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Abstract

The lateral diffusion of embedded proteins along lipid membranes in protein-poor

conditions has been successfully described in terms of the Saffman–Delbrück (SD)

model, which predicts that the protein diffusion coefficient D is weakly dependent on

its radius R as D ∝ ln(1/R). However, instead of being protein-poor, native cell mem-

branes are extremely crowded with proteins. Based on extensive molecular simulations

we here demonstrate that protein crowding of the membrane at physiological levels

leads to deviations from the SD relation and to the emergence of a stronger Stokes-like

dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical

factors: smaller proteins are able to avoid confinement effects much better than their

larger counterparts. The results highlight that the lateral dynamics in the crowded

setting found in native membranes is radically different from protein-poor conditions

and plays a significant role in formation of functional multi-protein complexes.
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In living biological cells, the plasma membrane hosts numerous integral proteins. To-

gether with membrane lipids and other macromolecules, they are thermally driven to dif-

fuse1,2 along the plasma membrane to form functional protein oligomers3,4 and lipid-protein

assemblies5,6 involved in, e.g., metabolism, recognition, and signaling.

In this context, the major challenge is to understand protein diffusion under the crowd-

ing of proteins. Membranes of living biological cells are highly heterogeneous, partitioned,

and extremely rich in proteins,7–10 with typical lipid/protein ratios ranging between 50 and

200.11,12 The average in-plane distance between membrane proteins is just a few nanometers,

implying that the proteins are in constant interplay colliding with one another. However, how

this dynamical interplay induced by protein crowding influences membrane protein diffusion

remains poorly understood.

It is known that crowding, together with other phenomena occurring in the membranes

of living cells, leads to complex effects13,14 but their characterization in the nanoscale has

turned out to be difficult. Molecular simulations would be an excellent approach or even

the method of choice to explore this challenging topic but, surprisingly, quite little has been

done until now. Simulations15,16 have revealed the emergence of crowding-induced anoma-

lous diffusion13,14 in lipid membranes, complementing earlier Monte Carlo simulations with

immobile objects17 and clarifying the interpretation of fluorescence correlation spectroscopy

experiments18 that originally confirmed anomalous diffusion to take place in lipid bilayer

systems. Besides this, simulations have largely just supported the experimental observa-

tions19 that diffusion slows down for increasing crowding.15,20,21 As to recent progress on the

experimental side, modern atomic force microscopy, single-particle tracking, and the variety

of super-resolution microscopy techniques are able to detect, e.g., heterogeneity, anomalous

diffusion, and nonergodicity in the motion of membrane proteins.22–24 These techniques have

potential to generate breakthrough insight on how functional protein complexes form in na-

tive membranes through diffusion and oligomerization. Planning and interpretation of these

experiments is difficult, though, given the lack of theoretical understanding of how membrane
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protein diffusion takes place under protein-rich conditions.

Meanwhile, in the protein-poor limit the diffusion of proteins is fairly well understood.1,19

Experimental data have provided compelling evidence that for a membrane protein of lateral

radius R, the protein diffusion coefficient D scales logarithmically as D ∝ ln (1/R). This

logarithmic dependence has been observed for a variety of membrane proteins1,25–27 and

aggregated peptides.28 Computer simulations of proteins in protein-poor conditions also

support this relation,20,29 even in the presence of hydrophobic mismatch.30 While deviations

from this relation have also been reported,31–33 they have been suggested to result from local

membrane deformations34 or experimental setups.25

Theoretically, the logarithmic dependence of D on R is predicted by the Saffman–

Delbrück (SD) model derived for protein-poor conditions. The SD model links the diffusion

coefficient of a protein with the physical properties of the lipid membrane and the surround-

ing solvent,35,36

DSD =
kBT

4πµmh
×
[
ln

(
hµm

µfR

)
− γ

]
, (1)

where µm and µf are the viscosities of the membrane and the surrounding solvent (typically

water), h is the hydrophobic thickness of the membrane, and γ ≈ 0.5772 is the Euler–

Mascheroni constant. The SD model treats the lipid bilayer as a continuum liquid, thus

failing to describe the diffusion of membrane lipids37 unless the interleaflet friction is consid-

ered.38 The SD model should be valid for membrane inclusions smaller than the SD length

