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Introduction

Feasibility study dealing with safety of the structure starts from the global analysis of the structure. In
the frame analysis, which is conducted using beam elements, the local analysis model of the joint must
follow the behavior of the joint. In this regard, the stiffness, in this case the initial rotational stiffness,
becomes the important quantity of joints. It has been shown that the significant cost savings can be
achieved by considering the initial rotational stiffness of semi-rigid joints, both in sway frames [1, 2] and
in non-sway frames [3]. Moreover, the rotational stiffness has the significant effect on the buckling
behavior of members [4–6].

The overall research on tubular joints loaded by in-plane bending moments was conducted by Wardenier
[7], who proposed the design resistance equations, which are currently presented in many design
standards, such as EN 1993-1-8:2005 [8] and ISO 14346:2013 [9]. After that, the extensive studies were
undertaken dealing with the strength of hollow section joints. Tabuchi et al. [10] presented the
experimental results for in-plane moment loaded rectangular hollow section (RHS) T joints and examined
their local failures. Szlendak [11] and Packer [12] developed the design procedures for RHS connections
under the moment loading. The intensive research for uniplanar and multiplanar RHS joints was
conducted by Yu [13]. The deformation limit of RHS joints was investigated by Lu [14] and Zhao [15].

In the joint, normal stresses may occur at the surface of the main member, where the connected member
is located. Generally, the effect of these stresses is measured using the so-called chord stress functions,
which are available for the resistances of joints in many design standards [8, 9] and handbooks [16]. The
design equation for the chord stress function was originally presented in [7] for the resistance of hollow
section joints. Later the considerable research was conducted worldwide dealing, however, only with the
resistance of joints. The results for RHS K gap joints are provided in [17] and for RHS X and T joints in
[18, 19]. The most recent study are published for RHS joints in [20] and circular hollow section (CHS)
joints in [21].

At the same time, considerably less research was related to the rotational stiffness of joints. Korol &
Mirza [22] described several methods to determine the behavior of joints, including the post-elastic
phase. Mäkeläinen et al. [23] presented the rotational stiffness of circular hollow sections (CHS) T joints,
based on the semi-analytical models. The component method, which origin can be tracked back to [24],
enables to calculate the stiffness of the joint, decomposing it on the basic components. The calculation
methods for the rotational stiffness of RHS T joints are presented in [25] and [26]. Both based on the
component method, they employ the different mechanical models and equations to determine the
stiffnesses of the components. However, in contrast to the resistance, the initial stiffness design rules
were validated with the very limited amount of experimental data. Moreover, none of the presented
publications considers the effect of the axial forces in the main member on the stiffnesses of the joint.

The focus of this paper is on the local initial rotational stiffness of the welded RHS T joint loaded by the
in-plane bending moment. The T joint is a joint where a RHS member is connected in 90 degrees to
another RHS member, called the main member. The connected member can be a brace of a truss or a
beam of a frame, whereas the main member usually represents a chord of a truss or a column. Figure 1a
shows the RHS T joint loaded with the in-plane moment M at the connected member and with the axial
force N in the main member.



a) b)

Figure 1. a) RHS T joint; b) its local design model.
As can be seen in Figure 1a, the shear forces and moments occur in the main member to compensate the
moment M. Considering the chord stress function in the joint, it is essential to construct the test specimen
and its mechanical model so that the stresses on the surface on the main member are those that they are
in fact [13, 27]. On Figure 1a, the mechanical model assumes the axial stresses in the joint to be anti-
symmetric with respect to the mid-line of the joint, when the axial force in the main member is zero. At
the symmetric axis, the axial stresses are zero, and this is considered as the case without axial stresses in
the main member.

The first section of this paper provides the theoretical background for the initial rotational stiffness of
joints [25] and proposes the improved stiffness equation for one of the components. Section 2 validates
the proposed improvements with the experimental data. Section 3 studies the effect of the axial force in
the main member on the initial rotational stiffness and proposes the corresponding chord stress function,
using the curve-fitting approach.

