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Summary. A very general continuum based approach to model both low- and high cycle fatigue
behaviour is described. The approach allows for both isotropic and anisotropic properties under
very general random multiaxial loading histories.
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Introduction

In mechanical engineering design when dimensioning products, fatigue is often the most
critical issue. Fatigue of materials under variable loads is a complicated physical process
which is characterized by nucleation, coalescence and stable growth of cracks. Nucleation
of cracks starts from stress concentrations near persistent slip bands, grain interfaces and
inclusions [1, 12, 16, 17]. Depending on the intensity of loading two ranges of fatigue
lives are identified, namely the low- and high-cycle regime, abbreviated as LCF and HCF,
respectively. However, in recent years, it has been observed that fatigue failures can also
occur at very high fatigue lives 109 − 1010, below the previously assumed fatigue limits
for infinite life. The key difference between LCF and HCF behaviour is that in high-cycle
fatigue the macroscopic behaviour of the material is primarily elastic, while in the low-
cycle fatigue regime considerable macroscopic plastic deformations take place. This fact
can be effectively utilized in the analysis. Transition between low- and high-cycle fatigue
for metallic materials occurs between 103 − 104 cycles.

This paper describes in general terms a unifield approach to model both low- and high-
cycle fatigue. The high-cycle fatigue part of the model is based on the concept of a moving
endurance surface in the stress space with an associated evolving scalar damage variable.
In this concept, originally proposed by Ottosen et al. [13] the movement of the endurance
surface, as a function of the stress history, is tracked by an evolving back stress type of
stress tensor. Therefore this model avoids the ambiguous cycle-counting techniques. This
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Figure 1. (a) Endurance surface (green line) inside the yield surface (red line), shown here in the deviatoric
plane, moves in the stress space and fatigue damage increases when the stress increment is pointing away
from the endurance surface. (b) Haigh-diagram.

approach allows consistent generalisation to anisotropic cases. A transversally isotropic
version of this model was developed by Holopainen et al.[3] and an initial approach to
model both LCF- and HCF-regimes is decribed in [10, 5], also polymer fatigue has been
investigated [4].

One of the key deficiences of most fatigue models is that under complex load histo-
ries, cycle-counting methods need to be applied. These methods require definition of a
representative uniaxial cycle from which a cumulative damage theory is applied to evalu-
ate the accumulated damage. For complex load histories and general stress states these
kind of aproaches become increasingly speculative. Reviews and comparisons of different
high-cycle fatigue models can be found in studies by [15], [2], [9], and [11].

Basic principle

Three key ingredients of the evolution equation based fatigue model are introduced: (i)
the existence of an endurance surface, (ii) evolution equations for its movement and (iii)
damage accumulation. The endurance surface β is defined in the stress space

β(σ, {α}; parameters) = 0, (1)

where σ is the stress tensor and {α} denotes the set of internal variables. Evolution of
the internal variables and the damage D are described by the rate equations

{α̇} = {G}(σ, {α})β̇, and Ḋ = g(β,D, εp)β̇. (2)

In high-cycle fatigue there is no macroscopic plastic straining, thus εp vanish. The form
of the functions G and g are important for modelling the finite life durability, while the
endurance surface mainly dictates the infinite life resistance. In contrast to plasticity
the stress state can lie outside the endurance surface and the evolution of the internal
variables and the damage take place only when β ≥ 0 and β̇ > 0. The idea of the moving
endurance surface is depicted in Fig. 1a in the deviatoric plane.

In the high-cycle fatigue regime, material damage is highly localized and its effect to
the macroscopic structural response can be neglected. This fact uncouples the “fictitious”
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fatigue damage from the structural constitutive equations, thus facilitating HCF-analysis
as a post-processing from the structural analysis data. This is also true in the LCF/HCF
regime, if we assume that the “fatigue damage” does not couple to the constitutive equa-
tion. In this case the post-prosessing, however, requires evaluation of elasto-plastic re-
sponse. In addition, the plastic region should be small as compared to the measures of
the analysed structure, to justify the fatigue post-prosessing.

For the endurance surface, the simplest form for isotropic HCF-modelling can be
written as

β(σ,α;A, σ−1) =
1

σ−1

(σ̄eff + AI1 − σ−1) (3)

where σ−1 is the fatigue strength for fully reversed uniaxial normal stress loading (R =

−1), σ̄eff =
√

3J̄2 is the reduced effective stress, I1 = trσ the first invariant of the
stress tensor and A is a constant. The second deviatoric invariant is defined as J̄2 =
1
2

tr[(s − α)2], where s = σ − 1
3
I1I is the deviatoric stress tensor. This form results for

uniaxial cyclic loading in a linear relationship between the mean stress and the fatigue
strength amplitude, see Fig. 1b and Section 4 in [13] for a detailed analysis. In addition, it
allows for closed form expressions for the parameters appearing in the endurance surface
as a function of experimental fatigue strengths.

For anisotropic fatigue the effective stress depend on the structural tensors describing
the anisotropy. Transverse isotropic HCF model is described in [3] and extension to
orthotropic symmetry in [6]. It has been successfuly utilized in the design of a telescopic
boom structure [7].

Concluding remarks

An evolution equation based fatigue modelling concept which can be used under general
multiaxial irregular stress histories and is amenable to consistent extension to anisotropy,
unification of low-cycle and high-cycle regimes and is ideally suited for stochastic analysis
[8] is briefly presented. In addition, the size effect influenced by stress gradients can also
be included in this model [14].
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