LSD = hµm/(2µf) with a typical value of ∼100 nm.39 This holds for membrane proteins,

but for diffusing objects larger than LSD, the SD model was extended and a Stokes-like

dependence D ∝ 1/R was found.39,40 This relation successfully describes domain diffusion

in monolayer experiments,41,42 computer simulations on large inclusions,29 and diffusion in

viscous membranes.43 However, the interpretation of the parameters, such as R, in the SD

model is not obvious,44 and fits to data measured in living cells provide nonphysical val-
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Figure 1: Top: Transmembrane proteins in the polydisperse coarse-grained simulations.
labeled P1 to P7; the subscript is the PDB identifier (Tables S1 and S2 in the Supplemental
Information). Two DPPC lipids, making up the bilayer, are also shown to scale. Bottom:
Examples of the simulated polydisperse CG membranes with a varying lipid/protein ratio of
400, 100, and 50 lipids per protein per leaflet (left to right). The rightmost system has also
appeared in Ref. 13.

ues for them.27 Still, the SD model is consistent with extensive experimental data for the

logarithmic dependence on R and hence widely accepted under dilute conditions.

However, given the assumptions made in deriving the SD model for infinitely dilute

protein concentrations, can one assume its applicability to biologically relevant membrane

systems characterised by protein crowding? If not, then the central questions are, what is

the size dependence D(R) replacing the SD law, and for what physical reasons?

In this work, we tackle these outstanding questions by molecular dynamics (MD) simula-

tions. Previous MD studies have addressed the effects of crowding and highlighted decreased

diffusivities,15,20,21 an extended subdiffusion regime,15,16,20 and deviations from Gaussian

statistics.16 Despite all the experimental and computational efforts, however, no studies

have attempted to probe the validity of the SD model in crowded membranes, or found

rigorous descriptions for D(R) in the protein-rich limit.

Based on the present work on membranes hosting a polydisperse set of proteins, we find

that in dilute conditions we reproduce the SD-like weak D ∝ ln (1/R) dependence. However,
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protein crowding at physiological levels is here shown to result in a crossover to a significantly

more pronounced Stokes-like D ∝ 1/R relation. We argue that this 1/R law mainly arises

due to geometrical factors: smaller proteins are able to avoid confinement effects much better

than their larger counterparts. This claim is in full agreement with our additional simulations

of crowded membranes with a monodisperse protein population, and with simulations of a

2D Lennard-Jones liquid.

To elucidate the effect of protein crowding on the D(R) relationship, we performed MD

simulations using two very different models. First, we simulated extensive membranes in the

coarse-grained (CG) scheme45–47 using the Martini model. These membranes contained a

polydisperse mixture of seven transmembrane proteins with effective radii between 1 and 4.5

nm, thus mimicking realistic conditions to a satisfactory extent. In each of the simulated five

membranes, with lipid/protein ratios equal to 50, 75, 100, 200, and 400 per leaflet, the relative

concentrations of the seven protein types were equal. These proteins, chosen to have minimal

extramembrane domains and a cylindrical shape, are shown in Fig. 1, along with examples

of simulated membrane systems. The protein–protein interactions were slightly reduced,

resulting in realistic transient oligomerization. Additionally, we used this Martini model to

simulate crowded membranes with a monodisperse set of proteins and a lipid/protein ratio of

50 per leaflet. Here, in addition to the proteins shown in Fig. 1, the simulations also included

two other small proteins (see Section S1.4). Second, we simulated 2D Lennard-Jones (2DLJ)

fluids with 15 circular inclusions of different radii. The free LJ particle/inclusion ratio varied

between 300 and 1000, which provides similar protein/inclusion area coverages than the CG

Martini systems. Details on the CG and 2DLJ models and simulations are provided in

Sections S1.1–S1.4.

The simulations of polydisperse CG models were run for 100 µs each, which allowed the

reliable extraction of D in the microsecond regime, where diffusion is no longer anomalous

but normal15,16 (Section S2.2). The extracted lipid and protein D are shown as a function

of the lipid/protein ratio in the top panel of Fig. 2. The effect of crowding is somewhat
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Figure 2: Top: Lipid and protein diffusivities from polydisperse CG simulations. Note that
the x axis is linear in protein/lipid values.15 Bottom: Gyration radii and effective radii of
the proteins extracted from single-protein simulations. Inset: size distribution in the 2DLJ
system. Coloring as in Fig. 1.

nonlinear, in agreement with earlier works.15,48 In particular, the effect of crowding on the

Ds of the smallest proteins and the lipids is most severe. The diffusion coefficients measured

for each individual protein reveal fairly small scatter around the mean, indicating that no

proteins are immobilized by, e.g., extensive aggregation or confinement (Section S2.6), except

for the P21QJP, see below.

