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Multi-view Nonparametric Discriminant Analysis
for Image Retrieval and Recognition
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Abstract—A novel multi-view nonparametric discriminant
analysis method is proposed for the application of cross-modal
image retrieval and zero-shot recognition. We exploit the class
boundary structure and discrepancy information of the available
views in order to formulate an optimization criterion which is
automatically adjusted to the multi-view class structures. The
proposed method allows for multiple projection directions, by
relaxing the Gaussian distribution assumption of related methods.
The experiments demonstrate that the proposed method can
achieve superior results comparing to several existing methods.

Index Terms—Multi-view learning, subspace learning, image
retrieval

I. INTRODUCTION

We have entered a world of multimedia big data. Multimedia
contents also become increasingly diverse in their representa-
tion and exist in different modalities. It urges the research
community to dive into the heterogeneous data to find the
desired content across modalities or classify them into the
right category from many views. For example, thanks to the
available text-image datasets from the collaborative content
creations in Wikipedia, matching textual description with their
corresponding images becomes a hot-button issue. People
start to revisit the image retrieval problem not only in the
conventional way of retrieving the best matching image using
the query text, but generating human understandable sentences
given an image [1]. A visual object can also be observed
in various domains in terms of illumination, noise level,
viewing angle, and self deformation. Integrating the knowl-
edge obtained from multiple views/modalities contributes to
improving the task of object recognition [2].

Subspace learning has proved to be successful among the
techniques in multi-view learning for multimedia analysis
[3]. It finds a common latent space from different input
modalities by fitting an optimization criterion. Among un-
supervised methods, Canonical Correlation Analysis (CCA)
[4] has been widely used to establish a correlation between
views [5], [6]. On the other hand, Multi-view Discriminant
Analysis (MvDA) [2] as a supervised algorithm is a direct
extension of Linear Discriminant Analysis (LDA) [7], [8]. It
seeks for the most discriminant features by maximizing the
determinant of the between-class scatters while minimizing
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Fig. 1: t-SNE visualization of word2vec represenations before
and after applying the proposed method. The samples are
grouped together automatically, and each class label indicates
the majority class in its group, which matches the correspond-
ing test class.

that of the within-class scatters regardless of view origins. This
method can be further extented to nonlinear cases by using
(approximate) kernel mappings [9], [10], or integrating with
neural nets [11], [6]. Generalized Multi-view Analysis (GMA)
[12] was proposed as a framework for numerous techniques
to maximize the intra-view discriminant information.

MvDA has certain limitations originating from LDA [13],
which is developed upon the assumption that data in each
class follow a Gaussian distribution. Only class centers are
considered when calculating the between-class scatter matrix
and within-class matrix. These parametric methods also suffer
performance degradation when the data is non-Gaussian. Sev-
eral nonparametric techniques [14], [15] were thereby devel-
oped to design alternative between-class scatters by exploiting
the distances of the data close to the class boundary. However,
these techniques are applied in the single-view cases, and view
discrepancies should not be overlooked using direct extensions
in the multi-view learning.

We propose a new formulation for multi-view discriminant
analysis which successfully exploits the boundary structure of
the classes on data from different sources, as well as the view
discrepancy for balancing the contribution of each view in the
overall optimization process. Following the graph embedding
framework [16], we design the intrinsic and penalty graphs
characterizing the within-class compactness and between-class
separability, while encoding both intra-view and inter-view
discrimination simultaneously. Class compactness is encoded
using a k1-nearest neighbor graph connecting neighboring
samples from the same class with the same view origin,
while class discrimination is modeled using another k2-nearest
neighbor graph connecting nearest sample pairs from the same
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view but belonging to different classes. We also enhance
the class discrimination of each node in the penalty graph
by weighting the contribution of neighboring pairs based on
their proximity to the class boundary. Moreover, global class
discrimination is combined to the adaptive local graph to better
adjust to the properties of heterogeneous classes.

We outline the strength of the proposed method as follows:
1) It allows for a larger number of projection directions than
MvDA, and makes use of all the samples when developing
the intrinsic and penalty graphs, while MvDA merely uses
the class centers. 2) It assumes that each class is formed by
multiple subclasses, denoted by the different views. In this
way, it relaxes the assumption of MvDA in that each class is
formed by samples drawn from a multi-dimensional Gaussian
distribution, independent from the view they come from. 3)
By exploiting both the between-class and within-class margins
in the same view, we obtain a better class discrimination in
the penalty graph and compactness in the intrinsic graph, and
result in an improved performance. 4) Multi-view extension of
Marginal Fisher Analysis (MFA) under the GMA framework
[12] only considers the intra-view discriminant information,
while MvNDA also takes into account of the inter-view
discrimination.

