allow us to analyze and discuss strong thermal
coupling and rovibrational effects in total field-gradient polarizabilities. These phenomena are most
relevant but clearly overlooked, e.g., in the construction of modern polarizable force field models.
However, our main purpose is demonstrating the accuracy and simplicity of our approach in a problem
that is generally challenging. Published by AIP Publishing. https://doi.org/10.1063/1.4999840

I. INTRODUCTION

Computation of the electric field response at quan-
tum mechanical level—polarizability—is a fundamental prob-
lem in electronic structure theory. Approaching it from the
first-principles is challenging but well motivated: polariz-
abilities have implications in many physical properties and
modeling aspects, such as optical response and atomic and
molecular interactions. Method development and understand-
ing of polarizability has been vast over the past several
decades, but the main focus has always been on the bare
ground state properties.1–3 While the finite temperature regime
is formally well established,4 explicit results beyond the
Born–Oppenheimer approximation are scarce. By introducing
efficient polarizability estimators for the finite temperature
path-integral Monte Carlo (PIMC) method, we are aiming to
change that.

In our recent article,5 we proposed a scheme for esti-
mating static dipole polarizabilities in a field-free PIMC sim-
ulation. This was an improvement to our earlier finite-field
approach.6 The resulting properties, including substantial rovi-
brational effects, were those corresponding to an isolated
molecule in low density gas. However, the dipole-induced
polarizabilities only describe the effects of a uniform electric
field.

In this work, we complement our tools by introducing sim-
ilar estimators for the field-gradient polarizabilities. According
to the definitions of Buckingham,1 the foremost proper-
ties are dipole–quadrupole polarizability A, dipole–dipole–
quadrupole polarizability B, and quadrupole–quadrupole
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polarizability C. As the names suggest, they have a direct
consequence in treating the long-range interactions between
atoms or molecules. There is emerging interest in polar-
izable force field models7,8 and van der Waals coefficient
formulae9 employing polarizabilities of all orders. How-
ever, the employed properties are often only electronic aver-
ages or fully empirical fits, while rovibrational coupling is
completely overlooked. Here, we show that finite tempera-
ture has an immense effect on total molecular field-gradient
polarizabilities.

At first, we present the analytic forms of the field-free
PIMC estimators. After this, we demonstrate their capabil-
ity in a series of simulations for different small atoms, ions,
and molecules. The results are compared against values avail-
able in the literature. However, to the best of our knowl-
edge, many of them are presented here for the first time.
This is most pronounced in the non-adiabatic simulations,
which include all rovibrational and electronic effects at finite
temperature.

II. THEORY

Let us consider a system of N distinguishable particles
in coordinate-space R and at inverse temperature β = ~/kBT.
Later, ~ = 1. The thermal density matrix ρ(R, R′; β) is given
by the density operator

ρ(R, R′; β) = 〈R| ρ̂(β)|R′〉, (1)

where ρ̂ is also identified as a retarded propagator in
imaginary-time,

ρ̂(β) = e−βĤ = e−i(t−t0)Ĥ = Ĝ (t − t0) , (2)

where i(t � t0) = β = 1/kBT.
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A. Perturbation of properties

The expectation value 〈O〉 of a property Ô is given by a
weighted trace of the density matrix

〈O〉 = Z−1
∫

dR
〈
R ���Ô ρ̂(β)��� R

〉
= Z−1

∫
dRdR′

〈
R ���Ô

��� R′
〉 〈

R′ | ρ̂(β)| R
〉

, (3)

where

Z =
∫

dR〈R| ρ̂(β)|R〉 (4)

is the partition function. If Ô is diagonal, then∫
dR′

〈
R ���Ô

��� R′
〉
=

∫
dR′〈R|R′〉O(R′) = O(R) (5)

and Eq. (3) simplifies to

〈O〉 = Z−1
∫

dRO(R)ρ(R, R; β). (6)

Now, consider a perturbation λ1. The response of Ô with
respect to this perturbation is given to the first order by a
differential of Eq. (3),

