
Research Article
Semantic Labeling of User Location Context Based on
Phone Usage Features

Helena Leppäkoski,1 Alejandro Rivero-Rodriguez,1 Sakari Rautalin,1

David Muñoz Martínez,2 Jani Käppi,3 Simo Ali-Löytty,1 and Robert Piché1

1Tampere University of Technology, Tampere, Finland
2GE Healthcare, Helsinki, Finland
3HD Automotive Positioning Solutions at HERE, Tampere, Finland

Correspondence should be addressed to Helena Leppäkoski; helena.leppakoski@tut.fi
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In mobile phones, the awareness of the user’s context allows services better tailored to the user’s needs. We propose a machine
learning based method for semantic labeling that utilizes phone usage features to detect the user’s home, work, and other visited
places. For place detection, we compare seven different classification methods. We organize the phone usage data based on periods
of uninterrupted time that the user has been in a certain place. We consider three approaches to represent this data: visits, places,
and cumulative samples. Our main contribution is semantic place labeling using a small set of privacy-preserving features and
novel data representations suitable for resource constrained mobile devices. The contributions include (1) introduction of novel
data representations including accumulation and averaging of the usage, (2) analysis of the effect of the data accumulation time
on the accuracy of the place classification, (3) analysis of the confidence on the classification outcome, and (4) identification of
the most relevant features obtained through feature selection methods. With a small set of privacy-preserving features and our
data representations, we detect the user’s home and work with probability of 90% or better, and in 3-class problem the overall
classification accuracy was 89% or better.

1. Introduction

The use of smartphones has dramatically changed during
the last decade. Whereas only 1% of worldwide population
owned a smartphone in 2006 [1], now the number has
reached 24% [2]. Mobile phones have become the most
personal computing device. Users carry them continuously
throughout the day and expect them to deliver meaningful
services on the move. In order to provide a more personal
and relevant user experience, mobile services can benefit
from knowledge about the user’s context. Context sensing
can deliver new ways in how people interact with mobile
devices by making the devices appear to be more human and
personal. Intelligent devices can recognize the user, adapt to
the user and the user’s context, and learn to be proactive.

The most well-known context-aware applications are
location-based services [3]. The location is usually repre-
sented by a set of coordinates defining a point or area
on the Earth. This representation does not provide direct
information about the meaning and relevance of a place to
the user. Although in some locations it may be possible to use
reverse geocoding to infer the type of the place, it is difficult to
infer the meaning of the place for each user as the same place
can have different meaning for different people. For example,
a gas station might mean a frequent visited place, a work
place, or just a nearby place during the daily commute. By
leveraging the sensing capabilities of today’s mobile phones,
it is feasible to build a model that provides context related
information about the user location.
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This work aims to provide a reliable method to infer
the meaning of the visited places of mobile phone users.
We propose a machine learning based method for semantic
labeling that utilizes phone usage features to detect the user’s
home, work, and other visited places. Our proposal provides
better understanding of the user’s location context and allows
mobile phones to deliver more personalized and intelligent
services and applications to users. For example, applications
that are aware of the user’s semantic location could allow the
user to set reminders to phone to trigger when leaving home,
arriving to work, or going to a frequently visited place, or to
set automatic functions based on current place, for example,
changing profiles or silencing phone.

In this work we develop a system to learn and label a
user’s places based on phone usage and analyze the effects
of different choices of data representation. Our goal is an
automatic method for detecting places of a user by applying a
classification model learned from the data of the other users.
This is similar to a use case where the earlier users of an
application have contributed to the model by providing their
data, and later, using the model, the application labels the
data of the new users. Our contributions include (1) the intro-
duction of novel data representations including accumulation
and averaging of the usage data and performance results
based on the proposed data representations, (2) analysis of
the effect of the data accumulation time on the accuracy
of the place classification, (3) analysis of the confidence on
the classification outcome, and (4) identification of the most
relevant features obtained through feature selectionmethods.

For training and model assessment we use two data sets.
One of these is the Mobile Data Challenge (MDC) database
[4, 5], where about 200 users used Nokia N95 devices
normally for time spans between 3 and 18 months. The data
includes logs of phone calls and SMS, calendar entries, multi-
media displayed, GPS information when available, network
information, and system information (e.g., battery status,
device inactive time). The other data set is smaller: it covers
a shorter time span (1–3 months) and includes labeled data
of 16 users. This data includes information on similar phone
usage and activity patterns as the MDC data, but there are
differences in what is measured and how the observations are
processed before storing them,which alsomakes the available
features different. Using the aforementioned data, we use
supervised learning methods to create a place detection
algorithm that estimates the semantic label of the current
place based on the phone’s current usage features.

The rest of this article is organized as follows. In Section 2
we outline the background of our work, highlighting the
current needs for place detection. In Section 3 we present the
data and features used in this work. Section 4 describes the
methods used in the analyses and comparisons in this work:
the data preprocessing and the data representations, different
classification methods, the cross-validation method used
in the comparisons, feature selection methods, and finally
methods for assessing the confidence in the classification
result. Section 5 presents the results of the analyses and
comparisons. In Section 6, we discuss the findings of this
work and summarize its similarities and differences to the
related work. Finally, in Section 7 we conclude the article.

2. Related Work

Research on context-aware systems began in earnest in the
early 1990s [10]. Context can refer to any information that
can be used to characterize the situation of an entity, where
an entity can be a person, place, or physical or computational
object [11]. To infer a user’s context, we use sensor informa-
tion. Following Baldauf et al. [11], the notion of a sensor is
generalized to encompass any data source. We distinguish
three types of sensors.

Physical sensors are devices that detect and respond to
input from the physical environment and capture physical
data.

Virtual sensors capture contextual information from
applications and services.They can be based on local services
(e.g., calendar) or external services (e.g., weather forecast).

Logical sensors provide contextual information by com-
bining information from physical and virtual sensors.

Most existing context-aware systems consider physical
sensors [12], including the sensors related to the user’s
position, such as GPS, accelerometer, gyroscope (allowing,
e.g., activity recognition) [13, 14], or sensors that measure the
properties of the user’s environment, such as magnetic field,
light, or properties of various radio signals [15, 16]. Regarding
virtual sensors, one of the most used sensors is the user’s
language. For instance, Google provides developers with
the user’s language through function getDisplayLanguage
in the Android Developers API [17]. Other context related
information can be provided tomobile applications in similar
fashion.

Researchers have pointed out that, in addition to sensors,
the usage of mobile phones can provide meaningful infor-
mation about the user’s context [6–8, 18]. Do and Gatica-
Perez [18] assert that the user’s context can be inferred based
on the usage of applications (e.g., calls, e-mail, and web
browser). Rahmati et al. use the smart phone’s context infor-
mation including time, day, movement information from
accelerometer, cell ID location, and GPS location together
with usage context (the prior visited web site, phone call, and
application) to predict the next usage of the phone [19].

In this work we continue that line of research by studying
the association between the usage of mobile phones and the
user’s context. More concretely, we investigate the main chal-
lenges and possible solutions for place detection, a particular
case of semantic labeling. Place detection provides important
information to improve context-aware applications.

Aiming at improving current place labeling techniques,
we apply different supervised learning methods on mobile
phone usage log data to findmodels that, based on themobile
phone usage patterns, allow assigning semantic labels to the
places the user visits.Thepreliminary results of ourwork have
been presented in [20].This paper enhances the contributions
of [20] in the following aspects: (1) we introduce here
third data representation and cumulative samples; (2) in the
analysis, we use two data sets instead of only one; (3) we
provide results on the effect of the accumulation time of the
cumulative samples on the accuracy of the classifier models
that we use to provide the place labels; (4) we use sequential
feature selection to decrease the computational load and
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to improve the accuracy in the prediction phase when the
classifier models are used to predict the place label; (5) we
study the assessment of the confidence of the classification
results; (6) we enhance the set of classification methods we
used for the analysis to include also support vector machines
and logistic regression.

