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Abstract—The focus of this paper is on evaluating different
spatial interpolation methods for the construction of radio
environment map (REM) using field measurements obtained by
cyclostationary based mobile sensors. Mobile sensing devices
employing cyclostationary detectors provide lot of advantages
compared to widely-used energy detectors such as robustness
to noise uncertainty and ability to distinguish among different
primary user signals. However, mobile sensing results are not
available at locations between the sensors making it difficult
for a secondary user (possibly without a spectrum sensor) to
decide whether to use primary user resources at that location. To
overcome this, spatial interpolation of test statistics measured at
limited number of locations can be carried out to create a channel
occupancy map at unmeasured locations between the sensors.
For this purpose, different spatial interpolation techniques for
the cyclostationary test statistic have been employed in this paper
such as inverse distance weighting (IDW), ordinary Kriging (OK),
and universal Kriging (UK). The effectiveness of these methods
is demonstrated by applying them on extensive real-world field
measurement data obtained by mobile-phone-compliant spec-
trum sensors. The field measurements were carried out using
four mobile spectrum sensors measuring eight DVB-T channels
at more than hundred locations encompassing roughly one-third
of the area of the city of Espoo in Finland. The accuracy of the
spatial interpolation results based on the field measurements is
determined using the cross-validation approach with the widely-
used root mean square error (RMSE) as the metric. Field
measurement results indicate that reliable results with spatial
coverage can be achieved using Kriging for cyclostationary based
test statistics. Comparison of spatial interpolation results of
cyclostationary test statistics is also carried out with those of
energy values obtained during the measurement campaign in the
form of received signal strength indicator (RSSI). Comparison
results clearly show the performance improvement and robust-
ness obtained using cyclostationary based detectors instead of
energy detectors.

Index Terms—Cognitive radio, cyclostationary detection, en-
ergy detection, Kriging, radio environment map, spatial estima-
tion, spectrum sensing.

I. INTRODUCTION

Realization of the opportunistic spectrum usage in cognitive
radio networks requires spectrum awareness in the form of
radio environment map (REM). REM, which is also called
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spectrum cartography, tells us the status of available radios in
a given region along with their locations, assigned frequency
bands, coverage areas, and interference levels [1]. REMs
can also be used, for example, to construct potential fields
for routing [2] and scheduling [3] purposes. REM can be
constructed from database of transmitters or through field mea-
surements acquired by sensors [1]. Databases generally rely
on deterministic or empirical propagation models to construct
REM while spectrum sensing based solutions use actual field
measurements and spatial interpolation techniques. Details of
database-based REM implementation can be found in [4], [5]
while details about measurements-based REM implementation
can be found in [1], [6].

In this paper, we consider REM construction based on
field measurements as they provide several benefits over the
database based approaches. REM constructed through the field
measurements are more accurate as the differences between the
assumed and actual propagation conditions may result in errors
in the REM constructed using a database [7]. Although real-
world field measurements require hardware, this is not a severe
problem in the world of ubiquitous communication as the re-
quired hardware can be implemented efficiently even in mobile
devices [8]. A detailed quantitative complexity-comparison of
the two REM construction methods is difficult as complexity
in these two spectral awareness techniques arise from different
requirements [9]. For example, spectrum sensing entails higher
transceiver complexity while the database solution leads to
higher infrastructure complexity [10]. Since exact quantitative
comparison is difficult, only qualitative comparison is possible
and has been carried out in [5], [10]. Moreover, construction
of REM through database and field measurements are not
mutually exclusive but can complement each other and allow
for improving the accuracy of the REM. For example, details
regarding how measurements aid the database are given in
[11], [12] while it was concluded in [13] that a database
assisted spectrum sensing may present the most efficient
solution for secondary access in the radar frequencies.

In general, it is not feasible to measure the parameters at
every location in the area of interest. Even large scale wireless
sensor networks are known to suffer from coverage holes
that may result from demanding propagation environments
(e.g., tall buildings or hilly terrain), hardware failures, data
corruption, extensive costs of redeployment or the hostility of
deployment areas [14]. Simply using the closest measurement
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point does not necessarily give the best approximation regard-
ing the channel occupancy in a complex radio environment.
The coverage issues can be mitigated by the means of spatial
interpolation, also called as spatial prediction, which refers
to estimating the parameter values at unmeasured locations
using known values at the measured locations. In the context of
spatial interpolation, the ‘unmeasured locations’ or ‘unsampled
locations’ in this paper represent the locations between the
measured locations where the secondary user does not have
sensing capability.

Spatial interpolation methods can be divided into deter-
ministic and statistical variants. In deterministic methods, the
weights used in the interpolation estimates do not depend on
the observed data but only on the geometry of the measure-
ment locations. Examples of the deterministic methods are
Thiessen or Voronoi polygons, and inverse distance weighting
(IDW) interpolation, as well as trend surfaces and splines [15],
[16]. One example of statistical methods is Kriging, which
is a generic name for a family of generalized least-squares
regression algorithms, used in recognition of the pioneering
work of Danie Krige [16]. It is a statistical interpolation
technique where statistics of the spatial data are considered for
interpolation. There are several benefits from using Kriging
compared to the deterministic alternatives [14], [16]. First,
Kriging can extrapolate the data outside the measurement hull.
Second, in addition to the interpolation estimates, Kriging also
provides estimates for the interpolation variance quantifying
the reliability of the interpolated value. This helps in evaluating
the feasibility of using the method for spectrum sensing
purposes with noisy or otherwise unreliable data.

Current literature [6], [14], [17] mainly focuses on the
interpolation of energy estimates which are well handled with
majority of the traditional interpolation methods combined
with radio wave propagation models. However, a well-known
problem with energy detection is that it cannot distinguish
between the signals of interest and interference. Furthermore,
its performance is heavily affected by hardware non-idealities
such as nonlinearity and noise uncertainty causing an effect
known as the SNR wall [18]. Thus, in consumer-grade
hardware, the energy detector can only be used to obtain
coarse estimates on the field strength. As opposed to energy
detectors, cyclostationary feature detectors have higher
sensitivity and are robust against noise and interference [19],
[20]. However, no studies or experiments have been carried
out for the spatial interpolation of cyclostationary statistics in
the current literature. Cyclostationary based sensing statistics
depend on spatial processes such as radio propagation which
are stochastic in nature. There is often a good general
understanding about their spatial correlation structure.
Deterministic methods do not allow using information about
such statistical spatial variation. Kriging on the other hand
makes use of this understanding. Motivated by this, our
paper focuses on evaluating the performance of deterministic
as well as statistical interpolation methods while using
cyclostationary based field measurements.