∂

∂λ1
〈O〉 =

∂

∂λ1
Z−1

∫
dR

〈
R ���Ô ρ̂(β)��� R

〉
= Z−1

∫
dR

〈
R

�����
Ô

∂

∂λ1
ρ̂(β)

�����
R

〉
−Z−2

∫
dR

〈
R ���Ô ρ̂(β)��� R

〉 ∫
dR

〈
R

�����
∂

∂λ1
ρ̂(β)

�����
R

〉
=

〈
O
∂ρ

∂λ1

〉
− 〈O〉

〈
∂ρ

∂λ1

〉
, (7)

where we have used the Hellman–Feynman theorem and
assumed no dependence between λ and Ô or |R〉. The higher
order responses, i.e., differentials of the form ∂

∂λ1

∂
∂λ2

. . . can
be easily derived similar to Eq. (7). In particular, the second
order is given by

∂

∂λ1

∂

∂λ2
〈O〉 =

∂

∂λ1

[〈
O
∂ρ

∂λ2

〉
− 〈O〉

〈
∂ρ

∂λ2

〉]

=

〈
O
∂ρ

∂λ2

∂ρ

∂λ1

〉
−

〈
∂ρ

∂λ1

〉 〈
∂ρ

∂λ2
O

〉
−

〈
O
∂ρ

∂λ1

〉 〈
∂ρ

∂λ2

〉
− 〈O〉

〈
∂ρ

∂λ2

∂ρ

∂λ1

〉
+ 2 〈O〉

〈
∂ρ

∂λ2

〉 〈
∂ρ

∂λ1

〉
, (8)

and so on. Clearly, the calculation of the response boils down to
the differential of the density operator. Using the exact density
matrix from Eqs. (1) and (2), the derivative is given by

∂

∂λ1
ρ̂(β) = β ρ̂(β)

(
−
∂Ĥ
∂λ1

)
. (9)

However, in practical calculations, the exact density
matrix is rarely available. Therefore, it becomes necessary to
approximate ρ̂(β) by dividing it to small intervals. That is, we

consider ρ̂(τ), where τ = β/M and M is an arbitrary large inte-
ger. Based on the properties of Green’s functions,11 we may
then rewrite the propagator from R to R′ as

〈R| ρ̂(β)|R′〉 =
M−1∏
i=0

〈Ri | ρ̂(τ)|Ri+1〉, (10)

where R0 = R and RM = R′ and whose full phase-space path-
integral is written as ∫ dR1. . . dRM . The differential of Eq. (10)
is now given by

∂

∂λ1

M−1∏
i=0

〈Ri | ρ̂(τ)|Ri+1〉 =

M∑
j=1

M−1∏
i=0,i,j

〈
Rj

�����
∂

∂λ1
ρ̂(τ)

�����
Rj+1

〉
× 〈Ri | ρ̂(τ)|Ri+1〉

=

M∑
j=1

M−1∏
i=0,i,j

〈
Rj

�����
τ ρ̂(τ)

(
−
∂Ĥ
∂λ1

) �����
Rj+1

〉
× 〈Ri | ρ̂(τ)|Ri+1〉

=
β

M

M∑
j=1

M−1∏
i=0,i,j

〈
Rj

��� ρ̂(τ)D̂1
��� Rj+1

〉
× 〈Ri | ρ̂(τ)|Ri+1〉, (11)

where D̂1 = −
∂Ĥ
∂λ1

. If D̂1 is a diagonal operator, we may use
Eq. (5) such that under the path-integration, each time-slice
yields ∫ dRj+1〈Rj |D̂|Rj+1〉 = O(Rj). This allows us to express
the expectation value of the derivative as〈
∂ ρ̂(β)
∂λ1

〉
=

β

M

M−1∑
j=0

∫
dR1 . . . dRM

M∏
i=1

ρ(Ri−1, Ri; τ)D1(Rj)

= β
〈
D̄1(β)