1. Theoretical background for the design of the initial rotational stiffness

1.1. Local analysis model
The different beam element local analysis models for welded tubular joints have been evaluated in [4]
and [5]. This paper employs the best variation of [4], which is composed of the elastic and rigid beams,
as presented on Figure 1b, where Sj denotes the in-plane rotational stiffness of the joint. It should be
noted, that the rotation of the joint and, consequently, its rotational stiffness, are defined at the point
where the member is connected to the surface of the main member, not at the intersection point of the
connected and main member midlines, as is defined in [8]. The motivation for such assumption is
provided in [28, 29]. This assumption is also used in [26], where it is shown that the local analysis model
is situated at the surface of the main member. The properties of the beam elements should follow those
they represent, i.e., the connected and main members.

1.2. Moment resistance
Generally, the initial rotational stiffness of the joint is considered as a function of the joint geometry and
the elastic properties of steel. However, the authors provide also the theoretical background for the
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moment resistance, to verify that the same length of the yield mechanism is used also for the initial
stiffness.

Consider the moment loaded T joint with β = b1/b0 ≤ 0.85 (Figure 2a). According to Table 7.14 of [8],
the face failure is the critical failure mode for such joint, the failure mechanism of which is presented in
Figure 2b.

a) b)

Figure 2. a) In-plane moment loaded T joint; b) its yield mechanism.
The resistance of the in-plane moment loaded T joint can be calculated based on the classical yield line
theory of Johansen [30], which is also employed in [7]. Following it, the virtual work equation of the
yield mechanism can be presented as
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where M is the moment load of the joint; φ is the rotation of the joint; mpl,i is the yield moment intensity
at the yield line i; li is the length of the yield line i; ωi is the rotation at the yield line i.

Consider next only a half of the mechanism shown on Figure 2b, denoting P = M/z, where z is the lever
arm. Using the projection rule of the yield line theory, the virtual work equation of the yield mechanism
can be presented as (note that no plastic work occurs at the midline of the joint)
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where

δ is the maximum displacement at the joint;

mpl is the plastic moment intensity at the yield line: 2
0025.0 tfm ypl =

ω1, ω2, ω3 are the rotations at the yield lines;

l is the total length of the yield mechanism.

According to the geometry of the joint:
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Following (3), Eq. (2) can be written as
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The minimum load P corresponds to the critical yield load, giving the total length l of the mechanism:
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It can be seen, that this length is equal to the length of the mechanism for the axial load of the joint [7].
Implementing l to Eq. (4) and using the notation M = Pz, the yield moment of the joint can be obtained:
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Implementing 2
0025.0 tfm ypl ×=  and assuming 1hz =  leads to the final equation of the moment resistance,

which is presented in [8] and [9] for β ≤ 0.85:
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For the range 1.00.85 ££ β , [8] provides the equations to check chord side wall crushing and brace
failure. The effects of strain hardening and membrane action are neglected in Eq. (7), as well as the effect
of the axial stresses in the chord. The verification and validation of Eq. (7) was conducted with the tests
and finite element analyses in many references [7, 25, 31].

1.3. Initial rotational stiffness
The initial rotational stiffness is determined using the component method, which is currently employed
by [8] for the joints connecting H and I sections. It was also applied for RHS joints in [25]. According to
[8], the initial rotational stiffness of the joint, Sj,ini, is calculated as
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where E is the Young’s modulus; z = h1 is the lever arm; ki is the stiffness coefficient for basic joint
component i. Based on [25], the following stiffness coefficients ki should be considered when calculating
the initial stiffness of the welded RHS T joint:

· kcf is the coefficient for the deformation of the main member surface, where the connected
member is welded;

· kcw is the coefficient for compression and tension deformation of the main member webs;
· ksh is the coefficient for the shear deformation of the main member webs, denoted as ki in [25].