The contributions of this paper are the following:
• The field measurement campaign was carried out in eight

DVB-T channels (channel numbers 42-49 corresponding
to 642-698 MHz center frequency range) with 8 MHz
bandwidth each. The measurements were carried out at
more than 100 different locations in the city of Espoo in
Finland using four distinct mobile measurement set-ups
covering close to 200 km2. At each location, 400 cyclo-
stationary test statistics and RSSI values were collected.

• The cyclostationary test statistic utilized in this paper is
Angular Domain spatial sign correlation Detector Test
(ADDT), which was originally proposed in [8] and is
implemented using FPGA technology.

• An analytical expression is derived for the distribution
of the ADDT statistic under noise-only hypothesis. This
helps in finding the threshold of a Neyman-Pearson
detector.

• Performance evaluation of different spatial interpolation
techniques such as IDW, ordinary kriging (OK) and
universal kriging (UK) is done for the cyclostationary
test statistic computed from real-world measurement data.
Different fitting variograms are experimented with includ-
ing circular, spherical, exponential, Gaussian, and stable
models.

• Effect of the number of nearest measured locations (or
nearest neighbors) is also studied on the estimation of
the test statistic at a given unmeasured location. This
is important as the complexity of the algorithm and
its accuracy depend on the effect of number of nearest
neighbors.

• Spatial interpolation is also carried out for energy de-
tection test (EDT) statistics and its performance is com-
pared to the results of cyclostationary based interpolation
results.

The current work differs from our previous work [7], [21]
in that the current work is based on new large-scale field
measurements conducted using a different implementation of
cyclostationary detection. In this paper, we have used ADDT,
which facilitates a significant simpler computation of the test
statistic instead of time domain cyclostationary detector which
was used in our previous work [7], [21]. Moreover, the new
field measurements also included collection of EDT statistics
unlike previous measurements. The earlier work focused on
the topics of cooperative sensing and distributed detection
while these topics are not in the scope of this paper. On the
other hand, this paper focuses only on spatial interpolation
of sensing statistics including both energy and cyclostationary
based test statistics.

This paper is organized as follows. Section II describes
energy and cyclostationary based spectrum sensors along with
their prototype platform that is used for collecting the mea-
surement data. The details of the field measurement campaign
are presented in Section III. Section IV focuses on the theory
of spatial interpolation while Section V presents the results
obtained from the measurement campaign. Finally, Section VI
concludes the paper.
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II. ENERGY AND CYCLOSTATIONARY BASED SPECTRUM
SENSORS

A. System Model

The problem of detecting the existence of the primary user
(PU) transmission can be modeled as a binary hypothesis test
given by

H0: x[n] = w[n]

H1: x[n] = h[n] ∗ s[n] + w[n],
(1)

where n represents the discrete time index and “ ∗ ” denotes
convolution operation while x[n], s[n], h[n], and w[n] de-
note the received signal, the PU signal, the channel impulse
response and the additive white Gaussian noise (AWGN),
respectively. In the conducted field measurements, the PU
is OFDM based DVB-T signal which shows cyclostationary
features, for example, due to the presence of cyclic prefix
[22]. As the number of subcarriers in DVB-T is large (2K and
8K modes), the central limit theorem can be used to consider
s[n] to be Gaussian distributed. However, s[n] are correlated
random variables due to the presence of cyclic prefix [23].
Moreover, w[n] and s[n] are assumed to be independent of
each other. It should be noted that the binary hypothesis test
given by (1) is nominal and is used to conveniently explain
different detectors presented in this paper. Field measurements
generally involve several other factors affecting the desired
signal such as shadowing, interference, and receiver non-
idealities, etc.

Generally, the detector makes binary decisions based on the
following rule

T < η → Decide H0

T ≥ η → Decide H1,
(2)

where T is the scalar test statistic evaluated from the observa-
tions while the threshold η depends on the detection strategy
and distribution of T under the two hypotheses. The two
important performance parameters are probability of detection
Pd and probability of false alarm Pf , and are given by

Pd = P(T ≥ η|H1),

Pf = P(T ≥ η|H0).
(3)

In this paper, we consider Neyman-Pearson detector which
maximizes the probability of detection with a constraint on
the false alarm probability. Therefore, the threshold design
depends only on the distribution of T under the null hypothesis
H0.

B. Energy Detection

The EDT statistic used in this paper is the RSSI (or the
estimate of the input-signal power in dBm scale) denoted by
T̂E in dBm. The estimate of the input power at the absolute
scale can be computed from N signal samples as

TE =
1

N

N−1∑
n=0

|x[n]|2.

Note that NTE follows chi-squared distribution as it is a
sum of squares of Gaussian random variables. The calculated

Fig. 1. Energy detector implementation.

Fig. 2. Required front-end gain settings as a function of input power
determined with laboratory measurements.

average power TE is converted to T̂E in dBm scale and
compared with a threshold ηE to arrive at a decision D.
The implementation of RSSI estimation following the A/D
conversion is depicted in Fig.1.

The conversion of the calculated average power TE to
T̂E in dBm scale is done with a look-up table. This look-
up table is calibrated by laboratory measurements to take
into account the gain of the low noise amplifier (LNA) and
variable gain amplifier of the analog front end. The required
front-end gain is determined to be the maximum gain that
does not saturate the A/D converter output. Measurements
for the required gain settings for LNA and variable gain
amplifier are depicted in Fig. 2. During the normal detection
operation, the energy measurement starts with the maximum
gain setting. If the linear range is exceeded, then the gain
is reduced, correction factor is added to look-up table values
and the measurement is repeated. The look-up table values
and correct operation of RSSI are verified with laboratory
measurements with frequencies 642 MHz (ch. 42) and 762
MHz (ch. 57). Verification measurements indicate reliable and
accurate operation over input dynamic range from -120 dBm to
-30 dBm, as depicted in Fig. 3. As the input power is decreased
below -98 dBm, the input power estimate saturates, indicating
the noise floor of the detector receiver chain.