〉
, (12)

where D̄1(β) means the average over a sample path with the
total length of Mτ = β. It is important to appreciate this prop-
erty: for a discrete sample path, the correct result can only be
obtained by taking the average over all time-slices rather than
measuring just one. In fact, the latter is only possible, when D̂1

commutes with ρ̂ (that is, Ĥ), but even then using the average is
more efficient in a practical implementation. Finally, we note
that the result of Eq. (12) can be generalized to the product of
multiple derivatives (and, optionally, a diagonal observable Ô)
such that〈

∂ ρ̂(β)
∂λ1

· · ·
∂ ρ̂(β)
∂λL

Ô

〉
= βL

〈
D̄1(β) . . . D̄L(β)Ō(β)

〉
, (13)

as long as Ô and all of the D̂ commute with each other. For
convenience and efficiency, the path-average property has been
applied to Ô also. This can be done when the density matrix
is symmetric in the phase-space and imaginary-time.11

B. Field-gradient polarizabilities

Now, let us consider higher order responses to the electric
field, that is, polarizabilities. Let H (0) be the unperturbed many-
body Hamiltonian with full interactions. A perturbation caused
by a uniform external electric field Fα and the field-gradient
Fαβ = (∇Fα)β gives the total Hamiltonian as

Ĥ (1) = Ĥ (0) − µ̂αFα − 1
3 Θ̂αβFαβ − · · · , (14)



204101-3 Tiihonen, Kylänpää, and Rantala J. Chem. Phys. 147, 204101 (2017)

where µ̂α and Θ̂αβ are the dipole and (traceless) quadrupole
moment operators, respectively. Indices α, β, γ, δ, . . . refer
to the Einstein summation of the combinations of x, y, and z.
According to the Buckingham convention,1 the change in total
energy is written as a perturbation expansion of coefficients

E(1) = E(0) − µαFα −
1
2
ααβFαFβ −

1
6
βαβγFαFβFγ

−
1

24
γαβγδFαFβFγFδ −

1
3
ΘαβFαβ

−
1
3

Aγ,αβFγFαβ −
1
6

Bαβ,γδFαFβFγδ

−
1
6

Cαβ,γδFαβFγδ − · · · . (15)

Here, µα and Θαβ are the permanent dipole and quadrupole
moments, respectively. Coefficients α, β, and γ are static
dipole polarizabilities of different orders. They have been
treated earlier.5 In this work, we focus on the field-gradient
polarizabilities A, B, and C, which are called dipole–
quadrupole, dipole–dipole–quadrupole, and quadrupole–
quadrupole polarizabilities, respectively.

We can solve for the individual properties by differentiat-
ing Eq. (15) with respect to the perturbation in the zero-field
limit. In particular, we get

Aα,βγ = −3 lim
F→0

∂

∂Fβγ

∂

∂Fα
E(1) = 3 lim

F→0

∂

∂Fβγ
µα, (16)

Bαβ,γδ = −3 lim
F→0

∂

∂Fγδ

∂

∂Fα

∂

∂Fβ
E(1) = 3 lim

F→0

∂

∂Fγδ

∂

∂Fβ
µα,

(17)

Cαβ,γδ = −3 lim
F→0

∂

∂Fγδ

∂

∂Fαβ
E(1) = lim

F→0

∂

∂Fγδ
Θαβ , (18)

where we have used ∂
∂Fα

E(1) = −µα and ∂
∂Fαβ

E(1) = − 1
3Θαβ .

Equations (16)–(18) already give away how the field-free
estimators can be derived in the density-matrix picture. Using
Eq. (14) as the Hamiltonian, the perturbations λ1 = Fαβ and
λ2 = Fβ yield

−
∂Ĥ
∂Fαβ

=
1
3
Θ̂αβ + O(F),

−
∂Ĥ
∂Fα

= µ̂α + O(F),

where O(F) refers to higher-order terms that vanish as F→ 0.
Based on Eqs. (7), (9), and (13), A is now given by

Aα,βγ = 3 lim
F→0

∂

∂Fβγ
〈µα〉

= 3

[〈
µα

∂ρ

∂Fβγ

〉
− 〈µα〉

〈
∂ρ

∂Fβγ

〉]

= β
[
〈µ̄αΘ̄βγ〉 − 〈µ̄α〉〈Θ̄βγ〉

]
. (19)