The rest of the letter is organized as follows. In Section
II, we will present our multi-view nonparametric discriminant
analysis in detailed after describing the previous work on
MvDA [2]. In Section III, we present quantitative results in
cross-modal image retrieval on the Wikipedia dataset and zero-
shot recognition on the Animal with Attribute (AwA) dataset.
Finally, Section IV concludes the letter.

II. APPROACH

We denote the data matrix by X = [x1,x2, . . . ,xN ],
xi ∈ RD, where N is the number of samples and D is
the feature dimension. In the multi-view case, we define
Xv ∈ RDv×N , v = 1, . . . , V for the feature vectors of the
vth view. The dimensionality of the various feature spaces
Dv can vary across the views. W = [W>

1 ,W
>
2 , . . . ,W

>
V ]
>,

where Wv ∈ RDv×d, v = 1, . . . , V is the projection matrix in
view v, d is the number of dimensions in the latent (common)
space. For multi-class learning problems, the class label of
the sample xi is defined as ci ∈ {1, 2, . . . , C}, where C is
the number of classes. We also denote the index set of the cth
class by πc.

We use the graph embedding notation, where we define by
G = {X,V} an undirected weighted graph with vertex set
X and simlarity matrix V ∈ RN×N . The diagonal matrix D
and the Laplacian matrix L of a graph G in the vth view are
denoted as Lv = Dv −Vv, Dv

ii =
∑

j 6=i Vv
ij , ∀i.

A. Multi-view Discriminant Analysis (MvDA)

MvDA [2] is the multi-view version of parametric LDA
which maximizes the ratio of the determinant of the between-
class scatter matrix to that of the within-class scatter matrix.
Mathematically, it is written as

JMvDA(W) = argmax
W

Tr(SP
B)

Tr(SP
W )

, (1)

where the between-class scatter matrix is

SP
B =

V∑
i=1

V∑
j=1

W>
i Xi

( C∑
c=1

1

Nc
ecec

> −
1

N
e e>

)
︸ ︷︷ ︸

LP
B

X>
j Wj (2)

and the within-class scatter matrix is

SP
W =

V∑
i=1

V∑
j=1

W>
i Xi

(
I−

C∑
c=1

1

Nc
ecec

>
)

︸ ︷︷ ︸
LP
W

X>
j Wj (3)

LP
B and LP

W are the between-class Laplacian matrix and
within-class Laplacian matrix, respectively [17]. Both the
single-view and multi-view linear discriminant analysis are
parametric methods under the assumption that the data of each
class follows a Gaussian distribution. Their performance de-
grades when the data distribution is non-Gaussian. Moreover,
since the rank of the between-class matrix is at most C−1 in
the vth view, the number of the final MvDA feature is at most
(C−1)×V . The classification performance is constrained by
the limited number of dimensionality in the subspace.

B. Proposed Multi-view Nonparametric Discriminant Analysis
(MvNDA)

We propose a new criterion to learn a mapping from the
multiple feature spaces defined over the various views to a
common space as follows,

JMvNDA(W) = argmax
W

Tr(SN
B )

Tr(SN
W )

, (4)

where W is the projection matrix containing the eigenvectors
of S = SN

W
−1

SN
B associated with the top d eigenvalues λ,

and can be solved efficiently from the generalized eigenvalue
problem as in [2], [6]. We define the within-class scatter
matrix SN

W and between-class scatter matrix SN
B as follows.

In the latent space, we enforce the samples from the same
class of the same view to be close to each other. Therefore,
the intrinsic graph is designed to strengthen the intra-view
class compactness from these subclasses, and the within-class
scatter matrix is

SN
W =

V∑
i=1

W>
i Xi(DW −VW )X>

i Wi (5)

where LN
W = DW −VW is the within-class Laplacian matrix

and the intrinsic graph VW is defined as

VW
pq =

{
1, if p ∈ NNk1(q) or q ∈ NNk1(p)

0, otherwise.
(6)

NNk1
(p) denotes the index set of the k1 nearest neighbors of

the sample xp in the same class.
We also design a view-specific penalty graph to push apart

the marginal samples from different classes of the same view
with the following between-class scatter matrix:

SVS
B =

V∑
i=1

W>
i Xi[Q ◦ (DB −VB)]X

>
i Wi, (7)

where LVS
B = DB − VB is the between-class view-specific
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Laplacian matrix, and its intrinsic graph is characterized as:

VB
pq =

{
1, if (p, q) ∈ NPk2(cp) or (p, q) ∈ NPk2(cq)

0, otherwise.
(8)

NPk2(c) is a set of data pairs which contains the k2 nearest
pairs in the set {(i, j), i ∈ πc, j /∈ πc}. The weight matrix
Q aims to highlight the importance of the samples on the
classification boundary. Specifically, the value in Q goes to
0.5 if the sample falls close to the boundary, but reduces to
0 otherwise. d(p, q) is the Euclidean distance between two
vectors p and q. Q is mathematically described below,

Qpq =


min{d(p, q),d(p, NNk2

(p))}
d(p, q)+d(p, NNk2

(p))
if (p, q) ∈ NPk2

(cp)
or (p, q) ∈ NPk2

(cq)

0 otherwise.