C. Cyclostationary Detection

A cyclostationary process is a random process for which
statistical properties vary cyclically with time. Most of wire-
less communication signals typically exhibit cyclostationarity
at different cyclic frequencies related to the symbol rate,
frequency, chip rate as well as their harmonics. As random
noise is not cyclostationary, it is an attractive property for
detecting PU signals and distinguishing them from noise [24].
Unlike energy detection, cyclostationary detector allows signal
classification, performs reliably in low SNRs and is robust to
noise uncertainty.
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Fig. 3. Estimated received signal power as a function of input power.

An estimate of cyclic autocorrelation R̂(α, τ) can be eval-
uated [22] as

R̂(α, τ) =
1

N

N−1∑
n=0

x[n]x∗[n+ τ ]e−j2παn, (4)

where N + τ is the number of received samples, α is the
cyclic frequency of interest and τ is the time delay in samples.
It is assumed that the signal is sufficiently oversampled to
avoid aliasing in the cyclic frequency domain. The time delays
are integer valued and α ∈ [0, 1). In this paper, DVB-
T is considered as the PU which uses OFDM transmission
scheme. If Nd is the number of samples in the useful data
of an OFDM symbol, Nc is the number of samples in cyclic
prefix and Ns = Nc + Nd is the number of samples in one
OFDM symbol, then the OFDM signal exhibits cyclostationary
features at cyclic frequencies k/Ns with k ∈ Z+ and peaks at
τ = ±Nd. In this paper, we evaluate the presence of second-
order cyclostationarity at α1 = 1/Ns and τ1 = Nd.

There are several different implementations of cyclostation-
ary detectors such as time domain cyclostationary detector,
spatial sign correlation detector, and ADDT [8]. The imple-
mentation and performance comparison of these detectors have
been carried out in [8]. In this paper, we have used ADDT
instead of time domain cyclostationary detector, which was
used in our previous work [7], as ADDT provides a significant
simple computation of the test statistic. For ADDT, the test
statistic is of the form

Φn(α, τ) = φx[n]− φx[n− τ ]− 2παn

N
(5)

for n = 0, 1, . . . , N − 1, where φx[n] = ∠x[n].
Under the null hypothesis H0, the observations x[n] are

only Gaussian white noise so that Φn(α, τ) is uniformly
distributed in [−π, π] [25]. Under H1, Φn(α, τ) is no longer
uniformly distributed [25]. This is explained briefly as follows.
In OFDM, Nc number of last samples out of Nd data samples
in one OFDM symbols are copied in front of data samples
to create a cyclic prefix. Therefore, when the samples are
drawn from the part of the signal that belongs to the cyclic
prefix for τ = Nd, the first two terms in (5) cancel each
other out as they have the same phase. The only term then
left in (5) is the third term related to the cyclic frequency α.

If α = 1/Ns, then the samples corresponding to the cyclic
prefix (i.e., 0, 1, . . . , Nc − 1) have exactly the same subset of
angles (2παn/N ) that occur from one OFDM symbol to the
next. This results in non-uniform distribution for sufficiently
high SNR.

As the distributions of Φn(α, τ) under H0 and H1 are
different (i.e., uniform and non-uniform, respectively), one
can test for the presence of the PU signal by testing for the
uniformity of Φn(α, τ) [25]. One way to do this in practice is
to construct a histogram of B bins corresponding to angular
domain sectors [25], [26]. By counting the samples falling
into each bin, one can test how uniformly the samples are
distributed. Under H0 the angle is uniformly distributed and
the number of samples in the bins are jointly multinomial
distributed with sample size parameter N and probability
vector p = [ 1

B ,
1
B , . . . ,

1
B ] [27]. If the number of samples

in at least one of the sectors deviates from the expected
value N/B more than a predetermined threshold η the null
hypothesis is rejected and decision H1 is made. Fig. 4 shows
the implementation block diagram of the uniform distribution
test of the cyclostationary detector with B = 4 bins used for
the field measurements of this paper. The test statistic used for
this purpose, as shown in Fig. 4, is

TC =
210

N
max
i=1...4

|Yi| (6)

where Yi for i = 1, 2, 3, 4 are the number of samples in the
four angular bins minus N/4. Here N/4 is the expected value
of the number of samples in each of the four bins under H0.
This way Yi for i = 1, 2, 3, 4 can be modeled as zero mean
random variables for convenience. The term 210/N in the
test statistic comes from the fact that the test statistic TC is
represented in hardware using 10 bits. Multiplying by 210/N
normalizes the value of maxi=1...4 |Yi| between 0 and 210−1
so that TC is efficiently represented with 10 bits.

Next, we derive an approximation for the cumulative distri-
bution function (CDF) of the local test statistics TC under H0

as computed in Fig. 4. The distribution under H0 is needed
for designing the decision threshold η for the Neyman-Pearson
detector while the distribution of the test statistic under H1

is not necessary. The joint distribution of the number of
samples in the four angular bins in Fig. 4 is the multinomial
distribution with sample size parameter N and probability
vector p = [ 14 ,

1
4 ,

1
4 ,

1
4 ]. It is known that the multinomial

distribution can be approximated by a multivariate normal
distribution when the sample size N is large and when the
elements of p are not close to 0 or 1 [27], [28]. In our case

Fig. 4. The block diagram of the uniform distribution test implemented in
[26].
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the sample size N is between 215 and 217 and the elements of
p are all 1

4 , and hence we can expect the multivariate normal
distribution to provide a good approximation. That is, the joint
distribution of the number of samples in the 4 bins can be
approximated as N (Np,Σ), where [27]

Σij =

{
3N
16 , if j = i
−N
16 , if j 6= i.

Subtracting the expected value N/4 from the sample sizes of
each angular bin (as done in Fig. 4) we obtain that the joint dis-
tribution of {Y1, Y2, Y3, Y4} can be approximated by N (0,Σ),
where 0 = [0, 0, 0, 0]. Denote the multivariate normal CDF
with mean 0 and covariance matrix Σ as F (z1, z2, z3, z4).
The CDF of the test statistic TC can be then approximated as

P(TC ≤ z̃) = P( max
i=1...4

|Yi| ≤ z)

= P(−z ≤ Y1 ≤ z, . . . ,−z ≤ Y4 ≤ z)

≈ F (z, z, z, z)−
∑

(u1,...,u4)∈Ũ

F (u1z, u2z, u3z, u4z),

(7)

where z̃ = 210

N z, F (.) is the joint CDF of {Y1, Y2, Y3, Y4},
Ũ = U \ (1, 1, 1, 1) and U = {u : u =
(u1, u2, u3, u4), with ui = ±1,∀1 ≤ i ≤ 4}. In (7) the first
term corresponds to the probability that all Y1, . . . , Y4 are less
than z, whereas the subtracted sum term corresponds to the
probability that at least one of Y1, . . . , Y4 is less than −z.