Other works have been carried out with similar goals to
ours [6–9, 21], that is, semantic place prediction, and use
data derived from the same database as data set #1 in our
work. They differ from our work in the following aspects:
the number of features we used for our classification method
is only 14 at most, while the other works use more features;
we use different classifiers; while the other papers classify all
the 10 labels available in data set #1, we prioritize recognizing
Home and Work and therefore combine all the less frequent
labels to one label Other; and we present a comparison
between three different data representation schemes: visits,
places, and cumulative samples. We also show that the
accuracy can be improved by selecting a subset of the most
relevant features to be used in the classification model and
we study the benefit of rejecting classification results that
obtain low confidence ranking from the classifier. Since its
publication, the MDC data set has been extensively used
in research. In addition to the semantic place prediction, it
has been used, for example, in research of mobility patterns
of phone users [22–24] and in human mobility prediction
(prediction of the next location) [25, 26].

The research presented in this paper was conducted as
part of the related work for the creation of the Place Monitor
API of the Lumia SensorCore SDK [27]. The SDK is a
collection of APIs to providemeaningful activity and location
data from sensors that run constantly in the background in a
low power mode.

3. Description of Data Sets

We used two different data sets for learning and predicting
semantic place labels. In this section we describe the data and
identify the most relevant features for place detection.

3.1. Data Set #1. Data set #1 is obtained from the MDC
database made available by Idiap Research Institute, Switzer-
land, and owned by Nokia [4, 5]. The data set contains
Nokia N95 smart phones usage data, collected by nearly
200 users over time periods that for many users exceed one
year [5]. The information about the usage of the phones
was automatically collected and anonymized. After the data
collection, a clustering algorithm was used to identify the
most relevant places for each user, that is, places that the user
visited often and spent lot of time. These places the users
labeled manually [9]. As our main focus was in the detection
of Home and Work where people usually stay longer times,
we extracted for our tests the data that was collected during
the visits where the user stayed at least 20 minutes in the
same place. The time intervals of these visits are defined in a
database table visits 20min.csv, which is included in the
MDC database, and it defines the start and end times, user
ID, and place ID for more than 55,000 visits (see Figure 1).
The place labels for the place IDs are defined in a separate
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Figure 1: Obtaining data for feature computation.

MDC database table places.csv. The place in the database
is defined so that it corresponds to a circle with 100m radius
[5].

Based on these data, we queried from the database the
following phone usage data for each visit, that is, for a given
user, all data entries between the start and end times of the
visit:

(i) System data, including battery and charging status and
counter for inactive time

(ii) Call log, including durations of each phone call
(iii) Acceleration based activity data, including accelerom-

eter based estimates of the user’s motion mode: idle/still,
walk, car/bus/motorbike, train/metro/tram, run, bicycle, or
skateboard. Due to the large area covered by a place, it is
possible that the data from one place contains also significant
amount of mobility, for example, walking or even being in a
moving vehicle.

From these data entries, we computed for each visit the
features to be used in the classification task. We decided to
use only such sensor data that can be assumed to be available
also for a real time application on a phone without violating
the privacy of the user. Our feature list includes the following:

(i) duration: duration of the visit in seconds
(ii) startHour: time of the day when the visit started
(0, 1, . . . , 23)

(iii) endHour: time of the day when the visit ended
(0, 1, . . . , 23)

(iv) nightStay: proportion of the visit duration that is
between 6 pm and 6 am

(v) batteryAvg: average battery level
(vi) chargingTimeRatio: proportion of the visit duration

when the charging has been on
(vii) sysActiveRatio: proportion of the visit duration when

the system has been active
(viii) sysActStartsPerHour:number of status changes from

system inactive to system active divided by the visit duration
in hours.

For features related to calls, both incoming and outgoing
voice calls are taken into account:

(i) callsTimeRatio: the ratio of accumulated duration of
calls to the duration of the visit

(ii) callsPerHour: number of calls divided by the visit
duration in hours.
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The features related to accelerometer based motionmode
detection were computed using the reported motion modes.
However, as the report for one time instance may include
several different modes and includes also their probabilities,
we used the probabilities to weight the times for the motion
modes:

(i) idleStillRatio: proportion of the visit durationwhen the
status is idle/still

(ii) walkRatio: proportion of the visit duration when the
status is walk

(iii) vehicleRatio: proportion of the visit duration when
the status is car/bus/motorbike or train/metro/tram

(iv) sportRatio: proportion of the visit duration when the
status is run, bicycle, or skateboard.

In addition to these 14 calculated features, we also saved
the place label and user ID to be used in the training and
testing of the models:

(i) placeLabel: three possible labels:Home,Work, orOther
(the last includes all the generally less frequent places, such as
friend’s home, transportation, and restaurant)

(ii) userId: each data sample includes a unique user
identifier.

TheMDCdata includes place labels that were provided by
users [9]. First, the data were collected and the relevant places
for each user were clustered. In a later stage, users were shown
all the places on a map and were asked to label these places.
We only consider places labeled with certainty and left out
those places that users were not sure about or did not label.

In total, the visits data includes 55,932 labeled visits by 114
distinct users. From the visits, 28,921 instances are to Home
(52% of all visits), 21,697 instances to Work (38%), and 5,314
instances to Other places (10%).

3.2. Data Set #2. Data set #2 was provided by Microsoft and
collected by 16 users working in the ICT field. The average
time the participants collected data was 26 days and the
maximum time was 64 days. The description and results on
this data set have not been published earlier.

In this data set, the data was associated with places. The
place was identified by its physical location, obtained, for
example, from the GNSS receiver or cellular network based
positioning.The first time the user visited a place, a new data
entry for that place was created. Every time the user visited a
once created place, the phone accumulated time counters for
several status variables. The stay time was the accumulated
time the phone was observed to be in the place and night
stay was the accumulated time the phone was there between
6 p.m. and 6 a.m.

The accumulated times included also the times with the
motion states idle, stationary, moving, walking, and vehicle, all
determined by the sensors of the phone. The third group of
times recorded included phone usage data: time with display
on and charging times, time spent on calling, and time with
headset on.

In addition to these, the total time since the place data
entry was created was recorded. To the place data, the
user-given semantic label, such as Home or Work was also
associated.Thephysical location of the placewas not included
in the data. Twice a day, when a data connection was possible,

the phone application sent the recorded time countervalues
to a server. Thus the database included the history of
the countervalues that were sampled at approximately 12 h
intervals. This data set differs significantly from data set #1
in that the individual visits to a place cannot be detected or
counted and neither can the individual phone calls or activity
starts. From this data, we computed the features to be used in
classification by dividing the time countervalues by the total
time. Similarly, as with data set #1, we lumped all other user-
given place labels, except Home and Work, to the third label
Other.

In total, data set #2 includes 5,605 labeled samples by 16
distinct users. From these samples, 1,747 cases (31% of all
visits) are labeled with Home, 1,482 with Work (26%), and
2,376 with Other (42%). Each sample consists of 11 features
related to stay, activities, and phone usage and additional
information such as user id, place label, and total time
recorded for the location.

With both data sets #1 and #2, regarding the accelerome-
ter based recognition of themotion state or activity, we rely on
the output of the motion or activity recognition functions of
the phone applications and data set providers. The reliability
statistics of the functions are not known to us. For our
classification functions, the possible errors in these features
are noise in the data.

4. Methods

We consider three alternatives for the data representation:
visits data representation, places data representation, and
cumulative samples; these terms are explained in Section 4.1.
Once the data is extracted from the database in the repre-
sentation schemas, we apply seven well-known classification
methods. Our goal is to determine which classification
method and which data representation approach is the best
for the semantic labeling of places.We also describe the cross-
validation method we used to assess the performance of the
classification, the sequential feature selection method used
to improve the accuracy and to assess the significance of the
individual features, and the approach used for assessing the
confidence in the classification results.

4.1. Data Representations. In this paper, we consider three
different approaches to represent the data.The visits approach
uses the features computed for each visit as such, so that the
data includes several samples of one user’s visits to each of
the user’s places. That means that there is one tuple for each
location-user-event. Therefore, a user visiting home 3 times
adds three tuples to the learning data. From data set #1, we
extract 55,932 labeled visits by 114 users.

The places approach combines all the visits of one user to
one place into a single summarized sample. That means that
there is one tuple for each location-user, which is calculated
combining all the relevant visit tuples. The idea is to assume
that different users tend to use their phones in similar ways
in semantically similar places, for instance, at home. From
data set #1, we extract 295 labeled places by 114 users. For
instance, if a user visited home ten times in a week, the
visit data representation creates ten different data instances,
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Figure 2: Example: time tags, durations, and place labels for computing features related to phone calls and night stay. The time of the 𝑗th
cumulative sample is 𝑡cs(𝑗).

while the place data representation combines the ten visit data
instances into one place data instance. The visits and places
representations are available only for data set #1.