Similarly, we get

Cαβ,γδ = lim
F→0

∂

∂Fγδ
〈Θαβ〉

=
β

3

[
〈Θ̄αβΘ̄γδ〉 − 〈Θ̄αβ〉〈Θ̄γδ〉

]
. (20)

Finally, using Eq. (8), we can write B as

Bαβ,γδ = 3 lim
F→0

∂

∂Fγδ

∂

∂Fβ
〈µα〉

= β2
[
〈Θ̄γδ µ̄α µ̄β〉 − 〈Θ̄γδ〉〈µ̄α µ̄β〉 + 2〈Θ̄γδ〉〈µ̄α〉〈µ̄β〉

− 〈Θ̄γδ µ̄α〉〈µ̄β〉 − 〈Θ̄γδ µ̄β〉〈µ̄α〉
]

. (21)

We stress that bar denotes the average over a sample path.
Besides that, the implementation of Eqs. (19)–(21) is very
straightforward because β is a chosen parameter and µ̂α and
Θ̂αβ are diagonal observables.

III. METHOD

Our method of choice is the path-integral Monte Carlo
(PIMC), where the density matrix ρ of N distinguishable par-
ticles is obtained by stochastic sampling. In general, we cannot
express ρ(R, R; β) analytically. Instead, we need to use a dis-
crete path as defined in Eq. (10), which allows us to decompose
the full many-body Hamiltonian accurately at a reasonably
small time step τ = β/M. The method is very accurate, when
the finite time step is chosen small enough to eliminate many-
body errors. However, this also implies either large path-size M
or high temperature, and thus, probing of the low temperature
regime is computationally more demanding. In fact, proper
integration over the M dimensions of dRi is a formidable task
at any discretization. Thus, it is necessary to use Metropolis
sampling and other advanced algorithms for efficient Monte
Carlo integration. This involves nothing out of the ordinary
from an implementation of PIMC, and thus, we shall direct a
curious reader to more dedicated resources, e.g., Refs. 10 and
11.

The convenience of the Metropolis algorithm also
emerges in the sampling of any spatial degrees of free-
dom, including the rovibrational motion of the nuclei. In
particular, we can easily differentiate between adiabatic and
non-adiabatic simulations. We will refer to these as Born–
Oppenheimer (BO) and all-quantum (AQ), respectively. In BO
simulation, the nuclei are fixed in space, whereas in AQ sim-
ulation they are free to move confined only by the implicit
interaction of the electronic bonding. The resulting nuclear
motion yields the correct rovibrational sampling, including
the zero-point motion.12 Likewise, the simulation of positrons
is only a matter of choosing the charge and mass because
full explicit correlation is already included in the density
matrix.

However, the situation is more complicated for identical
particles, especially Fermions. In simulations involving the
exchange interaction, a numerical sign problem arises from
the antisymmetry. Various schemes have been developed to
approach the Fermion sign problem (e.g., Ref. 13), but they
will likely have implications on the polarizability estimators
proposed in this work. Therefore, we will leave that as a sub-
ject for another study and only concentrate on the simulation
of up to two Fermions (effectively, electrons or positrons),
whose spin states we can safely sample using the Boltzmann
statistics.
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IV. RESULTS

We demonstrate the finite temperature computation of
the field-gradient polarizabilities with our path-integral Monte
Carlo code and the estimators based on Eqs. (19)–(21). The
simulations are exact apart from a small time step error from
the many-body correlations. At longer time steps τ, extrap-
olating τ→ 0 helps us to improve the result and provide
upper bound estimates for properties that are converging from
below and vice versa. However, in the adiabatic simulation
with the Boltzmann statistics, the error is most effectively
eliminated by simply using a reasonably small τ. In the fol-
lowing adiabatic (BO) simulations, we shall use τ = 0.025
for H and Ps systems, τ = 0.006 25 for He and Li systems,
and τ = 0.003 125 for Be2+. The non-adiabatic (AQ) results
have been extrapolated linearly to τ→ 0, using τ = 0.025,
0.0125 for HeH+ and τ = 0.05, 0.025 otherwise. The statis-
tical error estimate is given by standard error of the mean
(SEM) with 2σ, i.e., 2SEM. All results are given in atomic
units.