Fig. 5 shows the CDF of TC under H0 evaluated by three
methods: empirical CDF, analytically approximated CDF and
CDF based on the measurements in a anechoic chamber (or
Faraday’s cage). The empirical CDF is estimated from 100000
simulations while the analytically approximated CDF is given
by (7) that uses the normal approximation. The empirical
distribution under H0 has been estimated from simulated test
statistics generated according to Fig. 4 by feeding the counters
uniformly distributed random angles between −π and π. The
number of test statistics per channel measured in Faraday’s
cage is 2000. The number of samples in this example is
N = 217. It can be seen that the theoretical approximation
is practically on top of the empirical CDF while the CDF
based on the Faraday’s cage measurement is also very near to
these two curves.

D. Spectrum Sensor Prototype

A spectrum sensor prototype, depicted in Fig. 6(a) was
used for collecting the field measurement data reported and
analyzed in this paper. The sensor platform is specifically
designed for mobile usage and it can be embedded to a mobile
phone. In this paper, we have used the sensor separately by
interfacing it to a PC through a USB port.

Fig. 6(b) shows the functional description of the sensor
platform. It consists of two RF front-ends (for DVB-T and
WLAN), A/D-converters (ADCs) for both front-ends, a field
programmable gate array (FPGA) that features two soft micro-
controllers, and a USB communication bridge for interfacing
purposes. The FPGA is used for the implementation of the

Fig. 5. Figure shows three CDFs for ADDT: empirical CDF, the CDF
computed using the normal approximation in (7), and the CDFs computed
from measurements in a Faraday’s cage. The number of samples in this
example is N = 217 and the number of simulations used to compute the
empirical CDF is 100000.

(a) Prototype platform

(b) Sensor Functionalities

Fig. 6. Spectrum sensor prototype platform and description of spectrum sensor
functionalities.

actual signal detection algorithms, digital baseband and con-
trolling schemes. Further details on the implementation of the
platform are presented in [26], [29].

Fig. 7 depicts the probability of detection as a function of
input power with different detection times for the ADDT. The
number of measurements used to estimate the probability of
detection is 2000 while the constraint on the false alarm prob-
ability is 5%. In the corresponding laboratory measurement,
the test signal is fed directly to the RF input of the detector
from a vector signal generator. For practical reasons, detection
time of 14.4 ms was used in the field measurement since it
allowed the acquisition of several hundreds of detections in
reasonable time and is still adequate for demonstrating the
spatial estimation of test statistics.

It is important to note here that the use of FPGA in this
paper is for experimental purpose. Also, this particular test
board embodiment does not exactly fit in a mobile phone.
However, its predecessor in [29] has been fit in Nokia N900
phone and the detector used in this paper is a simplified version
of the predecessor. Moreover, the detector implementation
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Fig. 7. Detection probability of ADDT for different sensing times as a
function of input power fed to the antenna port of the detector implementation.

employed in this paper is a viable technique for cognitive
radios considering the current state-of-the art of the sensor
hardware. Although there could be further optimization in
detector architecture like in [30], where a state of the art
cognitive spectrum sensor with extremely low power is pre-
sented, the intended focus of this paper is application of mobile
detection and not on the hardware optimization.

III. FIELD MEASUREMENTS

The field measurement campaign was carried out in sub-
urban Espoo region, where four sensors were used in 31
different cluster-locations. At each cluster-location, the four
sensors were spread at least 100 meters apart from each
other. Thus, there are a total 124 measurements locations
for the measurement campaign as depicted by Fig. 8. At
each measurement location, 400 test statistics samples were
collected with both the detectors (ADDT and EDT) on DVB-T
channels 42-49. While collecting these samples, the following
additional data was also collected for each sample: time-
stamp (in sec), location coordinates (latitude and longitude
in WGS84 format), and frequency of operation (in MHz).
The measurement data was collected using a laptop and later
processed offline using ArcGIS. Detection time of 14.4 ms
was used. Although this does not satisfy the FCC sensitivity
requirements for individual detections, the standards can be
met through data fusion of multiple detections from a single
or multiple sensors [7], [21].

Fig. 9 depicts three DVB-T transmitter locations relative
to the measurement campaign for representative channels of
45, 46 and 47 while the corresponding transmitter parameters

TABLE I
DVB-T TRANSMITTER PARAMETERS FOR REPRESENTATIVE CHANNELS 45

(PARTIALLY OCCUPIED), 46 (OCCUPIED) AND 47 (FREE) [7]

DVB-T Trans. Espoo Tallinn Nummi-Pusula
Latitude 60.1778 59.4713 60.45

Longitude 24.6403 24.8875 23.8833
Mast Height 313 m 289 m 70 m
Trans. Power 47 dB 42 dB 12 dB

Trans. Channels 44, 46 45 42, 47

are presented in Table I. The three channels 45, 46 and
47 represent partially-occupied, occupied and free channels,
respectively, in the measurement region. This classification is
based on the ability of decoding the TV signal in the region
which was verified by doing measurements in the Helsinki
city-center using Rohde & Schwarz TSM-DVB T/H diversity
test receiver [31] earlier. Note that decoding the signal requires
several dB higher signal strength as compared to only detecting
the signal.

Two DVB-T transmitters clearly contribute to the measure-
ment results. One is located in Espoo and is transmitting on
channels 44 and 46 with high power. Since the measurements
are carried out in Espoo area, the aforementioned channels
were always detected in all the measurement locations. The
other transmitter, transmitting on channel 45, is located in
Tallinn, Estonia, which is approximately 80 kilometers south
of the measurement region and across the Baltic sea. The
transmission from this transmitter can be decoded mainly near
the shore and on high ground while the signal can be detected
in most parts of the measurement region. The received signal
powers for channels other than 44, 45, and 46 are pretty weak
in the measurement region as shown in our earlier work [7].
Channel 47 is taken as representative of a free channel and its
nearest transmitter is located approximately 55 km north-east
of the measurement region in Nummi-Pusula.