Other coefficients, which relate to the weld deformations and the axial deformations of the brace, are not
considered for RHS joints. Normally, the coefficient kcf is the smallest, which means that the deformation
of the main member face is the most essential when defining the rotational stiffness of the joint,
particularly for the joints with small β.

1.3.1. Coefficient kcf

Following Eq. (2.5.19) in [25], the coefficient kcf  is calculated as
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This equation has been derived using the Euler-Bernoulli beam theory, considering the one-span simply
supported beam with the length b0 and loaded by two point forces P/2 with the distance b1 (Figure 3).
The width and the thickness of the beam are leff,cf and t0 correspondingly.

Figure 3. Beam model for the coefficient kcf.
The deflection δel of the beam at the point load is
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The coefficient kcf:
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Table 2.5.1 in [25] presents two options for calculating the effective width leff,cf:

βbtl cfeff -×+= 12 01, (13)
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Based on the classical yield line theory, it can be seen that Eq. (13) represents the length of the total yield
line pattern for the perpendicular line load at the surface of the chord. However, Eq. (14) is not the half
of the length of the total yield pattern, compare to Eq. (5). In this paper, Eq. (13) is used to determine the
effective width.

The local design model of the joint consists of the compressive and tensile parts (Figure 2), which are
assumed to behave similarly [25]. Therefore, the coefficient kcf can be used also for the tensile part of the
model and thus is counted twice in Eq. (8).

After the validation with the experimental data, it was found that Eq. (9) significantly underestimates the
stiffness of the component, leading thus to very conservative results of the overall initial rotational



stiffness. To avoid this, a more accurate solution was proposed in Eq. (15). The justification for that is
presented in Section 2.
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1.3.2. Coefficient kcw

Following clause 2.6.2 of [25], the coefficient kcw is defined as
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The first part of Eq. (18) limits the spread of the yield to 2.5t0 at both sides of the flange of the brace,
while the origin of the second part comes from the yield condition. Similarly to kcf, the coefficient kcw is
the same in tension and compression and is taken into account twice in Eq. (8).

1.3.3. Coefficient ksh

According to clause 6.11 of [8], the shear coefficient ksh is determined as

zr
Ak VC
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where r ≈ 1 is the transformation parameter (Table 5.4, [8]), z is the lever arm and, following Eq. (2.7.8)
in [25], the shear area is:
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The coefficient ksh is taken into account only once in Eq. (8).

1.3.4. Initial rotational stiffness
Taking into account all the above, the initial rotational stiffness is calculated as
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2. Validation of the initial rotational stiffness for RHS T joints

This section validates the calculation approach for the initial rotational stiffness with the experimental
tests available in the literature. The theoretical initial rotational stiffness Sj,ini is  compared  to  the
experimental value Sj,ini,exp. For the theoretical values, the coefficient kcf is calculated using both Eq. (9),
presented in [25], and the proposed Eq. (15).



2.1. HAMK tests
Consider first the tests of [32], which represent twenty experiments of HSS square hollow section T joints
with varying section dimensions, steel grades, weld sizes and welding types (Table 1). It can be seen that
the original approach, Eq. (9), considerably underestimates the initial rotational stiffness of the joints.
Oppositely, Eq. (15) provides more accurate prediction, particularly for the butt-welded joints. However,
for the joints with fillet welds, the results are still underestimated.

Table 1. HAMK tests. For Sj,ini/Sj,ini,exp: absolute values, average value and (standard deviation).

Case Main
member

Connected
member

aw
[mm] β Sj,ini [kNm/rad] Sj,ini,exp

[kNm/rad]
Sj,ini / Sj,ini,exp

Eq. (9) Eq. (15) Eq. (9) Eq. (15)
1111 150x150x8 100x100x8 6 0.66 401 913 1115 0.36

0.39
(0.06)

0.82

0.87
(0.10)