It is established that the radius of a diffusing protein is not simply that of the bare protein

alone but includes a shell of lipids moving together with the protein.44,49 We estimated these

effective radii Reff from average lipid displacements in the vicinity of the protein in single-

protein simulations (Sections S1.2 and S2.1). Protein Reff as well as their bare gyration radii

Rg are shown in the bottom panel of Fig. 2. Reff values exhibit a systematic increase as
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a function of Rg. Superimposing the lipid displacement profiles reveals that the thickness

of the lipid shell is approximately 1.5 lipid layers thick and independent of the size of the

protein as well as of the lipid/protein ratio (see Section S2.1).

Fig. 3 depicts the protein diffusion coefficient as a function of Reff . Fits of the logarithmic

SD-like (1) and the Stokes-like behavior (D = kBTλ (4πµmhR)
−1 + c with characteristic

length λ) are shown in Figs. 3 and S9. The value of constant c was insignificant. It is

evident that at low protein concentrations the data follow D ∝ ln (1/R), in line with previous

studies. However, at higher protein concentrations D(R) becomes increasingly Stokes-like.

This observation is independent of the definition of the protein radius (Section S2.3), even

though Reff provides slightly better fits. The change from the SD-like to the Stokes-like

behavior upon crowding is evident in the double logarithmic scale (insets of Figs. 3 and S9).

Importantly, these conclusions for the crossover from the logarithmic SD-like to the Stokes-

like behavior hold for the polydisperse CG Martini model, and also for the 2DLJ model.

Further, under protein crowding, the Stokes-like behavior is observed also in monodisperse

CG systems (see Section S2.9). As an exception to the general trend, the diffusion coefficients

calculated for the second smallest protein (P21QJP) do not follow the observed tendencies

in most of the systems due to its tendency to aggregate with the largest protein (P73TDP)

(see Section S2.4), which serves as a reminder that simplified theoretical models cannot

account for specific interactions in biological systems. Yet, in monodisperse crowded CG

systems (Section S2.9) P21QJP diffuses freely in the absence of P73TDP and hence follows

the D ∝ 1/R behavior. Overall, the observation of the Stokes-like behavior for crowded

membranes is our first main result.

Setting the hydrophobic thickness of the membrane h = 4 nm50 and the water viscosity

µf = 0.7 mPa s,51 and using Reff , we extract 2.7 mPa s for the membrane viscosity µm from

fits to the SD model (1) for the most dilute system. This agrees favorably with 3 mPa s

measured for a pure DPPC bilayer,50 suggesting that the D ∝ ln (1/R) dependence arises

from an underlying SD-like relationship.
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Our extensive CG simulations already provide compelling evidence that at high protein

crowding, corresponding to physiological conditions (Section S2.8), theD ∝ ln (1/R) relation

gets replaced by the D ∝ 1/R one. We also considered a 2DLJ model that contains no

coupling between the diffusion plane and the surrounding solvent. This model successfully

reproduced the key features of membrane dynamics in our earlier work.16,52 Remarkably,

the change in the dependence of D(R) from SD to Stokes-like behavior is also convincingly

reproduced by the 2DLJ systems, see Fig. 3 (and Section S2.5).

The extracted µm from the dilute CG simulations gives LSD ≈ 7.7 nm. The SD model

assumes that the diffusing proteins have radii smaller and inter-protein distances larger than

LSD, and that the host membrane and the surrounding solvent are infinite. Otherwise, the

finite size of the simulation system might affect its dynamic properties.38 The observation

that D ∝ ln (1/R) is observed in our state-of-the-art simulations, which only partly fulfil

these requirements,39 suggests that the regime where the relation holds is actually broader

than what is expected based on the SD model. Alternatively, the D ∝ ln (1/R) law might

result from another underlying and unresolved mechanism, supported by the similar behavior

of the 2DLJ simulations without membrane–solvent coupling. The observation of the D ∝

ln (1/R) relation in conditions where SD is not expected to hold is our second main result.

Fig. 3 combines data from the polydisperse CG (colored dots) and the 2DLJ simulations

(black dots) for the dilute (top, 400 lipids per protein, 1000 free LJ particles per inclusion)

and crowded (bottom, 50 lipids per protein, 300 free LJ particles per inclusion) cases using

dimensionless units (both diffusivities and radii are divided by the corresponding values of

a lipid or a single LJ particle (see Section S1.5)). While the compared systems do not have

exactly the same protein/lipid or inclusion/free LJ particle ratios nor the same surface cover-

age of proteins/inclusions, this normalization reveals the striking similarity of the functional

relationship between diffusion coefficients and radii in these two fundamentally different sys-

tems. The data for the dilute systems are well fitted by the D ∝ ln (1/R) model. The

crowded case does not follow this SD-like dependence, but is instead described accurately
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Figure 3: Diffusion coefficients versus protein/inclusion size of the polydisperse CG mem-
brane and 2DLJ models shown in dimensionless units. Unscaled data are shown in Sections
S2.3 and S2.5. In the dilute case the data fully agree with the SD model, whereas in the
crowded case the 1/R dependence of the diffusivity is evident. Coloring as in Fig. 1.

by the Stokes-like 1/R law. This full quantitative consistency of the D(R) behavior between

the CG and the 2DLJ models is our third main result.