IV. SPATIAL INTERPOLATION TECHNIQUES

In this paper, we have considered IDW as a representative
of deterministic interpolation techniques while for statistical
methods, we have considered Kriging, specifically ordinary
Kriging (OK) and universal Kriging (UK). These spatial
interpolation methods are described in this section. This is
followed by the details on performance criteria and the use of
ArcGIS software for spatial interpolation.

A. Inverse Distance Weighing (IDW)

IDW is the deterministic interpolation that follows the basic
law of geology: things that are closer will have more impact
than the ones which are farther away [15]. It is also known as
Shepard’s method. Let us denote a location s = [x y]T with x
and y being the longitude and latitude values of the location.
If we denote Z(si) as the parameter values at the measured
locations si for i = 1, . . . ,M , then the parameter value at an
unmeasured location s may be estimated using IDW in terms
of the parameter values at the M measured locations by

Ẑ(s) =

{ ∑M
i=1 wi(s)Z(si)∑M

i=1 wi(s)
, d(s, si) 6= 0 ∀i

Z(si) Otherwise,
(8)

where the weight factor wi(s) depends on the distance d(s, si)
between the measured locations si and predicted location s and
is given by

wi(s) =
1

d(s, si)p
, (9)

where p is the power exponent and i is the index of the mea-
sured locations. Here weight decreases as distance increases
from the interpolated points. The value of p controls the rate at
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Fig. 8. Field measurement data prior to spatial estimation. The color of the dots
corresponds to the sensor index. Although the four sensors look very close at each
measurement location; they were at least 100 m apart from each other.

Fig. 9. Transmitter locations for representative channels
of 45, 46, and 47 with respect to measurement locations.

which the weight of a measurement point drops as a function
of the distance to the interpolated point. The value of p = 2
is widely used for which the method is known as the inverse
distance squared weighted interpolation. However, there is no
theoretical justification to prefer this value over others and the
optimal value of p for a given scenario or application should
be evaluated through cross-validation.

B. Kriging
Kriging is a statistical interpolation technique where the

knowledge about the spatial statistics of the measured field is
used for interpolation. It is essentially a two-stage procedure
that generates an estimated surface from scattered data points
with z-values, which are the field measurement metrics in this
paper. The first stage is to calculate the weight factor at a
given location using spatial auto-correlation of sampled data
(which is known as semivariogram) while the second stage
involves estimation of values at that location using weighted
sampled data. In Kriging, the weighting is based on a statistical
calculation of the spatial correlation between the data points.
Extensive theory of variography and Kriging can be found in
[16], [32].

1) Semivariogram: The Kriging procedure begins with
modeling of the functions that estimate the spatial dependence
of the measured values, or in other words, their spatial auto-
correlation [14]. Spatial modeling, also known as variography,
usually involves a graph of empirical semivariogram (see Fig.
10), which illustrates the semivariances for all pairs of data of
a measurement location. For a pair of locations {si, sj} the
semivariogram can be calculated as

γ̂(si, sj) =
1

2
(Z(si)− Z(sj))

2, (10)

Fig. 10. Example of semivariance and a variogram model from [33].

where γ̂(si, sj) is the semivariance for a location pair {si, sj}.
Since measurements are rarely made using regular uniform
grid of measurement points, there are often several location
pairs such that the resulting variogram would become difficult
to analyze and be sensitive to outliers. Hence, a binned
variogram, that divides the location pairs to a limited number
of distance classes, is often used [16]. It can be considered as
a moving average of the semivariance cloud.

2) Fitting a Variogram Model: After obtaining the semi-
variance plot, a variogram model needs to be fitted to the
data. Fig. 10 depicts a generic example of empirical semivari-
ances and an exponential fitted model [33]. Commonly used
models for the variograms are circular, spherical, exponential,
Gaussian, and stable. Expressions for these models are given
in Table II. Once the variogram model is chosen, the optimal
parameters for the model can be found using mathematical
methods such as least squares (LS), weighted LS or residual
maximum likelihood.

Fig. 10 also introduces the terms sill, nugget, and range.
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TABLE II
SEMIVARIOGRAM MODELS WITH THEIR EQUATIONS. HERE h IS THE DISTANCE BETWEEN TWO POINTS, θr IS THE RANGE, θs IS THE SILL, AND

θ = [θs θr]T .

Model Equation

Circular γ(h;θ) =


2θs
π

[
‖h‖
θr

√
1−

(
‖h‖
θr

)2
+ arcsin

‖h‖
θr

]
for 0 ≤ ‖h‖ ≤ θr

θs for θr ≤ ‖h‖

Spherical γ(h;θ) =

θs
[
3
2
‖h‖
θr
− 1

2

(
‖h‖
θr

)3]
for 0 ≤ ‖h‖ ≤ θr

θs for θr ≤ ‖h‖
Exponential γ(h;θ) = θs

[
1− exp

(
−3
(
‖h‖
θr

))]
for ∀h

Gaussian γ(h;θ) = θs

[
1− exp

(
−3
(
‖h‖
θr

)2)]
for ∀h

Stable γ(h;θ) = θs

[
1− exp

(
−3
(
‖h‖
θr

)θe)]
for ∀h

Range θr is the distance at which the semivariance γ reaches
95% of the final value it converges to, or in practice, where the
model first flattens. Sill θs is the semivariance value at which
the theoretical variogram model attains the range. Nugget ν is
a non-zero value at infinitely small separation distance, which
is basically consequence of measurement errors of the data as
well as the variation occurring at distances below the smallest
sampling interval. In addition to the terms presented in the
figure, partial sill θp is defined as the value of sill relative to
nugget, i.e., θp = θs − ν. The covariance of the random field
C(si, sj) can be determined using the spatial auto-correlation
of the sampled data, and it is given by

C(si, sj) = θs − γ(h), (11)

where h denotes the distance between points {si, sj}.
3) Estimation at unmeasured locations: After the modeling

of spatial autocorrelation is completed, the estimation phase
can be carried out. The general formula for the estimated value
Ẑ(s) using the Kriging estimator is given by