The third data representation includes cumulative sam-
ples of the features. This representation is the native repre-
sentation of data set #2; that is, it includes the accumulated
times of staying and phone usage in a place by one user. To
obtain similar samples from data set #1, we computed the
accumulated times of stay, activities, and phone usage for
each user-place combination.We took samples of these accu-
mulated times at 12 h intervals and divided them by the total
times since the first sample of the user-place combination.
The 9 features of data set #1 that were converted to cumulative
samples are the following: stay, nightStay, charging, sysActive,
calling, idleStill, walking, vehicle, and sport.

Figure 2 and Algorithm 1 illustrate the computation
of the different data representations for features related to
phone calls and night stay. Feature nightStay is chosen as
an example because it is computed differently from all the
other features and therefore needs to be described separately.
By contrast, feature calling is similar to all other features,
and the description of its computation can be applied also
to these. Figure 2 illustrates the notation for the time tags
and durations. The start time and duration of visit 𝑖 are 𝑡𝑝(𝑖)
and Δ𝑡𝑝(𝑖), respectively. In addition to these time attributes,
the label place(𝑖) is attached to the visit data. Similarly, 𝑡𝑐(𝑖)
and Δ𝑡𝑐(𝑖) represent the start time and duration of a call, and
𝑡𝑛(𝑖) and Δ𝑡𝑛(𝑖) are the start and duration of night. In our
implementation, Δ𝑡𝑛(𝑖) is constant 12 h. We also make the
simplification regarding calls that span over a visit so that the
whole call is associated with the visit where it started.

Algorithm 1 presents equations for the computation of the
features for the different data representations. As examples of
combining data from several visits to places and cumulative
samples data representations, we use Home as the example

of user’s place. The feature for number of phone calls is
not included in cumulative samples and, therefore, it is
not included in Algorithm 1. On the other hand, nightStay
is included only in the feature set of cumulative samples.
Although a call can take place during the night, in the
data representation nightStay and calling are not directly
connected. However, for the classifier model it is possible
to learn the connection as their simultaneous occurrence
increases both counters (calling, nightStay) simultaneously.

4.2. Classification Methods. In this work we apply the follow-
ing classification methods using their implementation in the
Statistics and Neural Networks toolboxes of Matlab.

Naı̈ve Bayes (NB) [28–31] is a statistical approach having
an explicit underlying probability model and it provides
a probability of being in each class rather than simply a
classification. Naı̈ve Bayes assumes that features are condi-
tionally independent; this reduces computational cost and
often works well even if the independence assumption does
not hold. There are no tuning parameters in this approach.

Decision tree (DT) [28–31] is amachine learning approach
that probably gives the most understandable results by
humans, who can identify the most relevant features. For
attribute selection we use Gini’s diversity index. The features
selected at the top of the tree are themost relevant features for
the classification. There are two options to avoid overfitting,
prepruning, and postpruning. We chose postpruning since
prepruning requires determining when to stop growing the
tree while building it, which is not an easy task. When the
tree is built we postprune the tree using Error Estimation.
Intuitively, the method goes through the nodes of the tree
comparing the original tree with the tree pruned on that
node. The tree is pruned in that node if the pruned tree
improves (or equals) the classification accuracy.
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Assume that start times and durations are available for
(i) visits: 𝑡𝑝(1), 𝑡𝑝(2), . . . and Δ𝑡𝑝(1), Δ𝑡𝑝(2), . . .
(ii) calls: 𝑡𝑐(1), 𝑡𝑐(2), . . . and Δ𝑡𝑐(1), Δ𝑡𝑐(2), . . .
(iii) nights: 𝑡𝑛(1), 𝑡𝑛(2), . . . and Δ𝑡𝑛(1), Δ𝑡𝑛(2), . . .
visit 𝑖 (compute for all 𝑖)
(i) find the smallest index 𝑘1 such that 𝑡𝑝(𝑖) ≤ 𝑡𝑐(𝑘1)
(ii) find the largest index 𝑘2 such that 𝑡𝑐(𝑘2) ≤ 𝑡𝑝(𝑖) + Δ𝑡𝑝(𝑖)

𝑓callsTimeRatio(𝑖) =
𝑘2

∑
𝑘=𝑘1

Δ𝑡𝑐(𝑘)
Δ𝑡𝑝(𝑖)

𝑓callsPerHour(𝑖) =
(𝑘2 − 𝑘1 + 1)
(Δ𝑡𝑝(𝑖)𝑐𝑡2ℎ)

,

where multiplication with 𝑐𝑡2ℎ converts the time units to hours
places: home
(i) find set𝐻 of all visit indices 𝑖 such that place(𝑖) = 𝐻𝑜𝑚𝑒

𝑓𝐻callsTimeRatio =
(∑𝑖∈𝐻 𝑓callsTimeRatio(𝑖)Δ𝑡𝑝(𝑖))
(∑𝑖∈𝐻 Δ𝑡𝑝(𝑖))

𝑓𝐻callsPerHour =
(∑𝑖∈𝐻 𝑓callsPerHour(𝑖)Δ𝑡𝑝(𝑖))
(∑𝑖∈𝐻 Δ𝑡𝑝(𝑖))

cumulative sample 𝑗: home (compute for all 𝑗)
Computation of 𝑓𝐻calling(𝑗) for calling at home:
(i) find set𝐻 of all visit indices 𝑖 such that place(𝑖) = 𝐻𝑜𝑚𝑒

and 𝑡𝑝(𝑖) + Δ𝑡𝑝(𝑖) ≤ 𝑡cs(𝑗)

𝑓𝐻calling(𝑗) =
(∑𝑖∈𝐻 𝑓callsTimeRatio(𝑖)Δ𝑡𝑝(𝑖))
(𝑡cs(𝑗) − (𝑡𝑝(min𝑖∈𝐻𝑖)))

Computation of 𝑓𝐻nightStay(𝑗) for night stay at home:
𝑎 = 0
for all 𝑖 ∈ 𝐻

if exists 𝑘 such that 𝑡𝑛(𝑘) ≤ 𝑡𝑝(𝑖) ≤ 𝑡𝑛(𝑘) + Δ𝑡𝑛(𝑘)
𝑎 = 𝑎 +min(𝑡𝑝(𝑖) + Δ𝑡𝑝(𝑖), 𝑡𝑛(𝑘) + Δ𝑡𝑛(𝑘))

else if exists 𝑘 such that 𝑡𝑛(𝑘) ≤ 𝑡𝑝(𝑖) + Δ𝑡𝑝(𝑖) ≤ 𝑡𝑛(𝑘) + Δ𝑡𝑛(𝑘)
𝑎 = 𝑎 + 𝑡𝑝(𝑖) + Δ𝑡𝑝(𝑖) − 𝑡𝑛(𝑘)

end for
𝑓𝐻nightStay(𝑗) =

𝑎
(𝑡cs(𝑗) − (𝑡𝑝(min𝑖∈𝐻𝑖)))

Algorithm 1: Example: computing features related to phone calls and night stay in different data representations.

Bagged tree (BT) [29–32] combines different decision
trees (with the same parameters as the decision tree above),
each of which has been trained using different portions of the
data. Using a voting system, each tree is given more weight in
the region of the space where its classification rate is better.
This method is proved to work better than single decision
trees. We use ten decision trees, a typical value.

Neural network (NN) [28–31, 33] is a brain-physiology
inspired classifier. It consists of layers of interconnected
nodes, each node producing a nonlinear function of its input.
The input to a node may come from other nodes or directly
from the input data. Some nodes are identified with the
output of the network. In particular, we used a multilayer
perceptron with one hidden layer that contains ten hidden
neurons.The decision of having these settings is based on the
limited number of samples and the authors’ experience. To
train the network we used Levenberg-Marquardt optimiza-
tion to update the weight and bias values. Neural network
for classification assumes that the class labels are represented

as binary vectors. Therefore, before training the class labels
are coded as vectors: 𝐻𝑜𝑚𝑒 → [1, 0, 0], 𝑊𝑜𝑟𝑘 → [0, 1, 0],
and 𝑂𝑡ℎ𝑒𝑟 → [0, 0, 1]. The neural network predictions are
also vectors. However, their element values are not exactly
ones and zeros. The predicted classes are obtained by finding
the index to the largest element of the output vectors and
converting these back to class labels.