2111 150x150x8 100x100x8 6 0.67 422 956 1083 0.39 0.88
2211 150x150x8 100x100x8 6 0.67 421 954 995 0.42 0.96
3111 150x150x8 100x100x8 6 0.67 405 919 1082 0.37 0.85
3211 150x150x8 100x100x8 6 0.67 403 916 1108 0.36 0.83
3214 150x150x8 100x100x8 6 0.67 403 916 1282 0.31 0.71
3311 150x150x8 120x120x8 6 0.80 1030 2113 1990 0.52 1.06
1121 150x150x8 100x100x8 10 0.67 407 924 1692 0.24

0.29
(0.07)

0.55

0.64
(0.13)

2121 150x150x8 100x100x8 10 0.67 423 958 1701 0.25 0.56
2221 150x150x8 100x100x8 10 0.67 424 959 1452 0.29 0.66
3121 150x150x8 100x100x8 10 0.67 397 903 1521 0.26 0.59
3221 150x150x8 100x100x8 10 0.67 401 913 1705 0.24 0.54
3224 150x150x8 100x100x8 10 0.67 399 908 1455 0.27 0.62
3321 150x150x8 120x120x8 10 0.80 1048 2141 2268 0.46 0.94
1131 150x150x8 100x100x8 butt 0.67 414 940 893 0.46

0.45
(0.05)

1.05

1.00
(0.06)

2131 150x150x8 100x100x8 butt 0.67 424 960 977 0.43 0.98
2231 150x150x8 100x100x8 butt 0.67 425 961 1003 0.42 0.96
3131 150x150x8 100x100x8 butt 0.67 401 911 971 0.41 0.94
3231 150x150x8 100x100x8 butt 0.67 409 930 961 0.43 0.97
3331 150x150x8 120x120x8 butt 0.81 1100 2222 1990 0.55 1.12

2.2. Tests of TH Karlsruhe and Kobe University
The next validation (Table 2) is conducted using the results of the TH Karlsruhe [33] and the Kobe
University [34]. The initial rotational stiffnesses are extracted from the moment-rotation curves (Figures
4 and 5), provided in [25]. As in the case with HAMK tests, the calculation is much more accurate, if Eq.
(15) is used instead of Eq. (9).

Table 2. Tests of the TH Karlsruhe and the Kobe University. For S j,ini/Sj,ini,exp: absolute values, average
value and (standard deviation).

Case Main
member

Connected
member

aw
[mm] β Sj,ini [kNm/rad] Sj,ini,exp

[kNm/rad]
Sj,ini / Sj,ini,exp

Eq. (9) Eq. (15) Eq. (9) Eq. (15)
M44 160x160x4 100x100x3 3 0.63 41 100 130 0.31

0.35
0.77

0.82M45 160x160x5 100x100x3 3 0.63 79 191 260 0.30 0.73
S12 200x200x9 150x150x6 6 0.75 1043 2325 2000 0.52 (0.10) 1.16 (0.20)
S23 250x250x6 175x175x6 6 0.70 226 550 875 0.26 0.63
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Figure 4. Initial rotational stiffness extracted from the tests of the TH Karlsruhe, [25], Annex B.3.

Figure 5. Initial rotational stiffness extracted from the tests of the Kobe University, [25], Annex B.4.

2.3. Tests of Christitsas et al.
This validation is conducted using the tests of [31], which present the experimental stiffness of the square
hollow section X joints subject to in-plane bending moment (Table 3). The results are in line with the
previous observations: Eq. (15) yields more accurate prediction of the initial rotational stiffness.

Table 3. Tests of Christitsas et al. For Sj,ini/Sj,ini,exp: absolute values, average value and (standard
deviation).