Ẑ(s) =

M∑
i=1

λi(s)[Z(si)− υ(si)] + υ(s), (12)

where λi(s) is the weight factor and v(s) is the trend com-
ponent at the location s. Now, the estimation error can be
expressed as

Ẑ(s)−Z(s) =
[
Ẑ(s)− v(s)

]
− [Z(s)−v(s)] = R̂(s)−R(s),

(13)
where R̂(s) , Ẑ(s) − υ(s) and R(s) , Z(s) − υ(s) are
residual components of the estimated and true values at the
unmeasured location, respectively. Basically, the trend compo-
nent υ(s) of the given random field Z(s) can be represented
as a deterministic function. Therefore, instead of interpolating
Z(s) the trend component υ(si) is removed from the sampled
data values Z(si) and Kriging interpolation estimates the
residuals R(s) using (12) as

R̂(s) =

M∑
i=1

λi(s)R(si). (14)

After interpolating the residual components, it is added back
with the trend component to get the estimated value at un-
known location Ẑ(s) as given by (12).

Now for estimating the interpolated residuals R̂(s) using
(14), the weight vector λ(s) = [λ1(s) . . . λM (s)]T is chosen
such that the mean square error (MSE) in estimating residuals
R(s) is minimized. Such weight vector is given [16], [32] by

λ(s) = C−1c(s), (15)

where C is the covariance matrix between sampled data points
with elements Ci,j = C(si, sj) and c(s) is vector with
covariances between sampled data points and estimation points
i.e., ci = C(si, s) . The covariance values in matrix C can be
calculated using semivariogram values and its parameters, as
given in (11). The weight factor λ decreases with increasing
distance, i.e., the sample points within local neighborhood will
have more influence than the points which are placed far away.

Based on the assumption of trend component, Kriging can
be classified as simple Kriging, ordinary Kriging (OK) and
universal Kriging (UK). In simple Kriging, the trend com-
ponent υ(s) is assumed to be known and constant whereas in
ordinary Kriging it is assumed to be constant but unknown. OK
is the default Kriging method as it doesn’t need the knowledge
of the trend, and it is more practically applicable compared to
other Kriging methods. In UK, the trend component will be the
first or higher order polynomial of (x, y) location coordinates.
The Kriging estimator Ẑ(s) as in (12) is the linear combination
of M weight factors (λ(s)) scaled residual components. The
weights can be obtained by solving a system of linear equa-
tions with the complexity of O(n3). To reduce the complexity

TABLE III
DIFFERENT KERNEL FUNCTIONS CONSIDERED IN THIS PAPER. FOR ALL
FORMULAS BELOW, α = r

β
WHERE r IS A RADIUS (CENTERED AT POINT

s), β IS THE BANDWIDTH PARAMETER, AND I(·) IS AN INDICATOR
FUNCTION.

Model Equation
Constant I(s−h<si<s+h)

Exponential e−3α

Gaussian e−3α2

Epanechnikov 1− α2 for α < 1

Quartic
(
1− α2

)2 for α < 1

Polynomial5 1− α3
(
10− α

(
15− 6α

))
for α < 1
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to O(n), kernel approximations to the weight function has
been proposed in [34] and so Ẑ(s) can be calculated at each
point s without any initial matrix computations. Table III
shows different kernel functions considered in this paper such
as constant, exponential, Gaussian, Epanechnikov, quartic,
and polynomial5 [35]. All these kernel interpolations use the
radial symmetry which significantly reduce the computational
complexity. Appropriate function can be selected based on its
goodness of fit. However, the accuracy for UK degrades if
the assumed models are different from the actual models [34].
Various other Kriging methods are thoroughly described and
analyzed in [36] and [37]. In this paper, we have adopted OK
and UK which have been observed to work efficiently in the
considered scenario.

C. Cross Validation

Cross validation is a process of determining the accuracy
of the estimates of the interested parameter values at the
unmeasured locations. In this process, one sampled data is
removed and remaining samples are used to estimate the value
at the removed sample location. This process is repeated for
each sample data, and cross validation metrics are calculated.
There are several metrics such as mean error, root mean
square error (RMSE), average Kriging standard error, and
RMS standardized error. In this paper, we have considered the
widely used RMSE as a metric for the accuracy of prediction
for both deterministic and statistical interpolation techniques.
For good estimation accuracy, the value of RMSE should be
sufficiently low.

D. Use of ArcGIS

Geographic information system (GIS) deals with capturing,
storing, analyzing, and interpreting the spatial data to under-
stand patterns, trends and relationships. It plays predominant
role in continuous data analysis. It defines certain method-
ologies for creating a continuous surface from the sampled
data. ArcGIS is a software for GIS, developed and owned
by Environmental Systems Research Institute (ESRI) group
of Redlands, California. It is simple to use and provides user
friendly environment to analyze and perform operations on
spatial data. It also provides solid documentation to understand
the broad functionalities involved in the spatial data analysis.
ArcMap is a component of ArcGIS where we can visualize the
spatial data and can perform more analysis on it. It can create
maps by compiling spatial data and analyze the information on
the map to provide realistic solutions in various applications.
In this paper, Geo-statistical analysis extension in ArcMap
is utilized for various deterministic and geostatistical spatial
interpolation methods. It conducts analysis on the data based
on certain attributes from various locations in landscape and
interpolates it to construct continuous surface. Quality of the
generated surface can be assessed through cross validation.
In this work, we have used ArcGIS 10.3 for our spatial
analysis on field measurements to construct REM using spatial
interpolation techniques. For more details on ArcGIS software,
please refer to [38].

V. RESULTS AND ANALYSIS

This section starts by presenting the measured test statistics
for energy and cyclostationary detectors, i.e., EDT and ADDT
statistics for the representative channels. This is followed by
an example of interpolating ADDT statistics using OK with
exponential fit. Next, the effects of different fitting functions
for OK are studied. Comparison is then carried out for different
spatial interpolation techniques including IDW, OK and UK
for ADDT statistics. Later, spatial interpolation results are
presented for EDT and ADDT statistics showing the benefits
of using cyclostationary detector. Note that for all spatial
interpolation schemes, average of the 400 collected measured
test statistics per channel per location is taken as the measured
value Z(si) at each measured location. The sensing time
corresponding to each test statistic is 14.4 ms.