In order to enforce both inter-view and intra-view class
discrimination, our penalty term is based on the linear com-
bination of SP

B of MvDA (2) and SVS
B of (7) as follows

SN
B = αSP

B + (1− α)SVS
B , (9)

where α ∈ [0, 1] is a weighting factor which is set close to
1 if the training data has a Gaussian distribution, and some
other value if the data distribution is unknown.

We provide a qualitative illustration of the intrinsic and
penalty graph in Fig. 2. The intrinsic graph shows the within-
class compactness by connecting a sample to its k1-nearest-
neighbors of the same class and view. The between-class
separability is characterized by both the connected marginal
point pairs from the same view but of different classes, and
the distance of different class centers.

We also follow the standard kernel-based learning approach
to define non-linear multi-view mappings. Each input space is
then mapped to the so-called kernel space Fv using a non-
linear function φ, i.e. Xv ∈ RDv×N Φ(·)−→ Φ(Xv) ∈ R|Fv|×N .
In Fv , following the Representer Theorem [18], [19], a linear
projection can be expressed as Wv = Φ(Xv)Av and dot
products between data pairs can be expressed using the kernel
matrix Kv = Φ(Xv)

>Φ(Xv) [20]. Then,

JMvNDA(A) = argmax
A

Tr(A>K LN
B KA)

Tr(A>K LN
W KA )

, (10)

where the between-class Laplacian matrix LN
B = αLP

B +(1−
α)LVS

B , and K = diag(K1, · · · ,KV ). For the cases where the
direct solution of (10) is impractical, due to the training data
size, we employ the approximate kernel mapping proposed in
[10] followed by the linear mapping defined in (4).

III. EXPERIMENTS

A. Wikipedia dataset

The cross-modal retrieval dataset named “Wikipedia” was
collected from the “Wikipedia featured articles” [1]. The
dataset has 10 generic classes and is composed of 2, 866
documents. Each document is a short paragraph with a median
text length of 200 words, and is coupled with a single image.

Between-class 
Separability

Within-class 
Compactness

Penalty GraphIntrinsic Graph

Class 1

Class 2

μ1

μ2

Fig. 2: The adjacency relationship of the intrinsic and penalty
graphs of the proposed MvNDA. The circular and rectangle
dots indicate samples from different views. We illustrate the
2-nearest adjacencies (i.e. k1 = k2 = 2) of one sample in each
class per view origin for clarity.

We follow the train/test split in [1] using 2, 173 training
and 693 test pairs of images and documents. Furthermore, a
validation set is held out by 20% of the training image/text
pairs. We perform PCA beforehand and reduce the dimen-
sionality of input features to 100. We set the dimensionality
of the latent space d to 50 for all methods, and the maximal
number of dimesional by MvDA is used. We set α = 0.5 and
k1 = k2 = 20 in all experiments based on the validation set.

Here, we briefly describe the feaures extracted from each
view in this dataset. For images, two off-the-shelf CNNs
models are used to produce the visual features. VGGNet
provides the view 1 feature using the output from the fc8
layer in VGGNet with 16 weight layers [21]. We also use
the GoogleNet outputs as the view 3 features. View 2 feature
is extracted from the Wikipedia paragraphs surrounding the
images using a pre-trained skip-thoughts model [22]. An
additional view 4 feature is the regression outputs from the
Word2Vec by mapping the visual feature to the word feature
[23]. The same set of features has been adopted and detailed
description can be found in [6].

The cross-modal retrieval is conducted in both ways by

TABLE I: MAP Score (%) on the Wikipedia Dataset

Linear methods Kernel methods

Method img. query txt. query Avg. img. query txt. query Avg.

2 views
MvCCA [6] 36.92 34.96 35.94 44.78 41.83 43.31
MvPLS [6] 42.49 40.42 41.46 42.94 40.46 41.70
GMA [12] 41.91 38.55 40.23 45.65 36.97 41.31
MvDA [2] 39.73 37.14 38.44 44.16 37.82 40.99
MvNDA 43.51 40.72 42.12 48.41 41.97 45.19

3 views
MvCCA [6] 36.40 34.51 35.46 44.06 41.41 42.74
MvPLS [6] 41.29 39.34 40.31 42.03 39.40 40.71
GMA [12] 42.26 38.66 40.46 43.96 36.06 40.01
MvDA [2] 39.34 35.04 37.19 41.25 34.58 37.92
MvNDA 43.21 40.81 42.01 48.17 42.67 45.42