K-nearest neighbours (KNN) [28–32] is a statistical meth-
od that classifies an incoming instance according to the
distance to the 𝑘-nearest points in the training set. We used
Euclidean distance to choose the nearest neighbours. We
determined the values of 𝑘 to be used in classification using
leave-one-user-out validation and classification accuracy as
optimization criterion (see Section 4.4). We found that the
best 𝑘 value depends on data set and data representation: with
data set #1 the best 𝑘 values were 27, 3, and 57 for visits, places,
and cumulative samples, respectively. With data set #2 the
best accuracy was obtained with 𝑘 = 159. For large training
data sets, the required storage for the model is large, and
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Table 1: Missing MDC data instances.

Data representation Partial system data Accelerometer based data Both
Visits 192 36,543 25
Places 21 6 0
Cumulative samples 3,903 41,299 1,513

also the CPU time to find the nearest neighbours gets large.
This may be prohibitive for applications running on resource
constrained mobile devices.

Support vector machine (SVM) [30, 31, 33] is a binary
classifier; that is, it can be applied for classification problems
with two classes. A SVM seeks a hyperplane that best
separates the features of one class from the features of another
class. Its goal is to find a hyperplane that maximizes the
zone on both sides of the hyperplane such that the zone
does not include feature vector samples. The feature vectors
closest to the found hyperplane are called support vectors. In
many problems the separation of the classes cannot be done
using a simple hyperplane. Therefore, the method includes
a possibility of using linear or nonlinear kernel functions
to produce a hypersurface that performs the separation. We
used Gaussian Radial Basis Function (RBF) as the kernel
function. With our data, we obtained similar accuracy with
both the RBF and the linear kernel functions but RBF
required smaller number of support vectors.WeusedMatlab’s
fitcsvm function to train the SVM classifiers. To set the RBF
sigma parameter we used KernelScale=1 which we found
to work best with the data when compared with several other
KernelScale values. The solution for our 3-class problem
was obtained by using 3 binary classifiers to provide one-
versus-all other classifications:Home versusNot Home,Work
versus No Work, and Other versus No Other. For the binary
classifiers, the multiclass labels were transformed before the
training as follows: (1)𝐻𝑜𝑚𝑒 → 1,𝑊𝑜𝑟𝑘, or 𝑂𝑡ℎ𝑒𝑟 → 0; (2)
𝑊𝑜𝑟𝑘 → 1,𝐻𝑜𝑚𝑒, or 𝑂𝑡ℎ𝑒𝑟 → 0; (3) 𝑂𝑡ℎ𝑒𝑟 → 1,𝐻𝑜𝑚𝑒, or
𝑊𝑜𝑟𝑘 → 0. In the prediction phase, the binary classifierswere
used to obtain the posterior probabilities of their active class.
The binary classifier with the largest posterior probability was
used to determine the multiclass output.

Logistic regression (LR) [28, 31] models present the prob-
ability of the class as a logistic function of a linear regression
expression of the features (linear combination of the features
and a constant). LR is also a binary classification method.
Therefore, we made a transformation of multiclass labels to
several binary classes as we did in the case of SVM and
trained three LR models. In the prediction phase the three
classifiers were used to obtain the probabilities of the classes,
and the class with the largest probability were chosen as the
multiclass output. However, sometimes the linear regression
problem is ill-conditioned and regularization is needed in
order to obtain the parameter estimates. We used Lasso
regularization for generalized linear model regression and
constructed a regularized binomial regression model with
4 different values for regularization parameter 𝜆 and 2-fold
cross validation. With these values the time consumed in

parameter estimation remained moderate and the obtained
model parameters provided good prediction accuracy.

4.3. Missing Data. With the MDC data, we encountered a
problem with missing data. The data includes visits where
either the system data partially (i.e., features batteryAvg,
chargingTimeRatio, sysActiveRatio, and sysActStartsPerHour),
the acceleration based activity data in full, or both of these
data are missing. As the places and the cumulative samples
representations are computed from the visits data, these rep-
resentations inherit the problem. The numbers of instances
with missing data in each of the data representations are
shown in Table 1.

The instances with missing data cause problems in the
training of the LR model and degrade the performance of
other classifiers, especially NB, NN, and KNN. To mitigate
the effect of missing data, we trained four variants for each
classifier: the first one uses all the features; the second one
uses all other features except the sometimes missing system
features; the third one uses all other features except accelera-
tion based ones, and the last one uses neither the sometimes
missing system features nor the acceleration based features.
The classifier variants were trained using only samples where
all the features used by the classifier were available. In the
evaluation of the classifier, the decision on which classifier
variant to use for classification was made separately for each
test data sample, we chose the classifier variant that did not
require the features that were missing in the sample but used
as many as possible of the features available.

4.4. Performance Evaluation of Classifiers. Oncewe have built
the classifiers based on the training data, we use the test data
to evaluate the classifiers. In machine learning, it is common
to choose a certain proportion, for example, one-third, of data
to a test set, which will be used only to evaluate the classifier,
not to build the classifier model [29, 31]. The test set is also
labeled. Therefore, we have the information about the true
label (the user-given values) of the samples. In the evaluation
of the classifiers, each test data sample is fed to the classifier
and the output of the classifier, that is, the predicted label, is
compared with the true label. Accuracy value of 53% means
that 53% of the predicted values are equal to the true value;
we use classification rate as a synonym of accuracy.

Our goal is to classify the data of one user by using a
model based on the data of the other users; that is, we want
to learn patterns that are common to all users. Therefore,
splitting of the data to training and test sets is based on
user id. As a result, the data of a user is not classified with
the knowledge of the user’s own data. Using knowledge of
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future data of the user would be unrealistic, and using the
knowledge of the past data of the user is a different problem,
not addressed in this paper.

One option would be to randomly choose a certain
proportion of users to test data. However, there is large
variation in the numbers of samples by different users
and the numbers of visits to each of the labeled places
also differ by users. Because of this, the overall accuracy
evaluations of the classifiers vary significantly depending on
which users are in the test set. We solve this problem by
using leave-one-user-out validation. For 𝑛 users, the training
and testing are repeated 𝑛 times each time with one user’s
data as the test set and the remaining users’ data as the
training set. The overall accuracy obtained by combining
the results from all the tests is used as evaluation criterion.
This approach to cross-validation is deterministic, which
makes the results easier to interpret when comparing several
different setups, for example, in feature selection. In these
comparisons, we want the variations in classifier designs, for
example, the feature combination, to be the major sources
of performance differences, not the random selection of test
sets. The combined results include test results obtained using
classifiers trained with all different training sets. It includes
one classification result for each labeled data sample of each
user. Note that we do not control the random initializations
of training methods, which also makes some contribution to
the observed differences. However, using leave-one-user-out
validation and combining results of 𝑛 tests mitigate also the
biases caused by the random initializations.

4.5. Feature Selection. By selecting only a subset of the avail-
able features, the number of inputs presented to the classifier
can be reduced. This benefits the classification task in several
aspects: fewer features result in fewer model parameters,
which improves the model’s ability to generalize and reduce
model complexity and the run time of the algorithm. It also
provides insight into the problem by distinguishing the more
significant features from the less important ones [32]. Some of
the learningmethods such as decision trees, bagged trees, and
regularized logistic regression include feature selection as an
integral part of the learning procedures [31]. However, others
do not. Therefore, we search for the improved feature subset
by selecting candidate subsets and evaluating their predictive
accuracy using the leave-one-user-out validation described in
Section 4.4.

One option for selecting subsets would be an exhaustive
evaluation of all the possible subsets. However, for 11 features
the number of subsets to be evaluated would be 2047 and
for 14 features it would be 16,383. These would require too
long computation time especially with slower methods, such
as SVM, when applied for testing with leave-one-user-out
validation.Therefore, a search strategy is needed for selecting
candidate subsets for evaluation. We apply sequential selec-
tion algorithm for this purpose.