A. Statistics of ADDT and EDT

Figs. 11 and 12 show the ADDT and EDT values, re-
spectively, as a function of distance from the corresponding
DVB-transmitter for the three representative channels: (a) 45
(partially occupied), (b) 46 (occupied), and (c) 47 (free). For
channel 46, both ADDT and EDT values are very high as the
measurement region is inside the expected coverage region
for this channel. On the other hand, for channel 47, both
the measured statistics are very low valued. For channel 45,
the effect of fading and shadowing can be seen on the test
statistics, where both the measured statistics are moderate.
Because of fading and shadowing effects, there are lot of
fluctuations in the measured values at the same location.
However, on average, there is significant decay in these test
statistic values as the distance from the transmitter increases.

B. Example of interpolating ADDT statistics using OK

Figs. 13 and 14 show the results of spatial interpolation
for channels 45, 46 and 47 using exponential fit for OK and
considering all neighbors. Fig. 13 shows the exponential fit for
the considered data while Fig. 14 shows the corresponding spa-
tial interpolation map of ADDT statistics in the measurement
region. Here one map is computed assuming Z(si) to be the
average of the 400 samples measured at location si. Note that
the symbology or color mapping for the spatial interpolation
in the above figures is not linear and has been optimized for
visual representation while making sure that the same scales
can be used for all the channels.

Fig. 14 shows that the values of interpolated ADDT statis-
tics for channel 45 are moderate towards southern part of
measurement region while low towards northern parts. For
channel 46, as expected, the interpolated test statistics are high
valued throughout the measurement region. The interpolated
test statistics for channel 47 are mostly low valued except for
slightly higher values for the locations near Espoo transmitter.
This is due to the interference caused by the strong signal in
the adjacent channel 46.

From Fig. 14, it can be observed that the results show
estimates of the test statistic over the sea which may be outside
the convex hull (or polygon of minimum area) that contains
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(a) Channel 45

(b) Channel 46

(c) Channel 47

Fig. 11. ADDT statistics vs. distance for the three represen-
tative channels: (a) 45 (partially occupied), (b) 46 (occupied),
and (c) 47 (free).

(a) Channel 45

(b) Channel 46

(c) Channel 47

Fig. 12. EDT statistics (RSSI in dBm) vs. distance for the
three representative channels: (a) 45 (partially occupied), (b)
46 (occupied), and (c) 47 (free).

all the measurement locations. This is because geostatistical
analyst tool of ArcGIS interpolates the values of the test
statistic at all locations that lie within the minimum spatial
bounding box (i.e., smallest rectangle encompassing all the
input measurement locations). Thus, ArcGIS is doing extrap-
olation in the region of minimum spatial bounding box outside
the convex hull. However, such region is minimal in area and
still close to measurement points. Note that the accuracy of
extrapolation starts degrading as one gets farther away from
the measurement points [38]. Moreover, the RMSE calculation
is carried out only over measured points so that the errors in

TABLE IV
ORDINARY KRIGING USING EXPONENTIAL FIT FOR CHANNELS 45, 46

AND 47.

Channel Nugget Partial Sill Range RMSE
45 79.308 144.87 0.0602 10.466
46 12.076 4.6785 0.0096 3.6938
47 2.3875 1.7831 0.0461 1.836

extrapolation do not affect the RMSE calculation.
Table IV shows the values of nugget, partial sill and range

along with RMSE. Channel 45 has the highest nugget value
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(a) Channel 45

(b) Channel 46

(c) Channel 47

Fig. 13. Exponential fit for ADDT statistics based variogram for channels
45, 46, and 47.

(a) Channel 45

(b) Channel 46

(c) Channel 47

Fig. 14. Spatial interpolation maps of ADDT statistics for
channels 45, 46, and 47 using exponential fit and OK.

indicating that the points closer are highly dissimilar. Even
the range is highest for Channel 45. Note that the length of
a degree of latitude and longitude corresponds to 111.132 km
and 78.847 km respectively. Assuming the average length of
a degree to be 95 km, the range for OK for channels 45, 46
and 47 are 5.718 km, 0.912 km, and 4.379 km respectively.
Fig. 15 shows the number of neighbors at each measurement
location for two different values of range of 2.5 km and 5.5

km. For the range values of 2.5 km and 5.5 km, the average
number of neighbors at a measurement location are 13.3 and
49.3 respectively. It can be also observed from Table IV that
the RMSE is highest for channel 45 followed by channel 46
and channel 47. The reason is that variation is large across
channel 45 while it is low for channels 46 and 47. Although
variation is low for channel 46, as the test statistic values are
high, the RMSE is higher as compared to the case of channel
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47 which has low values of test statistics.

Fig. 15. The average number of neighbors at a measurement location in the
range are 49.3 and 13.3 for the range values of 5.5 km and 2.5 km respectively.

C. Comparison of different fitting functions

Table V shows results for OK with different fitting functions
for channel 45. Although the RMSE values for all the fitting
functions are in the same order, exponential fit has the lowest
RMSE among the tested fitting functions for the considered
scenario.

TABLE V
OK WITH DIFFERENT FITTING FUNCTIONS FOR CHANNEL 45.

Model Nugget Partial Sill Range RMSE
Circular 73.1195 141.3847 0.0233 10.5499

Exponential 79.308 144.87 0.0602 10.466
Spherical 71.8615 142.3076 0.0249 10.5693
Gaussian 80.8232 133.6944 0.027 10.4934

Stable 28.243 174.3704 0.1112 10.5337

D. Comparison of different spatial interpolation techniques

Fig. 16 and Table VI compare the performances of IDW,
OK, and UK for channels 45, 46 and 47 respectively. For
IDW optimal p is used while for OK and UK, optimal fitting
models are used. Furthermore, optimal kernel models are used
for UK.

Fig. 16. Effect of number of nearest measurement points used for interpolation
for ADDT.

Fig. 16 shows the effects of number of participating neigh-
bors in spatial interpolation. It can be seen that there is big
drop in RMSE for all the schemes for as few as 5-10 neigh-
bors. After that the error reduces slowly but monotonically for
OK. On the other hand, the error increases for IDW and UK
after certain number of neighbors. For OK, the error decreases
as any neighbor added to the spatial interpolation technique
would either reduce the error or would be assigned negligible
weight. For UK, the error increases as there is difference
between assumed and actual kernel functions for the trend. For
example, the actual trend for this scenario is of the eighth order
while ArcGIS only allows at most third order polynomial. For
IDW, the weights are based on distance and not on spatial
correlation between the points. Therefore, even distant but
uncorrelated neighbors may have non-zero weights and thus
adding to the error.