In the following, we present polarizability data and dis-
cussion for a variety of isolated one or two-electron systems:
H, H�, Li+, Be2+, H+

2 , H2, PsH, Ps2, H+
3 , and HeH+. We run two

kinds of simulations: adiabatic and non-adiabatic. In the adi-
abatic or Born–Oppenheimer approximation (BO), the nuclei
are fixed in space, reducing symmetry and producing vari-
ous directional components to polarizabilities. The adiabatic
approximation inhibits the rovibrational motion, and thus, at
reasonably low temperatures, the difference to absolute zero
is negligible. Therefore, we start by establishing the validity
of our method by comparing our BO results to the available
0 K reference data.

An excellent summary of independent tensorial polariz-
abilities for each point group is given in Ref. 1. In Table I, we
present BO results for all of the spherically symmetric sys-
tems: Bzz ,zz, Czz ,zz and the total energy E. Furthermore, the

TABLE I. Total energies E, dipole–dipole–quadrupole polarizabilities B, and
quadrupole–quadrupole polarizabilities C of spherically symmetric systems,
matched with suitable literature references. All results in atomic units.

E Bzz ,zz Czz ,zz

H �0.49995(3)a
�106.5(3)a 5.003(4)a

�0.5 �106.5b 5.0b

H�

�0.52766(10)a
�4.78(87) × 105a 2568(136)a

�0.527 75c
�4.843 × 105d 2591.6d

He �2.9037(2)a
�7.32(9)a 0.814(2)a

�2.90372c
�7.326 7e 0.815 0e

Li+ �7.2800(7)a
�0.121(3)a 0.037 97(9)a

�7.279913f
�0.121 4e 0.037 96e

Be2+
�13.6547(12)a

�0.008 3(3)a 0.005 106(15)a

�13.655566f
�0.008 393e 0.005 106 7e

PsH �0.7893(3)a 5300(260)a 260(3)a

�0.789 13g

Ps2 �0.515 97(7)a 0(440)h 460(7)a

�0.516 003 8i

aThis work.
bBishop and Pipin.14

cNakashima and Nakatsuji.15

dPipin and Bishop.27

eBishop and Rérat.16

fJohnson and Cheng.17

gFrolov and Smith.28

hThis work; estimating anything other than 0 is unfeasible because of the large
fluctuations.
iBubin et al.29

results for the molecular systems, i.e., H+
2 , H2 H+

3 , and HeH+,
are given in Table II. Each molecular system has one indepen-
dent quadrupole moment Θzz and four independent dipole–
dipole–quadrupole polarizabilities: Bzz ,zz, Bxx ,xx, Bzz ,xx, and
Bxz ,xz. Similarly, there are three independent components

TABLE II. Total energies E, independent quadrupole moments Θ, dipole–dipole–quadrupole polarizabilities B, and quadrupole–quadrupole polarizabilities C
of molecular systems at fixed orientation, matched with suitable literature references. All results in atomic units.