Case Main
member

Connected
member

aw
[mm]

β Sj,ini [kNm/rad] Sj,ini,exp
[kNm/rad]

Sj,ini / Sj,ini,exp

Eq. (9) Eq. (15) Eq. (9) Eq. (15)
80c150t5 150x150x5 80x80x5 6 0.53 46 111 135 0.34

0.41
(0.08)

0.82

0.94
(0.17)

80c150t6 150x150x6 80x80x5 6 0.53 78 189 208 0.38 0.91
80c150t8 150x150x8 80x80x5 6 0.53 183 430 407 0.45 1.06

100c150t5 150x150x5 100x100x5 6 0.67 104 249 301 0.34 0.83
100c150t6 150x150x6 100x100x5 6 0.67 177 417 494 0.36 0.84
100c150t8 150x150x8 100x100x5 6 0.67 408 924 712 0.57 1.30
120c150t5 150x150x5 120x120x5 6 0.80 279 634 741 0.38 0.86
120c150t6 150x150x6 120x120x5 6 0.80 469 1028 1366 0.34 0.75
120c150t8 150x150x8 120x120x5 6 0.80 1041 2119 1927 0.54 1.10
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2.4. Discussion concerning initial stiffness
As can be seen from the validation results, Eq. (9), originally proposed in [25], provides very conservative
results: the Sj,ini / Sj,ini,exp ratio is 0.29…0.45 for HAMK tests, 0.35 for the TH Karlsruhe and the Kobe
University and 0.41 for the tests of Christitsas et al. Oppositely, Eq. (15) provides considerably more
accurate values, with the Sj,ini / Sj,ini,exp ratio close to one.

Comparing the results of HAMK tests, it can be noted that the joints with fillet welds have significantly
higher initial stiffness than those with butt welds, in average 13% higher for the 6 mm weld joints and
36% higher for the 10 mm weld joints. This allows making a conclusion that fillet welds significantly
affect the initial rotational stiffness of joints. This corresponds well with the results of [35], who proposed
a simple rule to calculate the initial rotational stiffness of Y joints using the equivalent brace width:

fwweq kabb 221,1 += (22)
where aw is the fillet weld size, kfw is a correlation coefficient, determined as 0.6 for S355 and 0.7 for
S700. Overall, Eq. (22) leads to the additional width of ( ) wa27.0...6.0 ×  at both sides of the connected

member, which is very close to the proposal wa28.0 × for open cross-sections in Figure 6.8 of [8].

3. Chord stress function for initial rotational stiffness

The axial forces acting in the main member are known to reduce the resistance of the joint [7]. This
reduction is defined by the chord stress functions, the simplest of which, Eq. (23), is presented in [8].
The extensive research on the chord stress functions for RHS joints is also provided in [18, 19].
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where n is the ratio of the normal stress in the main member to its yield strength:
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where A0 is the cross-sectional area of the main member and N0 is the axial load in the main member. In
[8], negative n means tension in the main member, while the positive one indicates compression.
However, many publications [18, 19, 21] employ for n the inverse order, which is also used in this paper.

As has been proposed in [36], the similar phenomenon can be also observed for the initial stiffness of
joints. Although in predominantly statically loaded trusses there is no need to take into account joint
stiffnesses for the load distribution if the critical parts have sufficient rotation capacity, in frame
structures stiffnesses of joints have to be considered in the global analysis. From that point of view, such
an effect can lead to the noticeable redistribution of forces in the members of frames, making the results
of the analysis unreliable. This fact justifies the necessity to develop the chord stress function for the
initial stiffness of joints. For that reason, Eq. (8) should be presented in the following way:
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where ksn,ip is the chord stress function for the initial rotational stiffness.

This section evaluates the effect of the axial force in the main member on the initial in-plane rotational
stiffness of hollow section T joints. On the first step, the FEM analysis is conducted to investigate the



effect of the chord stress on the initial stiffness. The obtained results are then approximated using the
linear and polynomial regressions, proposing the final chord stress function.