In sequential feature selection (SFS) features are added
or removed one at a time [32]. The SFS provides a subop-
timal solution to the feature selection problem as it easily
becomes trapped to a local minimum. To mitigate this

problem, we implemented the algorithm in both forward and
backward directions. SFS in forward direction is a greedy
search algorithm. It adds features one by one to the model
until the addition of more features does not improve the
predictive accuracy any more. In backward direction, the
process is started from the model, including all the available
features, and then features are removed one at a time until
removing features does not improve the performance. Before
the decision is made on which feature is added or removed,
the effect of each available candidate feature for addition
or removal is tested. The candidate feature that produces
the largest improvement to the predictive accuracy when
compared to the selected feature set from the previous trial
cycle is added or removed, depending on the direction of
the search. The process ends when none of the candidates
in the entire trial cycle is able to improve the performance
obtained in the previous trial cycle. If the predictive accuracy
is the same as in the previous trial cycle, the candidate set with
fewer features is selected.

4.6. Confidence of Classification. In many practical classifica-
tion problems, it would be useful if, in addition to providing
the classification result, the classifier was also able to provide
information about the quality of its classification [34]. In
particular, we focus on the confidence of the classification,
assessing how reliable the classifier itself considers its own
decision. High classification confidencemeans that the classi-
fier is “sure” about its output while low confidencemeans it is
“unsure.” The idea in the confidence assessment is to use the
information about the execution of the classifier on a specific
input sample to infer the confidence that the classification
result generated for the sample is correct [35].

NB and LR classifiers base their decisions on the prob-
ability models of the classes, and their output is the poste-
rior probability of the class given the feature values. These
probabilities can be considered as confidence measures of
the classifier outputs. The SVM produces scores as class
likelihood measures and Matlab provides fitPosterior
function to transform these to posterior probabilities. The
predicted outputs of theNNbased classifier are binary vectors
𝑧 of length 𝑛 = 3, that is, the number of possible classes
𝑦. Ideally, the value of the element corresponding to the
predicted class is 1while the others are zeros. In practice, due
to imperfect training examples, noise, and other mismodeled
effects, the predicted elements 𝑧𝑦 are seldom exactly ones
and zeros. Therefore, the classification result 𝑦 is determined
using the element closest to one; that is,

𝑦 = argmin
𝑦
𝑑𝑦, (1)

where𝑑𝑦 = |1−𝑧𝑦|. Now the distance𝑑𝑦 serves as an indicator
on howwell the current feature vector fits to the NNmodel of
class 𝑦. To get this value to the same scale with the probability
outputs of NB, LR, and SVM, we convert the distance 𝑑𝑦 to
the confidence measure 𝑐. However, it may happen that, in
some cases, when the fit of the input sample to the model
is exceptionally poor, even the shortest distance 𝑑𝑦 may be
larger than one. Therefore, the confidence is obtained from
the distance using 𝑐 = 1 −min(1, 𝑑𝑦).
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Figure 3: Classification rates (%) for different methods, using data set #1 and (a) visits, (b) places, and (c) cumulative samples approaches
and (d) data set #2 and cumulative samples. The percentage of well-classified samples, that is, cases where the classification result is correct,
for each class is given above the bars. The overall percentage of well-classified samples for the classifiers is shown below the bars.

Using both data sets, we study how well the confidence
measure can predict the misclassification rate, that is, how
well the classifier assesses its own performance. We set
a threshold to the confidence, below which we say the
confidence is low and above which it is high. There are
four possible combinations of this measure (the confidence
assessed by the classifier) and classification success: (1) well
classified with high confidence, (2) well classified with low
confidence, (3) misclassified with high confidence, and (4)
misclassified with low confidence.The classifier produces the
predicted label and confidence assessment based on the input
features but without knowing the correct label. Therefore, it
is possible that the classifier has high confidence but when
its prediction is compared with the correct label, it turns out
that the input was misclassified. We consider decisions 1 and
4 correct, as in these cases the confidence of the classifier
predicts the success of the classifier, while in cases 2 and 3
the decisions are wrong as the confidence of the classifier
gives wrong prediction about the success. Assuming that the
costs of the unsuccessful cases 2 and 3 are equal, as well
as the rewards of the successful cases 1 and 4 are equal,
we search for a confidence threshold such that the ratio
between the number of cases 1 and 4 over cases 2 and 3 is
maximized. We use the obtained threshold to reject samples
that have confidence lower than the threshold and record how

much the overall accuracy of a classifier improves using the
threshold and how large proportion of samples is rejected.

5. Results

In this section we describe our results on the comparisons of
the data presentations and classification methods using the
methods described in Section 4. In all the tests based on data
set #1, the missing feature values in the input samples were
treated as described in Section 4.3.

5.1. Classification. The results on the comparisons of the
data representations and different classification methods are
shown in Figure 3 where the evaluation criterion is the overall
predictive accuracy observed in leave-one-user-out valida-
tion described in Section 4.4. The results are summarized in
Table 2.

Figure 3(a) shows the classification of each method using
the visits representation. All the methods but the Näıve Bayes
show a certain bias.They achieve high accuracy for the places
Home and Work and low accuracy for the place Others. The
intuitive reason is that visits to Home or Work are more
frequent than visits to places labeled as Others. Therefore,
the algorithms sacrifice accuracy in Others to achieve higher
accuracies in Home orWork.
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Table 2: Accuracy results of the data representations: summary over all implemented classifiers.

Data representation
a b c d

min 61.4 81.0 82.3 75.0
max 76.9 89.2 90.1 86.3
mean 73.3 85.3 87.0 82.1
std 5.7 2.8 2.7 4.2
max-min 15.5 8.2 7.8 11.3

Figure 3(b) shows the corresponding results using the
places representation. Compared to the visits representation,
the classification accuracies are higher. Also, the differences
between the accuracies of the classifiers are smaller than with
the visits approach.The improvement obtained by combining
of all the visits to one place may be because generally
averaging reduces the effect of the outliers.The disadvantages
of the places representation are the following. First, it is
more computationally expensive to produce because of the
need to combine all the individual visits to places. The
second disadvantage is the so-called cold start problem: the
classification algorithm will not classify accurately the places
until a certain number of visits to a place have been collected.

The classification results with cumulative samples of data
sets #1 and #2 are shown in Figures 3(c) and 3(d). The
cumulative samples with data set #1 improve the accuracy
and decrease the differences between the classifiers even
more than the places approach. Cumulative samples include
averaging similarly as the places representation and the gen-
eration of cumulative samples reduce variability in samples
if the phone usage and place visiting pattern stay regular.
However, the computation of cumulative samples also gener-
ates some variability, as it produces samples even when new
visits have not been made to the place. In this case the feature
values change as the total time used for scaling still grows
even though the cumulative times of the stay and activities
remain constant.The averaging together with themuch larger
number of samples provides a plausible explanation to the
improvement.With the cumulative samples of data set #2, the
accuracies are lower and the accuracy differences between the
classifiers are larger. This could be due to the smaller size and
time span of the data.

When comparing the results of different classifiers with
all the data representations, SVM and LR are always among
the three algorithms that provide the best classification
accuracies while DT is among the three classifiers with
the worst accuracy. BT and NN also perform quite well;
they are never in the group of the worst three. Generally
NB does not provide good accuracy, except that with the
places representation it is the second in accuracy. From the
classifiers studied in this paper, SVM is by far the slowest
classifier to train. The classification with the trained SVM is
fast; however, itsmemory requirements in classification phase
become high if the number of support vectors is high. The
issue is emphasized in multiclass classification as the support
vectors need to be stored for each class separately. Therefore,
despite its accuracy, SVM mainly serves as a reference, and

we do not consider it to be suitable for practical applications
with this type and amount of data in resource constrained
mobile devices. The computational cost in prediction is also
high with KNN as it has to store all the training samples and
compare them with the new input. Therefore, its practical
applications are restricted to cases where extreme simplicity
of the algorithm is required but high computational costs
can be accepted. Based on these comparisons, LR, NN, and
BT seem to be the most promising methods for practical
applications.

Our test results indicate that data representations includ-
ing averaging, that is, places and cumulative samples, give
higher classification accuracies than visits data representa-
tion. The average classification accuracies with visits, places
and cumulative samples obtained from data set #1 were 0.72,
0.85, and 0.87, respectively, and 0.81 with the cumulative
samples of data set #2.