4 views
MvCCA [6] 40.50 37.91 39.21 45.13 41.66 43.40
MvPLS [6] 41.86 39.74 40.80 41.94 38.84 40.39
GMA [12] 42.26 38.67 40.47 43.30 35.95 39.63
MvDA [2] 41.07 39.21 40.14 41.31 37.16 39.24
MvNDA 43.44 40.63 42.04 48.00 42.43 45.21
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Fig. 3: Clockwise from top left: The precision-recall curve by
querying images for text annotations, the retrieval performance
of matching text to images, the MAP scores with various α
under different fixed numbers of nearest neighors k, (here k =
k1 = k2), and the MAP scores with the different k nearest
neighbors and a fixed α = 0.5. The legends in the figures in
the first row indicate the method producing the PR curve, and
we denote querying images for texts by “I2T”, and querying
texts by images by “T2I” in the figure in the bottom row. k
is the number of nearest neighbors.

querying every test image and searching for the most relevant
texts in the test set, and vice versa. The Mean Average
Precision (MAP) is used to evaluate the retrieval performance
based on the position of all retrieved images/annotations. We
compare the retrieval performance using the features in the
subspace of the proposed MvNDA with that of numerous
methods in the literature. Both matching images (view 1) to
text (view 2) and text to images are tested. Additional views are
projected to the latent space to show more results. In Table
I, we see MvNDA outperforms the previous methods in all
scenarios using different numbers of views. The further results
are confirmed by the Precision-Recall curves in Fig. 3, which
shows the retrieval results by the proposed MvNDA are among
the leading group in both querying images for text and using
text to seek relevant images. We also analyze the effects of
different numbers of nearest neighbors and the weight factors
α in Fig. 3. It shows the consistent retrieval performance with
the different values of k or α, while only using the view-
specific discrimination (α = 0) degrades the MAP score. We
also show the word embedding in its original feature space
and the projected latent space in Fig. 1.

B. Animal with Attributes (AwA)

We also demonstrate the effectiveness of multi-view em-
beddings in tackling the domain shift problem for zero-shot
recognition [24]. The Animal with Attribute (AwA) dataset
has 50 animal classes with 30, 475 images, and 85 class-
level attributes. We follow the experimental protocol in [6] by
splitting 40 classes (24, 295 images) to train the recognition
model while the other 10 classes with 6, 180 images for testing

TABLE II: Recognition accuracy (%) on the AwA dataset

Linear methods Approxmiate kernel methods
Method 2 views 3 views 4 views 2 views 3 views 4 views

MvCCA [6] 55.86 75.88 82.01 43.93 47.33 49.51
MvPLS [6] 58.52 73.59 77.09 45.37 47.50 52.10
MvDA [2] 49.95 68.55 70.00 36.65 42.73 42.72
GMA [12] 52.12 73.49 78.46 42.42 44.81 46.84
TMV-HLP [24] - 73.50 80.50 - - -
MvNDA 56.16 77.16 82.78 48.78 46.74 47.56

(a) 2-view NDA (b) 3-view NDA
persian+cat

hippopotamus

leopard

humpback+whale

seal

chimpanzee

rat

giant+panda

pig

raccoon

(c) 4-view NDA
Fig. 4: t-SNE Embedding of Latent Feature Representation:
We visualize the embeddings from different numbers of views
using the proposed method.

the zero-shot recognition. Each animal class contains more
than one positive attribute, and the attributes are shared across
classes which enables zero-shot recognition. The detailed class
labels and attributes are provided in [25]. Besides the visual
features (view 1,4) and the class label encoding (view 3)
generated in the same way as the Wikipedia dataset, a new
attribute encoding is added as view 2 by mapping the visual
feature to the attribute probabilities of the animal classes [25].

Table II shows the quantitative results in zero-shot recogni-
tion. α, k1, k2 are determined based on the grid search using
the held-out set. By integrating all available views, we see that
recognition accuracy improves with more input views. Due to
the size of the training set, we adopt the Nystriöm method for
the approximate kernel mapping [10]. MvNDA produces the
leading results in all linear cases. We can also observe that the
performance of nonlinear methods is inferior compared to the
linear ones, which can be explained by the high-dimensionality
of the input representations and the use of approximate kernel-
based learning. We also graphically show in Fig. 4 that with
more available views, the embedded features are grouped into
the correct animal classes using the proposed method.

IV. CONCLUSION

We proposed a novel multi-view nonparametric discriminant
analysis technique for the problem of cross-modal image
retrieval and recognition. This method has several advantages
in exploiting the view difference and class boundary structure
information, providing more available projection directions,
and achieving better class discrimination in different tasks on
both Wikipedia and AwA dataset.
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