3.1. FEM
The numerical analyses were performed with the FE package ABAQUS/Standard [37]. The scope of the
study was restricted to square hollow sections, since RHS joints would have required considering the
extra variable b0/h0, thus leading to the significant increase of the sample points. The FEM analyses were
conducted for a single main member size 300x300. Following the requirements of the [8], the main
member wall thickness t0 varied from 8.5 mm (2γ =  35)  to  30 mm (2γ = 10), whereas the connected
member width changed from 75 mm (β = 0.25) to 300 mm (β = 1.00), see Table 4. The wall thickness t1
of the connected member was chosen so that it did not exceed the thickness of the main member t0. All
the sections were modeled with round corners, according to [38], meaning cold-formed sections. To
exclude the possible effects of the main member end conditions, its length was selected as 10b0, as
recommended in [39], while the connected member length was chosen as 4b1, following [13]. The relative
stress in the main member, n, was determined using Eq. (24).

Table 4. FEM parameters.

Main member
0300300 t´´

t0 [mm] 8.5 10 12 15 20 30
2γ 35 30 25 20 15 10

Connected member
111 tbb ´´

b1 [mm] 75 150 225 255 300
β 0.25 0.50 0.75 0.85 1.00

n -0.99, -0.98, -0.95, -0.80, -0.60, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 0.95, 0.99

The sections were modelled using 20-noded solid quadratic finite elements with reduced integration
(C3D20R in Abaqus), with two elements in thickness direction (Figure 6a). Since the deformation of the
main member top face represents the dominating failure mode, its mesh was refined closer to the
connected face (Figure 6a). Figure 6b illustrates the boundary conditions of the FE model. The T joints
were modelled with butt welds, meaning no welds, using the tie constraint of Abaqus (Figure 7a), which
ties two separate surfaces together so that there is no relative motion between [37]. This approach allows
using individual meshes for the main and connected members without matching their nodes (Figure 7b)
and is employed by many researchers [40, 41]. The joints with β =  1.0 were modelled with the end
preparations of the connected member (Figure 7c).

a) b)

Figure 6. a) meshing; b) boundary conditions.



a) b) c)

Figure 7. a) Tie constraint; b) FE model for β = 0.50; c) FE model for β = 1.0.
The analyses were conducted in two steps: after the axial load was applied to the main member on the
first step, the end of the connected member was loaded with the concentrated in-plane moment Mip using
only one increment, corresponding approximately to 0.1 rad and meaning no yielding at the joint area.
All calculations employed the same ideal plastic material model for S500 steel, with E = 210 GPa and
ν = 0.3. The outcome of the FEM was the overall rotation in the end of the connected member φFEM. To
obtain the rotation φj corresponding to the in-plane rotational stiffness Sj,ini, φFEM was reduced by the
rotation of the brace φbr and the rotation of the chord φch:

chbrFEMj jjjj --= (26)
The rotation of the brace is

ip

ip
br EI

lM

,1

1=j (27)

where l1 and I1,ip are the length and the in-plane moment of inertia of the brace, respectively.
The rotation of the chord is

ip

ip
ch EI

lM

,0

0

12
=j (28)

where l0 and I0,ip are the length and the in-plane moment of inertia of the chord, respectively.

Finally, the initial rotational stiffness can be presented as

j

ip
inij

M
S

j
=, (29)

The observed influence of the axial force in the main member on the initial rotational stiffness was found
to have the similar pattern as in the case with the moment resistance, as depicted in Figures 8 and 9.
According to the graphs, the reduction of the stiffness can be extremely high, more than 50% for the
joints with small β and large γ. Similarly, for the same joints, the increase of the initial stiffness can reach
30%. For 8.08.0 ££- n , the response is generally linear, being nonlinear when 99.08.0 £< n . In
addition, the effect was observed to weaken with the increase of β and the decrease of γ. For the joints
with β = 1.0, the dependence on γ is negligibly little.



Figure 8. Chord stress function depending on γ. The function weakens with the decrease of γ. For
β=1.0, the difference is negligibly little.
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Figure 9. Chord stress function depending on β. The function weakens with the increase of β. For small
γ (2γ=15 and 2γ=10), the difference is negligibly little.