5.2. Effect of Accumulation Time with Cumulative Samples.
With the cumulative samples, the samples themselves evolve
in time as new data are accumulated to the time counters
of the features. To study the effect of the accumulation time
to the classification accuracy, we grouped the samples based
on the accumulation time 𝑡acc. The first group included the
samples where 𝑡acc ≤ 1 day, in the second group, was the
samples with 𝑡acc ≤ 2 days and so on, until 7 days. These
seven groups include the samples from the first week the user
starts to visit a place. Into the eighth groupwe included all the
samples, which gives the same classification accuracy that is
illustrated in Figures 3(c) and 3(d).

In the training of the classifiers we used all the cumulative
samples of all other users, so that the time based selection
of samples did not affect the training phase. The results for
the cumulative samples representation of data sets #1 and #2
are shown in Figures 4 and 5, respectively. In the figures,
in addition to the overall classification accuracies, also the
classification accuracies of the specific labels (Home, Work,
and Other) are shown.

Comparing the overall classification accuracy of cumu-
lative samples in Figure 4(a) and visits representation in
Figure 3(a), it can be observed that after 6 days of accumu-
lation time, the accuracy with cumulative samples is equal
to or better than the accuracy with visits with all classifiers
except NN and KNN.With these two the accuracy with visits
were 76.7% and 76.3% while with cumulative samples and
6 days of accumulation time the accuracies are only about
72%. In Figure 4, the curves corresponding to the overall
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Figure 4: Effect of the accumulation time to the classification accuracy with cumulative samples of data set #1: (a) overall accuracy and
classification accuracy of (b) Home, (c) Work, and (d) Other places. Accuracy as ratio (unitless).

accuracy and classification accuracy of Home and Other for
all the classifiers are monotonically rising after 2 days; that
is, the accuracy improves as the accumulation time of feature
samples increases. There is also clear improvement from 7
days to the maximum accumulation time. The classification
accuracy of Work behaves differently: with all classifiers
except NB the rise of the accuracy is very slow and it is not
monotonically rising.

Based on these results, for Work gathering more infor-
mation by integrating the values for longer time does not
improve its accuracy as happens with Home and Other.
The data sets differ in that with #1 there is clear accuracy
improvementwhen accumulation time increases from 7 days,
while with #2 there is no clear improvement; with Home
even a decrease of the accuracy can be observed. This is
probably due to the smaller total number of samples and
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Figure 5: Effect of the accumulation time to the classification accuracy with cumulative samples of data set #2: (a) overall accuracy and
classification accuracy of (b) Home, (c) Work, and (d) Other places. Accuracy as ratio (unitless).

shorter data collection times in data set #2. The histograms
of accumulation times of the samples in both data sets are
shown in Figure 6. With data set #2, about half of the
samples have accumulation time less than 7 days. With
longer accumulation times, the data is biased by only few
users, which reduces the reliability of results on longer
accumulation times.

In Figure 5(a) the overall accuracy approaches the final
accuracy already after 4-5 days accumulation: only NB
improves significantly; after that, BT, KNN, and LR improve

only slightly, and the accuracies of DT and NN decrease.
Comparing different data sets, the cumulative samples in
Figure 5(a), and the visits representation of data set #1 in
Figure 3(a), it can be seen that already after 2 days of data
accumulation the accuracies with cumulative samples exceed
the accuracies of visits. In Figure 5, only the classification
accuracy of Other is monotonically rising for all the classi-
fiers. In the accuracy ofHome there is a clear drop from 7 days
to themaximum accumulation time with all classifiers except
BT, and with DT, NN, and LR the decrease starts even earlier
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Figure 6:Histograms of the accumulation times with both data sets.

before accumulation time of 7 days. In the classification
of Work the accuracy behavior differs from other classes:
with all other classifiers except SVM and LR, the accuracy
first decreases with accumulation time and then starts to
increase. With DT, the final accuracy is even worse than in
the beginning. However, the increase of accuracy is very slow,
except with NB. In spite of these effects in the classification
accuracy of individual classes, in the first 7 days the overall
accuracies shown in Figure 5(a) increase as the accumulation
time increases. However, the accuracy with the maximum
accumulation time with DT and NN is smaller than with 7
days of accumulation.

Generally, the longer time the data has been accumulated,
the more accurately the data sample will be classified. The
average accuracy obtained using the visits representation of
data set #1 is exceeded by cumulative samples of data set
#1 after 6 days of accumulation while with data set #2 that
happens already after 2 days of accumulation.

5.3. Feature Selection. Sequential feature selection (SFS) in
both forward and backward directions for all the classifiers
described in Section 4.2 was applied to data set #2.The results
are shown in Figure 7, where the overall accuracy of the
classifier is shown as a function of the number of features.The
curves with solid line show the results of SFS in the forward
direction. For each classifier, the line starts from the left with
one feature and continues until the addition of new features
does not improve the accuracy anymore.The results of SFS in
the backward direction are shown with dash-dot lines. These
curves start from the right with all 11 features included and
continue to the left decreasing the number of features until
removing features does not improve the results any more.
The accuracies with just one optimally chosen feature are
between 0.69 and 0.79 while with all features the accuracies
are between 0.74 and 0.86. The accuracies using the best
feature subsets found with forward and backward algorithms
are between 0.82 and 0.87. Thus the selection of the features
decreases the accuracy differences between the classifiers.

With NN, BT, and KNN, the forward selection yields
better accuracy than backward selection and the number of
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Figure 7: Sequential feature selection with several classification
methods, in forward and backward direction. Accuracy as ratio
(unitless).

selected features is also smaller. With NB, DT, and LR, the
obtained accuracy in backward direction is better. With LR,
the number of selected features in the backward direction is
also smaller than in the forward direction, while with NB and
DTbetter accuracy is obtained usingmore features than those
selected by forward SFS. Using SVM, the best accuracies
in both directions are approximately the same. However, in
the forward direction only 7 features are needed while in
the backward direction 10 features are required for the same
accuracy. The three best accuracies are obtained using LR
with 4 features, NN with 3 features, and SVMwith 7 features.
Interestingly, the accuracy using NN with just one optimally
selected feature is approximately the same as with NN with
all 11 features included.

The evolution of the feature subset composition during
the forward and backward SFS is shown in Figure 8. The fea-
tures selected in forward selection are shown in Figure 8(a):
the bigger the weight and the size of the squares were, the
earlier the corresponding feature was selected. The features
that did not get selected at all are not marked with squares.
Figure 8(b) shows the feature removals performed in the
backward selection. The large dark squares show the features
that were not removed during the selection process. The
smaller and lighter the square was, the earlier the feature was
removed; if the size and weight are reduced, the feature is
not included in the final subset. Note that, in Figure 8, the
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Figure 8: Importance of the features, based on sequential feature selection in (a) forward direction and (b) backward direction.

size and weight scales of the squares are comparable only
within classifiers with the same final number of features. No
feature is included in all final subsets, covering all classifiers
and both directions of SFS. In forward direction, idle was
the first feature selected into the model with all classifiers,
and nightStay was the second feature selected with all other
classifiers except NB. In backward direction, stay, nightStay,
and headSet are included in all the final subsets and idle is
included in final subsets of all classifiers except LR.

Based on these tests, we see that, even with the same
training and test sets, the relevance of the features depends
on the classifier. However, features stay, nightStay, headSet,
and idle seem to be relevant for most of the classifiers. The
selected feature sets provided improvements to the overall
accuracy in the range 0.02–0.07, resulting in accuracies in the
range 0.82–0.88. It can be noted that the accuracy of also the
classifier models that inherently perform feature selection or
extraction in their training phase, that is, DT, BT, and LR in
our tests, can be improved using external feature selection
algorithm. However, the results in feature importance are
considered only as preliminary, as the small size of data set
#2 reduces the reliability of these results.

With NB, DT, and SVM, the subset selected in for-
ward direction is included into the final subset obtained
in backward selection. With BT and NN, the features that
were last selected in forward direction were first removed
in backward direction and with LR the feature that was first
selected in forward direction was the fourth feature removed
in backward direction. This suggests that with this data,
combining both the forward and backward selection in the
SFS algorithm could improve the selected feature subsetwhen
accuracy is used as the selection criterion.