E Θzz Bzz ,zz Bxx ,xx Bxx ,zz Bxz ,xz Czz ,zz Cxx ,xx Cxz ,xz

H+
2 �0.602 7(2)a 1.530 71(8)a

�41.9(9)a
�13.24(14)a 7.3(3)a

�18.10(4)a 1.913(12)a 1.268(5)a 1.1946(7)a

�0.602 634b 1.530 7c
�41.869d

�13.249d 7.3052d
�18.099d 1.9113d 1.2670d 1.1945d

H2 �1.174 6(4)a 0.456 3(2)a
�90.7(10)a

�66.8(8)a 34.5(10)a
�58.7(3)a 5.99(2)a 4.930(13)a 4.176(6)a

�1.174 474e 0.456 84f
�90.29g

�66.83g 34.37g
�59.00g 5.983g 4.927g 4.180g

H+
3 �1.344 0(4)a

�0.919 53(10)a
�11.7(3)a

�19.0(2)a 9.1(4)a
�11.07(4)a 1.557(10)a 2.078(6)a 1.2441(10)a

�1.343 835 6h

�1.335 18i
�0.926 13i

HeH+
�2.978(2)a 1.249 56(13)a

�5(8)a
�2.07(12)a 1.0(3)a

�2.25(9)a 0.59(2)a 0.396(6)a 0.3382(5)a

�2.978 706j

aThis work.
bTurbiner and Olivares-Pilon.18

cBates and Poots.19

dBishop and Cheung.20

eKolos and Wolniewicz.21

fPoll and Wolniewicz.22

gBishop et al.23

hTurbiner and Lopez Vieyra.25

iCarney and Porter.24 (R = 1.6504).
jPachucki.26
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of quadrupole–quadrupole polarizabilities: Czz ,zz, Cxx ,xx, and
Cxz ,xz. Distinct symmetries also lead to a few non-zero dipole–
quadrupole polarizabilities A: for H+

3 , Ay ,yy =�0.653(7) and for
HeH+ Az ,zz = �0.48(4) and Ax ,zx = �0.0660(9). The principal
axis z is by default the line connecting the two nuclei, but
for triangular H+

3 , it is perpendicular to the plane of protons.
In BO simulation, the molecules are placed at the equilib-
rium geometries, namely, RH+

2
= 2.0, RH2 = 1.4, RH+

3
= 1.65,

and RHeH+ = 1.46. The dipole and quadrupole moments are
calculated with respect to the center-of-mass. By default, the
temperature is set to T = 2000 K, which still corresponds to
the electronic ground state for most systems. However, to be
certain, we use T = 1000 K for H2, T = 500 K for PsH, and
T = 100 K for H� and Ps2. The data for positronium, Ps, are
missing because the symmetry of masses mē = me makes its
quadrupole moment vanish. The largest discrepancy is in Θzz

of H+
3 : based on our calculations and the reference energy, the

cause is more likely in the basis functions of Ref. 24 than in
the effects of temperature, time step, or equilibrium distance.
Otherwise, the agreement is good with most of the available
0 K literature Refs. 14–26. Many properties of the molecular
ions and the positron systems are also reported for the first
time.

To non-adiabatic simulations, we refer as all-quantum
(AQ) since they include all rovibrational and electronic quan-
tum effects. Switching off the adiabatic approximation is
simple: the nuclei are simulated and allowed to move like
electrons, only with bigger mass. For atoms, the difference
is negligible, but in molecules, this arouses considerable
thermal coupling of properties, such as the polarizabilities.
We use mp = 1836.152 672 48me for proton mass and mHe

= 7294.299 536 3me for that of He-nucleus. The AQ sim-
ulations are done in the laboratory coordinates, which is
denoted by capital Z. The results are exact rovibrationally
averaged quantities and therefore spherically symmetric. Con-
sequently, AZ ,ZZ are zero for all systems. The resulting

temperature-dependent data for BZZ ,ZZ and CZZ ,ZZ for H+
2 ,

H2, H+
3 , and HeH+ are presented in Fig. 1 in order to show

that any time step effects are negligible. The actual numeri-
cal and extrapolated data can be found in the supplementary
material.

Any non-zero electric moments of a quantum system cou-
ple to its rotational states, and then this coupling is manifested
in the rotational parts of higher order polarizabilities. At high
temperatures, this rotational coupling is proportional to the
inverse temperature, which has already been proposed4,34 and
demonstrated.5 Now, for homonuclear molecules, H+

2 , H2, H+
3 ,

the first non-zero electric moment is the quadrupole moment
Θ, and thus, all of these systems show ∼1/T decay on B and C.
For HeH+ with non-zero dipole moment µ, the dipole polariz-
ability α is also affected by the coupling.5 Thus, it makes sense
that B of HeH+, involving both α andΘ, is in fact proportional
to ∼1/T2.