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

k s
n,

ip

n

2γ=35

β=0.25
β=0.50
β=0.75
β=0.85
β=1.00

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

k s
n,

ip

n

2γ=30

β=0.25
β=0.50
β=0.75
β=0.85
β=1.00

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

k s
n,

ip

n

2γ=25

β=0.25
β=0.50
β=0.75
β=0.85
β=1.00

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

k s
n,

ip

n

2γ=20

β=0.25
β=0.50
β=0.75
β=0.85
β=1.00

0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

k s
n,

ip

n

2γ=15

β=0.25

β=0.50

β=0.75

β=0.85

β=1.00
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

k s
n,

ip

n

2γ=10

β=0.25

β=0.50

β=0.75

β=0.85

β=1.00



3.2. Chord stress function for initial rotational stiffness
To take into account the effect of the axial stresses in the main member on the initial rotational stiffness
of the joint, the corresponding chord stress function was developed using the obtained numerical results.
Following the above observations, the function was found dependent on three variables: β, γ and n. To
compare the values of the proposed function with the FEM results, the coefficient of determination R2,
the average percent error Δav and the maximum percent error Δmax were selected as the assessment criteria.
On  the  first  step,  the  existing  chord  stress  functions  for  the  moment  resistance  were  tested  for
applicability to the case of the initial stiffness.

3.2.1. Existing chord stress functions for moment resistance
As a starting point for the approximation, the current chord stress function in [8] was selected, Eq. (23)
(Case 1). Since it does not consider the increase of the stiffness for n > 0, it was found to provide very
inaccurate results (Table 5). Case 2, the development of Case 1 extended also for positive n, did not bring
reasonable results. The similar performance was obtained for the chord stress functions proposed in [19],
Cases 3 and 4, and [18], Cases 5 and 6. None of these functions considers the increase of stiffness for
n > 0, and thus cannot be extended for the initial stiffness.
Table 5. Approximation based on the existing chord stress functions for the moment resistance.
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3.2.2. Proposed chord stress function
This section develops a chord stress function for the initial stiffness, using the stated above assessment
criteria. Following the numerical observations, the approximation was assumed consisting of a linear and
two nonlinear parts (Figure 10), with the following corresponding equations:
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Figure 10. Approximation model for the chord stress function.
Analyzing the FEM results, B = 2 in Eq. (30) was found to provide the most accurate approximation for
0.25 ≤ β ≤ 0.85; whereas for the joints with β = 1.0, the function was observed not to depend on γ. From
that point of view, the curve fitting was conducted separately for the joints with 0.25 ≤ β ≤ 0.85 and β =
1.0, proposing the linear interpolation for 0.85 < β < 1.0. Eq. (31) presents the final chord stress function
with the following parameters: R2 = 0.95, Δav = 1.8%, Δmax = 9.3%.
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3.3. Validation of the proposed chord stress function
The validation of the final chord stress function was conducted with the new FE results and using the
same FE model. To prove that the proposed function is scalable in the main member width, two chord
sizes were considered, 100x100 and 200x200, with 2γ = 12.5 and 2γ = 25 (Table 6). Validation was
performed for two brace widths (β = 0.40 and β = 0.90) and two steel grades (S355 and S700).

The validation results are presented in Table 7 for one case and graphically in Figure 11 for all cases. As
was expected, when the joints are not loaded by the axial load in the main member (n = 0), their initial
rotational stiffness, Sj,ini, is found not to depend on the steel grade: the joints made of S355 steel have
exactly the same initial stiffness as the corresponding ones made of S700. However, the stresses in the
main member lead to noticeable discrepancy in the stiffness values for different steel grades. The
difference increases with the increase of n, leading to the same discrepancy in the chord stress function,
ksn,ip,FEM. As can be seen, the largest differences Δ are observed for n = –0.99 (16%) and n = 0.99 (14%).
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Table 6. Validation parameters.