5.4. Confidence of Classification. To evaluate the relation
between accuracy and the confidence measures defined in
Section 4.6, we collected all the classification results and their
confidence values that were obtained using test data and NB,
NN, SVM, and LR classifiers. We ordered the results based
on the confidence measure and divided them into 20 equal
sized groups. For each of the confidence groups, we calculated
the overall classification accuracies. The accuracies of these
groups are shown in Figure 9 for both data sets and all the
data representations.

With all the data representations, it is clear that the accu-
racy is significantly lower in groups with lower confidence
value. However, even these groups include also well-classified
samples. In the results in Figure 9(b), obtained with data
set #1 and the places approach, the curves include many
spikes. This is a quantization effect due to the small total
number of samples. In general the curves in Figure 9(a)
are smoother than in Figures 9(b)–9(d). Also the curves in
Figure 9(a) show amore steady rise when compared to curves
in Figures 9(b)–9(d) which present saturation-like behavior.
One possible reason to the difference is the filtering that has
been applied to the samples in Figure 9(b) by averaging the
visits data and in Figures 9(c) and 9(d) by integrating the raw
data.

In Figure 10 the ratios between the correct and wrong
decisions of the classifiers are shown as a function of the
confidence threshold. The threshold was used to reject clas-
sification results with confidence lower than the threshold.
Correct decisions included the cases where the sample was
classified correctly with confidence equal to or higher than
the threshold or it was misclassified with confidence lower
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Figure 9: Accuracy (as ratio, unitless) in sample groups based on increasing confidence of classification for different data representations:
data set #1, (a) visits, (b) places, and (c) cumulative samples; (d) data set #2, cumulative samples.

than the threshold. Wrong decisions included the cases well-
classified with low confidence or misclassified with high
confidence. The curves in Figure 10(a) are concave and
smooth and include also parts where the curve is rising,
making it easy to find maximums in the middle parts of
the curves. In Figures 10(b) and 10(d) there are no clearly
rising parts in the curves and in Figure 10(b) the curves are
again wrinkled similarly as in Figure 9(b). The curves of
LR in Figures 10(c) and 10(d) and SVM in Figure 10(c) are
monotonically decreasing; that is, they have their maximums
with the smallest confidence threshold.

Figure 11 illustrates the effect of the confidence threshold
that maximizes the ratio between the numbers of correct

and wrong decisions when the threshold is used to reject
classification results with low confidence. Shown in the
figures are the values of the confidence thresholds, the
proportion of the samples rejected based on the threshold
to the number of all samples, the absolute improvement of
the predictive accuracy obtained by using the threshold, and
the classification accuracy within the samples that are not
rejected. In Figure 11(a) presenting the results of data set #1
and visits data representation, the rejection of results with
lower confidence produce accuracy improvements varying
between 0.05 and 0.14. With data set #1 and places data
representation, shown in Figure 11(b), the improvements
are clearly smaller, varying between 0.01 and 0.03. With
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Figure 10: Ratio between the numbers of correct and wrong decisions as a function of confidence threshold. Data representations: data set
#1, (a) visits, (b) places, and (c) cumulative samples; (d) data set #2, cumulative samples.

cumulative samples of the both data sets the threshold for
LR rejects very few samples and the accuracy does not
improve, as can be seen in Figures 11(c) and 11(d). With
these data representations the improvements by the other
classifiers are not significant either; with NB in Figure 11(d)
the increase is about 0.03; in other cases it is about 0.01 or less.
To summarize, with visits, the improvement obtained using
confidence thresholds ismore significant thanwith other data
representations. However, even when applying thresholds,
the accuracies are not as high as with places (compare the A
bars of Figures 11(a) and 11(b)), but the difference is greatly
reduced from Figures 3(a) and 3(b).

Comparing Figures 9 and 11, we see that the groups in
Figure 9 with lower confidence and low accuracies, say below
0.5, have potential for accuracy improvements by rejecting
results with low confidence, and the improvements are visible
in Figure 11. However, based on these tests, with the data
representations including averaging, the improvements are
not significant.

In the results shown in Figures 9–11, also the determi-
nation of the thresholds is based on test data. Therefore, the
effect of the threshold is not evaluated using independent data
and, despite the modest improvements, these results may still
be overly optimistic.
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Figure 11: Rejecting samples with low classification confidence. T: confidence threshold, R: ratio of rejected samples to all samples, I: accuracy
improvement obtained by rejecting low confidence samples, and A: classification accuracy within the samples with confidence ≥ threshold.
Data representations: data set #1, (a) visits, (b) places, and (c) cumulative samples; (d) data set #2, cumulative samples. Accuracies given as
ratios (unitless).

5.5. Effect of Number of Classes. In the previous tests we
combined the less frequent places labels, such as friend’s
home, transportation, and restaurant into one class,Other. In
this section, we compare these 3-class results to the 10-class
classification results that we obtain with our classifiers and
features. We used the same MDC data defined in Section 3.1
but now keeping the original 10 classes. We computed the
places and cumulative samples representations from the 10-
class data.

The comparison results are summarized in Table 3. We
can notice that the numbers of cases are smaller in 3-class
problem and the decrease comes from the decreased number
of cases in classes other than Home or Work. We chose BT
classifier for 10-class problem as it seems to outperform our

other classifiers when number of classes is larger and compare
it to LR of 3-class problem as LR performed well with both
places and cumulative samples (Figure 3). For 10-class places
representation, we computed two solutions, one using all the
14 features and another where we used forward SFS to select
the most important features.

From the classification results it can be seen that adding
more classes does not significantly affect the accuracy of
Home and Work: the accuracies of Home are in both cases
92% or slightly better and the accuracies ofWork are around
88%. However, the 10-class classifiers do not classify well the
other places. With all features included, the overall accuracy
is 62.3% and there are 4 classes that are never correctly
classified. By reducing the number of features with SFS or
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Table 3: Comparison of 3-class and 10-class solutions.

Number of classes 10 3
Data representation Places Places Cum. Places Cum.

Samples Samples
Number of cases 369 369 128137 295 108531
Home: number (percentage) 106 (28.7) 106 (28.7) 39250 (30.6) 106 (35.9) 39250 (36.2)
Work: number (percentage) 98 (26.6) 98 (26.6) 37602 (29.4) 98 (33.2) 37602 (34.6)
Other: number (percentage) 165 (44.7) 165 (44.7) 51285 (40.0) 91 (30.9) 31679 (29.2)
Features All 14 3: [4 1 2] All 9 All 14 All 9
Classifier BT BT BT LR LR
Overall accuracy (%) 62.3 68.5 68.4 89.2 89.5
Class accuracies (%)
1 (Home) 92.4 92.4 94.6 93.0 92.0
2 61.5 57.6 54.1
3 (Work) 90.8 89.7 91.7 92.0 88.0
4 25.0 62.5 45.4
5 0.0 23.0 0.0
6 0.0 22.7 5.0
7 11.1 16.6 27.4
8 0.0 20.0 13.0
9 15.7 31.5 21.6
10 0.0 42.8 23.2
(Other) (26.0) (40.0) (31.2) 81.0 89.0

Table 4: Comparison of data and solutions.

Solution Users Percentage of cases Labels Features Best Accuracy (%)
Home Work Other classifier Overall Home Work

[6] 80 25 30 45 10 2,769,200 GBT 75.1 N/A N/A
[7] 80 25 30 45 10 54 (1) 65.8 87 85
[8] 80 25 30 45 10 1177 (2) 73.3 100 100
[9] 114 25 29 46 10 500 (3) 75.5 92 90
#1 places 114 29 26 45 10 3 (SFS) BT 68.5 92 90
#1 cum. s. 114 31 29 40 10 9 BT 68.4 94 92
#1 visits 114 52 38 10 3 14 NN 76.7 83 86
#1 places 114 36 33 31 3 14 LR 89.2 93 92
#1 cum. s. 114 36 35 29 3 9 LR 89.5 92 88
#2 cum. s. 16 31 26 42 3 11 LR 85.9 81 83
(1)Multilevel 2-method (SMO and simple logistic), fusion with decision tree. (2) Ensemble of binary classifiers using 1NN and SVM. (3) Combination of
multiclass random forests and one-versus-all random forest binary classifiers.

using cumulative samples, the ability to classify also the less
frequent places increases as shown in the bottom row, where
average classification rates are computed for the other classes.
Due to this improvement, the overall accuracy increasesmore
than 6% to 68.5% and 68.4%. However, these are significantly
lower than the overall accuracies of 3-class problem.