What is the physical origin of the observed change in the functional form of D(R)?

Protein crowding increases membrane viscosity, which results in an increase of the SD length

and hence should expand the validity of the SD model. However, we instead find that the SD

model no longer describes diffusion in the crowded regime. The presence of other proteins

violates the basic assumption in the SD model of a single protein embedded in an isotropic

continuum liquid. Could inter-protein interactions and aggregation lead to smaller effective

protein mobilities and thus effect deviations from the SD law? This effect is excluded as

due to the specifics of our model setup (Sections S1.1 and S1.3) no significant aggregation

between proteins or inclusions was observed, except for the aforementioned P21QJP–P73TDP

interaction (see Section S2.4). Crowding may also alter the protein and lipid dynamics due

to confinement, and proteins mutually act as moving obstacles. It was recently found that
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proteins need to escape their confinement to properly sample the membrane plane and reach

the normal diffusion regime.15 This escape probability is directly proportional to the protein

cross section and hence radius. In the crowded systems the smallest proteins are able to travel

longer distances by slipping through small openings between proteins that are impenetrable

for larger proteins. This is visualized in Section S2.7 showing 35 µs long trajectories of each

of the protein types in the most crowded system. The trajectory of the smallest protein

shows both localized rattling motion and rapid movement across longer distances. These

spurts correspond to events where the small protein slips through an opening between the

larger proteins.

The hypothesis that geometric confinement is responsible for the crossover from the

D ∝ ln (1/R) behavior to the 1/R law is further supported by the 2DLJ simulations, in which

the diffusion of disc-shaped inclusions of different radii undergoes an identical transition,

as demonstrated quantitatively in Fig. 3. Also, given that the 2DLJ system is void of any

hydrodynamic interactions with the solvent, it is obvious that the change in D(R) must arise

from geometric factors: The embedded discs act as obstacles and give rise to confinement

effects. Since hydrodynamics is not predominant for this system, the dynamics are likely

mostly affected by collisions, which can effectively be modeled by the 2D Enskog theory.53

While this theory was derived for fairly dilute conditions, it interestingly suggests a 1/R

dependence of the collision rates on the particle radius.

Does the observed change in the D(R) dependence have any biological relevance? Pro-

teins occupy at least 20% of the surface area of a red blood cell membrane.11 This corresponds

to between 100 and 200 lipids per protein. Based on data for lateral protein concentration

in the rod outer segment and in the baby hamster kidney cell membranes, an estimate of 50

lipids per protein has been made.12 In the present work, we found that the crossover from

the SD law to the Stokes-like regime takes place at about 200–300 lipids per protein (Sec-

tion S2.8). Therefore, in cell membranes exceptionally crowded with proteins the diffusion

takes place in a regime characterized by Stokes-like scaling D ∝ 1/R.
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Hence, in the crowded case there is an order of magnitude difference between the diffusion

coefficients of the smallest proteins and protein complexes that can be as large as 10 nm,

such as the nuclear pore complex. Under crowding, large protein complexes are essentially

immobile but interact with small proteins that diffuse rapidly and aggregate with the com-

plex to render them functional. The dynamics in the crowded setting is therefore radically

different from protein-poor conditions, where the diffusion of proteins is largely independent

of their size as highlighted by the SD law.

We demonstrated that the D ∝ ln(1/R) relation akin to the celebrated SD model fails

to describe protein diffusion under protein crowding. Such conditions favor the diffusion of

smaller proteins that are able to escape geometric confinement. Remarkably, this behavior

is reproduced in a simple 2DLJ fluid, providing compelling support for the hypothesis that

the observed crossover from D ∝ ln (1/R) to D ∝ 1/R in crowded membranes is mainly

effected by geometric constraints and thus the ability of a given protein to escape confine-

ment. Importantly, the change from the SD-like to the Stokes-like behavior occurs at protein

concentrations that are relevant for cellular membranes.11,12 This suggests that while the SD

model has been successful in describing diffusion coefficients in dilute model systems, it

should be applied to more realistic biological membranes with extreme care.
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