Main member 0100100 t´´ 0200200 t´´
t0 [mm] 4 8 8 16
2γ 25 12.5 25 12.5

Connected member 111 tbb ´´ 111 tbb ´´
b1 [mm] 40 90 80 180
β 0.40 0.90 0.40 0.90

Steel grade S355, S700

n -0.99, -0.98, -0.95, -0.80, -0.60, -0.4, -0.2,
0, 0.2, 0.4, 0.6, 0.8, 0.95, 0.99

At the same time, the proposed chord stress function, ksn,ip, does not distinguish between the steel grades.
Being developed for S500, it provides the results intermediate between S355 and S700, with the largest
errors in the cases close to yielding (n = ±0.95…0.99). It should be noted that for the joints with other β
and γ configurations, the observed errors are considerably lower, rarely exceeding 10%. Overall, the
developed chord stress function provides rather accurate prediction, with the final average errors of 2.0%
and 3.6% for S355 and S700 respectively.

Table 7. Validation of the chord stress function. Main member 100x100x4 (γ=25), connected member
40x40x4 (β=0.40).

n Sj,ini [kNm/rad] ksn,ip,FEM ksn,ip
Δ [%]

S355 S700 Δ [%] S355 S700 Δ [%] S355 S700
-0.99 21.5 18.1 16 0.71 0.59 16 0.71 0.0 19.0
-0.95 23.6 20.0 15 0.77 0.66 15 0.75 3.0 14.6
-0.80 26.6 23.0 13 0.87 0.76 13 0.84 3.5 11.3
-0.60 27.8 25.1 10 0.91 0.82 10 0.88 3.4 6.9
-0.40 28.7 27.0 6 0.94 0.89 6 0.92 2.3 4.1
-0.20 29.6 28.7 3 0.97 0.94 3 0.96 1.1 1.8
0.00 30.4 30.4 0 1.00 1.00 0 1.00 0.0 0.0
0.20 31.3 32.1 3 1.03 1.06 3 1.04 1.1 1.5
0.40 32.2 33.8 5 1.06 1.11 5 1.08 2.2 2.8
0.60 33.0 35.4 7 1.08 1.16 7 1.12 3.2 3.9
0.80 33.5 36.8 9 1.10 1.21 9 1.16 5.2 4.2
0.95 31.9 36.2 12 1.05 1.19 12 1.12 6.8 6.1
0.99 30.3 35.1 14 0.99 1.15 14 1.08 9.0 6.0



Figure 11. Validation of the proposed chord stress function.
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Conclusions

This article analyzes the approach provided in [25] for analytical evaluation of the initial rotational
stiffness for welded RHS T joints. By the comparison with the experimental data, it is shown that the
original approach considerably underestimates the initial stiffness of the joints. To obtain more accurate
results, the improved equation is proposed for the component ‘main member flange in bending’. It is also
found that the size of the fillet weld noticeably affects the initial rotational stiffness of the joint.

Based on the 3D FEM analysis of square hollow section joints, the axial stress in the main member is
found to affect significantly their initial rotational stiffness, with the maximum decrease of stiffness by
50% for compressive loads and the maximum increase by 30% for tensile loads. The observed effect is
found to depend on the brace-to-chord width ratio β and the chord width-to-thickness ratio γ.

To get reliable results in frame analyses, the chord stress function for the initial rotational stiffness of T
joints is proposed, similar to that for moment resistance. The function is developed using the curve fitting
technique, based on the obtained numerical results. The function is presented divided in three parts: the
linear part in the range -0.8 ≤ n ≤ 0.8 and two nonlinear parts with -0.99 ≤ n < -0.8 and 0.8 < n ≤ 0.99.
The different functions are proposed for the range 0.25 ≤ β ≤ 0.85 and β = 1.0, with the linear
interpolation for 0.85 < β < 1.0.

The  conducted  numerical  validation  shows  that  the  effect  of  axial  loads  in  the  main  member  on  the
rotational stiffness of joints is dependent on the steel grade of the main member, which should be also
included in the chord stress function as an independent variable. Generally, in the considered range, the
proposed solution matches well to the numerical results and can be recommended for using in the frame
design of square hollow section joints. However, more research is required to extend the function for
RHS joints.
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