Based on this comparison, it is clear that with this type of
user data, it is beneficial to combine the less frequent classes
in order to classify better the more frequent and important
places. Although the classification rates of Home and Work
are on the same level in both 3-class and 10-class problems,
the lower overall accuracies with 10-class indicate that there
are more false detection of Home andWork.

6. Discussion

Papers [6–8] also aim at semantic place prediction and use
data derived from the same database as data set #1 in our
work.However, there are significant differences between their
work and ours. Papers [6–8] are all from participants of the
dedicated track on semantic place prediction in the Mobile
Data Challenge (MDC) by Nokia, described in [5] and in
more detail and with MDC outcomes in [36]. The data and
findings based on it are described in [9], which also describes
one solution of semantic place prediction. Basic information
on the data, methods, and results of [6–9] and our work are
summarized in Table 4.
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The participants of the track used a subset of full MDC
data that included the data of 80 users with the highest-
quality location traces while we used the data of all the
114 users that had labeled visits data, without knowledge of
quality of the data. The data used in [6–9] was from visits
that lasted at least 10 minutes while our data was from visits
that lasted at least 20 minutes. Therefore, their data included
more cases from classes other than Home orWork compared
to our data representations based on MDC data (data set
#1). The difference is significant in visits representation but
the accumulation of data changes these ratios. In data set #2,
where the data collection has been implemented differently,
the percentage of label Other is higher than the percentage of
the other labels.

The numbers of extracted features are also given in
Table 4. We used only 9–14 features related to time and
phone usage but not to the environment while the other
works used also environment related features such as number
of Bluetooth or WLAN devices heard by the phone. We
tested feature selection on data set #2 in both forward and
backward directions but the results shown in the table were
obtained using all 11 features. The authors in [7, 9] used
feature selection method similar to our sequential feature
selection in forward direction while in [6] they used two
methods, Weka’s Relief and L1-regularized logistic regression
for the task.

The main focus in [6] is in generating a large number
of conditioned features and then selecting the best features.
The classification results using logistic regression, SVM with
different kernels, Gradient Boosted Trees (GBT), and random
forests are reported. The authors of [6] have published an
extension to paper [21].

To give the final result, [7, 8] both use fusion of sev-
eral classifiers or classification methods. Reference [7] uses
multilevel classification model where labels are grouped so
that in a sequence of classifications tasks with lower number
of labels the algorithm selects label groups in hierarchical
manner and finally in the lowest level chooses between two
labels. In the paper, severalmethods are used to train different
types of classifier models for multilevel classification. Then
collection of these models is used to classify the data, and
their classification results are used as a new feature vector that
is used to train the final classifier.

Combination of smart binary classifiers is used in [8],
where the multiclass classification problem is divided into
a set of 2-class classification problems of types one-versus-
one labels or one-versus-two labels. In the ensemble of binary
classifiers each classifier uses the best combination of features
for the current task and the better method from 1NN (i.e.,
KNN with 𝑘 = 1) and SVM with RBF kernels. Three
different methods for combining the classification outputs of
the binary classifiers are evaluated in the paper.

In [9] three classification methods were used: (a) mul-
ticlass random forests, (b) one-versus-all random forest for
each label where the winner class was decided by combining
one-versus-all votes, and (c) combination of these. The
accuracy of the methods was evaluated using leave-one-user-
out cross validation similarly as in our comparisons.

In our work we solved 3-class problem with labels Home,
Work, andOther instead of 10-class problem in [6–9].We also
used fewer features and simpler classifiermodels; that is, sim-
ilarly as in [6] we did not use collections of classifiers except
in BT (10 trees) and SVM (3 binary classifiers). The sim-
pler models are generally preferred in resource constrained
mobile devices. We also studied the effect of averaging of
features by testing different data representations that include
different levels of averaging: in visits representation each visit
is classified separately, in cumulative samples, the features
evolve with time as more data become available, and finally
in places representation all data collected from one user in
one place is averaged. For comparison, we also applied our
features and classifiers to 10-class problem.

As we consider the memory consumption of SVM in
classification phase too demanding for resource constrained
mobile devices, we do not report its results in Table 4 even
if it shows the best result with some data representations. In
these cases, the results of the second best classifier are shown.

Due to the problem simplification from 10-class problem
to 3-class in our approach and data retrieved from MDC
database using slightly different criteria, the performance
figures of Table 4 cannot be directly compared. However,
due to the simpler task and despite the simpler classifier
models, with visits representation and NN, we obtained the
overall accuracy 76.7%, which is in the same level as the
overall accuracy reported in the other works. With data
representations including averaging the accuracies improve
to 85.9% and better.The classification accuracies ofHome and
Workwith places and cumulative samples of data set #1 are on
the same level as in [7, 9]. With places representation where
the data instances describe only short periods of time, these
accuracies are lower as they are also with data set #2. In the
latter case, the number of instances with labelOther is higher
than the numbers with the other labels, and, for this reason,
the label Other is also classified with better accuracy (91%)
than the two other labels.

The comparison between 3-class and 10-class problems
with our classifiers and features show that our models can
detect Home and Work reliably in both problems. The fact
that in our model the inference is based on visits that are at
least 20 minutes in duration may also contribute to this, as
the shorter visits probably have phone usage characteristics
that are closer to the decision borders. However, in 10-class
problem the decreased classification rate of the less frequent
places decreases the overall accuracy. Improving classifica-
tion accuracy of the other places in 10-class problem requires
using features that are directly related to environment, using
phone usage data that is less privacy-preserving, and using
more complex classifiers.

It can also be argued that MDC data is a bit old. As the
MDC data set is from the time of the first smart phones, it
does not describe well all the modern ways to use a smart
phone. Through the evolution of new technologies, smart
phone usage has changed a lot [37]. Nowadays, due to the
internet connections available in phones, the use of SMS
has decreased and messaging is often performed through
other applications such as WhatsApp. The social media and
messaging apps have reduced the need for voice calls and the
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voice calls can also be made over internet based connections.
Watching videos and TV on smart phones has become
common as well as using social media and social games.
With smart phones, photos are taken and videos recorded and
both are shared in social media. Also the link between place
and phone usage through the availability of WiFi networks is
changing: the operators of wireless communication networks
have started to bring inexpensive data plans with unlimited
mobile data available to consumers, which allows them to use
data-hungry applications also on the move [38].

7. Conclusion

We have developed an inference system to assign semantic
place label for user’s whereabouts based on the phone usage.
The semantic places we considered in this work were Home,
Work, and Other places. Our test results indicate that data
representations that include averaging, that is, the places and
cumulative samples representations, give higher classification
accuracies than the visits representation. The average accu-
racy obtained using the visits representation is exceeded by
the cumulative samples representation after only 2–6 days of
accumulation of the data. Based on our preliminary tests with
data set #2, the relevance of the features seem to depend on
the classifier. However, features stay, nightStay, headSet, and
idle seem to be relevant for most of the classifiers. Our tests
also indicate that the classification accuracy can be improved
by using thresholding based on classification confidence.The
improvement was larger if the data representation did not
include averaging.

7.1. Future Work. The future developments of the semantic
labeling of user location context could include verification of
the models using a bigger data set: more users, different life
styles and daily patterns, different work occupations, and data
for longer periods of time. The bigger data set could be used
to learn subclasses to the current ones. In the group Other
subclasses such as shop, restaurant, cinema, gym, outdoor
exercising, lodging, leisure, and errands could be found.Work
could include different kinds of work-like activities, such
as shift work, driving work, other traveling work, attending
school or university, and remote working from home. Also
the use of Home is different for different people; for example,
the elderly stay mainly at home.

In this study, we used bagged trees as an improved version
of decision trees. Bagging improves variance of classifier by
averaging/majority selection of outcome from multiple fully
grown trees on variants of training set. Random forest is an
interesting alternative for future work. It builds a collection of
decorrelated trees by randomizing also the feature collection
in the trees that are averaged (see, e.g., [31]).
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