Table VI compares different spatial interpolation methods:
IDW, OK and UK. Note that IDW is deterministic model and
does not need quantities such as fitting model, kernel function,
and polynomial order. As such, they are mentioned as not
applicable (NA) for IDW. Similarly, the kernel function and
polynomial order is only needed for UK where it is assumed
that the trend is known. For all the schemes, optimal nearest
neighbors are used. It can be seen that UK gives the best
performance among the considered schemes for channels 46
and 47 while OK gives a better performance for channel 45.
Note that the performance of UK depends on the choice of
fitting function for the trend component. For example, ArcGIS
only gives option till third order while the trend for channel 45
is of the eighth order polynomial. The mismatch between the
assumed and actual trend increases the error slightly. It should
be noted that OK performs pretty well in such situations with
much lower complexity.

E. Comparison of EDT and ADDT

Fig. 17 shows the results of spatial interpolation of EDT
values for channels 45, 46, and 47 using OK with exponential
fitting. The test statistic values for channel 46 are mostly high
as expected. Although test statistic values for channel 47 are
mostly low, there is increase in values near the Espoo trans-
mitter. This is the result of interference from adjacent channel
46, which is being transmitted from the Espoo transmitter. For
channel 45, the test statistics take high values in the southern
part of the measurement region and near the Espoo transmitter.
Note that there is also adjacent-channel-interference in channel
45 from channels 44 and 46.

Figs. 18 and 19 show the estimated occupied and unoccu-
pied regions for channels 45 and 47, respectively, using the
two detectors. For both the detectors, threshold is designed
assuming Neyman-Pearson detectors with a constraint on the
false alarm of 5%. The threshold values have been calculated
empirically for each detector by measuring 2000 test statistic
values per channel in an anechoic chamber (or Faraday’s
cage) to simulate the null hypothesis scenario. Accordingly,
the thresholds for EDT and ADDT scenarios are -98.2 dBm
and 3.15, respectively. It can be observed from Fig. 18 that
channel 45 is declared occupied by ADDT throughout the
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TABLE VI
COMPARISON OF DIFFERENT INTERPOLATION SCHEMES

Channel Method p Polynomial Optimal kernal Optimal Fitting Optimal Nos RMSE
for IDW order function Model of Neighbors

45 IDW 1 NA NA NA 23 10.619
45 OK NA NA NA Exponential 43 10.423
45 UK NA Constant Epanechnikov Gaussian 23 10.509
46 IDW 1 NA NA NA 114 4.1
46 OK NA NA NA Circular 114 3.679
46 UK NA Third Exponential Gaussian 29 3.419
47 IDW 1 NA NA NA 114 1.947
47 OK NA NA NA Gaussian 97 1.824
47 UK NA Constant Epanechnikov Gaussian 5 1.812

measurement campaign while EDT misses to detect the PU
signal in some regions. Similar results can be seen for channel
47 in Fig. 19. The better performance of the ADDT over
EDT comes from the fact that the ADDT detector has better
sensitivity as compared to the EDT detector. Note that the
cyclostationary detector employed in this paper can detect the
signal even at -107 dBm with more than 95% correct detection
(see Fig. 7) while EDT cannot detect the signal if the RSSI
falls below -98 dBm (approximately), which is the noise floor
of the considered EDT detector (see Fig. 3).

Fig. 18 shows that the channel 45, which is classified
as partially-occupied for our experiment, is being detected
as fully occupied. Similarly, Fig. 19 shows that for channel
47, which is classified as free, detections are observed in
few measurement locations. These observations are hardly
surprising as the classification of the channels has been done
based on the ability of the TSM-DVB-receiver to decode the
signal on those channels while decisions regarding whether
the region is occupied or unoccupied is based on the detection
of the signal. Note that the detection of signal is possible for
several dBs lower signal strength as compared to the minimum
signal strength required for decoding the TV signal.

For the channel 47, it can be observed from Fig. 19 that EDT
falsely declares the channel occupied around Espoo transmit-
ter. This is a result of strong adjacent-channel-interference
from channels 44 and 46 transmitted by Espoo transmitter.
Although ADDT also gets affected by the strong adjacent-
channel-interference as seen from Fig. 14(c), the effect is not
as significant as for EDT. This can be seen from Fig. 19 where
ADDT detects signals at few locations other than the Espoo
transmitter. To corroborate the observations regarding strong
adjacent-channel-interference, we also present results in Fig.
20 for channel 48, which was also classified as free based
on the ability to decode the data with TSM-DVB receiver in
the earlier measurement campaign. The nearest transmitter to
Espoo on channel 48 is in Lohja (approximately 40 Km west of
the measurement campaign) with following transmitter param-
eters: Latitude = 60.2667, Longitude = 24.1333, Mast height
= 120 m, Transmission Power = 23.01 dB, and Transmitted
Channels = 48, 55, 56, 60. It can be seen that while EDT again
detects the signal around Espoo transmitter, ADDT correctly
declares the channel unoccupied throughout the measurement
region without getting significantly affected even by strong
adjacent-channel-interference.

VI. CONCLUSION

In this paper, the performances of different spatial interpo-
lation methods have been evaluated based on a large-scale
measurement campaign using cyclostationary-based mobile
sensors. Comparison of deterministic interpolation method of
IDW and statistical interpolation methods of OK and UK has
been carried out. It has been shown that Kriging schemes
perform better than IDW. The performances of OK and UK
methods are in same order. This is significant given that OK
does not assume any information on trend and incurs lower
computation complexity. Moreover, the performance of IDW
and UK degrade if high number of neighboring measured
points are included in the spatial interpolation at a given
location.

Spatial interpolation results using cyclostationary test statis-
tics have also been compared to the spatial interpolation results
using energy-based test statistics. It has been shown that spa-
tially estimated cyclostationary statistics suffer remarkably less
from RF front-end nonlinearity than spatially estimated energy
estimates. Thus, a field strength map with significantly higher
sensitivity compared to energy estimates can be generated
from the cyclostationary test statistics.
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