However, the rotational polarizabilities do not diverge at
low temperatures because it takes some energy to activate the
rotational states. To model the temperature dependence of the
total B and C, we propose an ad hoc nonlinear function of the
form

f (T ) =

(
a1 · erf(a2T )

T

)x

+ a3, (22)

where a1, a2, and a3 are coefficients and the error function
erf(y) is used to saturate the values in a robust way as T→ 0.
As argued earlier, a natural choice for the characteristic expo-
nent describing the rotational coupling is x = 1 (x = 2 for B of
HeH+). However, we also present x optimized by the root-
mean-squared error (RMSE) as a crude means of consider-
ing nontrivial thermal effects originating from the electronic
and vibrational polarizabilities. Nonlinear fitting to time step
extrapolated data has been done using fitnlm function in Mat-
lab, which also provides 95% confidence intervals. Inversed
squares of SEM estimates of the PIMC data were used as
weights.

FIG. 1. Rovibrationally averaged dipole–dipole–quadrupole polarizabilities BZZ ,ZZ and quadrupole–quadrupole polarizabilities CZZ ,ZZ for nonadiabatic sim-
ulations of molecular systems plotted at different temperatures. A few data points from Ref. 34 have been marked with (a). Fits to Eq. (22) are presented with
solid line for optimal exponent x and dashed line for integer exponent. Dotted lines are 95% confidence boundaries given by the fitting algorithm.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007744
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007744
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TABLE III. Total energies, dipole–dipole–quadrupole polarizabilities, and
quadrupole–quadrupole polarizabilities extrapolated to 0 K. Quadratic fit is
used for E, and Eq. (22) with optimal x for B and C. All results in atomic units.

E BZZ ,ZZ CZZ ,ZZ

H+
2 �0.596(2)a 3000(850)a 580(150)a

�0.597 139b

H2 �1.162 5(11)a 160(35)a 32(6)a

�1.164 025c

H+
3 �1.323(5)a 860(720)a 157(39)a

�1.323 568d

HeH+
�2.967 0(8)a 3.4(1.7) × 106a 406(110)a

�2.966 27e

aThis work (extrapolated to 0 K).
bTang et al.30

cStanke et al.31

dKylänpää and Rantala.32

eCalculated based on Refs. 26 and 33.

Extrapolation of Eq. (22) to T = 0 is given by 2√
π

a1a2 + a3.
The corresponding data for B and C are presented in Table III
together with quadratically extrapolated total energies and
appropriate Refs. 26 and 30–33. The raw data and the fit-
ting coefficients can be found in the supplementary material.
Besides Fig. 1, the fitted curves are presented on a logarithmic
scale in Fig. 2. It is easier to see that the rotational polarizability
is saturated at low T but decays as T�x as the rotational states
get activated. Also, it can be observed that the magnitudes of
the rotational parts of B (except for HeH+) and C are clearly
in the same order as the corresponding lower order moments,
Θzz, from Table II.

The high-temperature limit of the fit is given by a3. It
gives the ballpark of the sum of the vibrational and electronic
polarizabilities, whose thermal coupling is much smaller but
not negligible. This is manifested in the characteristic expo-
nent x: the optimal x in a least-squares fit appears to be slightly
smaller than a natural integer, 1 or 2. While the exponent in
T�x is probably not the most natural way to model this, it
shows evidence on how the vibrational and electronic parts
compensate on the decay of rotational polarizability. Fur-
thermore, to first approximation, the electronic part of AQ
polarizability should equal to the isotropic average (see Ref.
4) of the BO values. One delusive example would be cor-
relating the isotropic average 〈B〉ZZ ,ZZ = �74.65 of H2 to
its high-temperature limit, �82.828. Unfortunately, a quick
survey reveals that the high-temperature limit seldom agrees
with the averaged electronic quantities from 0 K. This under-
lines the difficulty of decomposing the dielectric properties
under strong thermal influence, and we attempt to do it no
further.

As a final remark, we discuss the only explicit reference
for the finite temperature total polarizabilities given by Bishop
and Lam.34 As shown in Fig. 1, their results are a good match
for H+

2 but severely overestimated for H2. We suggest that this
is caused by inaccuracy of the vibrational wave function basis
used by the authors. Due to the electronic correlations, their
ground state is not exact but rather an uncontrollable mixture
involving higher excited vibrational eigenstates. According to

FIG. 2. Time step extrapolated data and nonlinear fits for B and C of H+
2 ,

H2, H+
3 , and HeH+ on a logarithmic scale. The fits to Eq. (22) are done with

x = 1 (dashed) or the optimal x (solid). Dotted lines show the effect of replacing
the error function with unity.

their own tables, such vibrational bias leads to unintended over-
estimation of properties, which can be substantial in case of
polarizabilities. This example discloses the inherent sensitiv-
ity of estimating higher order electric properties in many-body
systems.

V. SUMMARY

As a natural continuation to our previous work, we present
a scheme to estimate static field-gradient polarizabilities in a
field-free PIMC simulation. We apply it on a range of small
atoms, ions, and molecules, namely, H, H�, He, Li+, Be2+,
Ps2, PsH, H+

2 , H2, H+
3 , and HeH+. The simulations with the

adiabatic approximation and equilibrium geometries are done
in the low temperature limit, and they indeed agree well with
the 0 K literature references. However, we do not try to push
the limits of statistical precision in this study, but rather, we
want to give an ample demonstration of our method.

With the given set of systems, the variation in dielectric
properties is already large. For instance, H� or PsH are very
diffuse compared to the heavier ions, Li+ and Be2+. On the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-007744
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other hand, HeH+ has a permanent dipole moment and thus
much more diverse dielectric response than the homonuclear
molecules. We want to emphasize that all these properties were
obtained with the same PIMC procedure varying nothing else
than the fundamental properties of the particles.

One of the most advantageous treats of the PIMC method
is the exact simulation of the canonical ensemble. Molecules
have geometrical anisotropy and thus permanent dipole or
quadrupole moments, which then reflect in the higher order
rotational polarizabilities. Our data indicate that the rotational
parts of BZZ ,ZZ and CZZ ,ZZ are dominant at low temperatures
but decay drastically when the temperature is increased. The
latter effect has been anticipated in the literature,4 but even
our overly simplistic model in Eq. (22) shows that there is
plenty of room for improvement. Indeed, the requirements of
explicit correlations and non-adiabatic thermal averaging ren-
der results of this kind very scarce. By this work, we are hoping
to inspire a change to that.

SUPPLEMENTARY MATERIAL

See supplementary material for the raw data of non-
adiabatic PIMC simulations and the non-linear fitting.
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16D. M. Bishop and M. Rérat, J. Chem. Phys. 91, 5489 (1989).
17W. R. Johnson and K. T. Cheng, Phys. Rev. A 53, 1375 (1996).
18A. V. Turbiner and H. Olivares-Pilon, J. Phys. B: At., Mol. Opt. Phys. 44,

101002 (2011).
19D. R. Bates and G. Poots, Proc. Phys. Soc. A 66, 784 (1953).
20D. M. Bishop and L. M. Cheung, J. Phys. B: At., Mol. Opt. Phys. 12, 3135

(1979).
21W. Kolos and L. Wolniewicz, J. Chem. Phys. 49, 404 (1968).
22J. D. Poll and L. Wolniewicz, J. Chem. Phys. 68, 3053 (1978).
23D. M. Bishop, J. Pipin, and S. M. Cybulski, Phys. Rev. A 43, 4845

(1991).
24G. D. Carney and R. N. Porter, J. Chem. Phys. 60, 4251 (1974).
25A. V. Turbiner and J. C. Lopez Vieyra, J. Phys. Chem. A 117, 10119

(2013).
26K. Pachucki, Phys. Rev. A 85, 042511 (2012).
27J. Pipin and D. M. Bishop, J. Phys. B: At., Mol. Opt. Phys. 25, 17 (1992).
28A. M. Frolov and V. H. Smith, Phys. Rev. A 56, 2417 (1997).
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31M. Stanke, D. Kçedziera, S. Bubin, M. Molski, and L. Adamowicz, J. Chem.

Phys. 128, 114313 (2008).
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