
Tripathi et al. BMC Bioinformatics  (2017) 18:325 
DOI 10.1186/s12859-017-1731-8

SOFTWARE Open Access

sgnesR: An R package for simulating gene
expression data from an underlying real gene
network structure considering delay
parameters
Shailesh Tripathi1, Jason Lloyd-Price2,3, Andre Ribeiro3,5, Olli Yli-Harja6,5, Matthias Dehmer4

and Frank Emmert-Streib1,5*

Abstract
Background: sgnesR (Stochastic Gene Network Expression Simulator in R) is an R package that provides an interface
to simulate gene expression data from a given gene network using the stochastic simulation algorithm (SSA). The
package allows various options for delay parameters and can easily included in reactions for promoter delay, RNA delay
and Protein delay. A user can tune these parameters to model various types of reactions within a cell. As examples, we
present two network models to generate expression profiles. We also demonstrated the inference of networks and
the evaluation of association measure of edge and non-edge components from the generated expression profiles.

Results: The purpose of sgnesR is to enable an easy to use and a quick implementation for generating realistic gene
expression data from biologically relevant networks that can be user selected.

Conclusions: sgnesR is freely available for academic use. The R package has been tested for R 3.2.0 under Linux,
Windows and Mac OS X.

Keywords: Gene expression data, Gene network, Simulation

Background
Networks provide a statistical and mathematical frame-
work for the general understanding of the complex
functioning of biological systems because the causal rela-
tionship between different entities, such as proteins, genes
or metabolites, defines how a cellular system functions
collectively. This leads to an emergent behavior, e.g., with
respect to phenotypic aspects of organisms [1–4]. Unfor-
tunately, understanding of the system’s functioning of a
cell is not an easy task and one reason for this is that
the causal inference of gene network itself is a formidable
problem [5, 6]. For this reason, we provide the R pack-
age sgnesR (Stochastic Gene Network Expression Simu-
lator in R). Specifically, sgnesR can be used to generate
biologically realistic gene expression data based on an

*Correspondence: v@bio-complexity.com
1Predictive Medicine and Data Analytics Lab, Department of Signal Processing,
Tampere University of Technology, Tampere, Finland
5Institute of Biosciences and Medical Technology, Tampere, Finland
Full list of author information is available at the end of the article

underlying gene regulatory network that can be used to
test network inference methods qualitatively. In this way
an inferred network can be compared with the known true
gene regulatory network, which is for most real biological
systems unknown requiring the usage of approximations,
e.g., by using transcriptional regulatory networks or pro-
tein interaction networks [7]. Overall, our package sgnesR
enables the quantitative estimation of important statis-
tical measures, e.g., the power, false discovery rate or
AUROC values of such inferred networks. Furthermore,
the resulting gene expression profiles can be itself of use
for instance for comparison with real measurements of
gene expression values for the identification of model
parameters.
In general, the simulation of biologically realistic gene

expression values is a challenging task because it requires
the specification of transcription and translation mech-
anisms of biological cells, which are far from being
understood in every detail. Specifically, there are two
major components that need to be defined for the

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-017-1731-8&domain=pdf
mailto: v@bio-complexity.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 2 of 12

simulation of such a process. The first relates to the con-
nection structure among the genes and the second to the
parameter values of the modeling equations. The con-
nection structure corresponds to the regulatory network
which defines which genes control the expression of other
genes. Our package sgnesR allows the usage of previously
inferred biological networks or the usage of artificially
simulated networks. For the identification of the param-
eters of the modeling equations of the transcription and
translation processes values can be sampled from plausi-
ble distributional assumptions.
In the following, we discuss some existing methods that

have been proposed and implemented for the simulation
of gene expression data. An overview of these simulation
methods for which software implementations are available
is shown in Table 1. One of the most widely used meth-
ods is syntren [8]. Syntren uses an interaction kinetics
model based on the equations of Michaelis-Menten and
Hill kinetics. In contrast, netsim applies a fuzzy logic for
the representation of interactions for a given topology of a
gene regulatory network and differential equations to gen-
erate expression data [9]. Despite these differences, both
simulation methods aim at emulating a biological model
of transcription regulation and translation. A completely

different approach is used by GeneNet [10]. This method
samples network data from a Gaussian graphical model
(GGM) for a given network structure. A similar approach
is used in [11].
Our R package sgnesR provides an easy-to-use interface

to simulate gene expression data generated by the stochas-
tic simulation algorithm (SSA) [12, 13]. That means a gene
regulatory network is modeled whose activation patterns
are defined by the transcription and translation which
are modeled as multiple time delayed events. The delays
itself can be drawn from a variety of distributions and
the reaction rates can be determined via complex func-
tions or from physical parameters. The original imple-
mentation of the ’Stochastic Gene Networks Simulator’
(SGNSim) algorithm [13] is available in C/C++. However,
by providing the R interface sgnesR, it is possible to per-
form all relevant analysis steps, e.g., for testing network
inference methods or for investigating pathway methods,
within the R environment. This is not only convenient
but leads to a natural integration of all parts making
the overall analysis reproducible in the most straight for-
ward way [14]. In addition, our package sgnesR allows
selection capabilities for various biological and artificially
simulated gene regulatory networks that can be used

Table 1 A list of network sampling and simulation methods

Methods ⇓ \ Features ⇒ Method-based on Input Output

sgnesR (SGN sim [13]) A set of biochemical reactions where transcription
and translation of genes and proteins are
modelled as multiple time delayed events and
their activities are modelled by a stochastic
simulation algorithm (SSA) [20]

S4 data object with a
network of igraph class.

S4 data object
which consists
expression data
matrix.

AGN [25] Set of biochemical reactions in the form of a
network, simulation of the kinetics of systems
of biochemical reactions based on differential
equations.

SMBL Text file

GenGe [26] Non linear differential equation system where
degradation of biological molecules are modelled
by a
linear or Michalies-Menten kinetic and translation
is described by a linear kinetic law by using several
global and local perturbation parameters.

SMBL Text file (numeric
values).

GRENDEL [27] A set of differential equation system uses hill
kinetics based activation and repression functions
for the transcription rate law.

SMBL Text file (numeric
values)

NetSim [9] Differential equations are used to to model the
dynamics of transcription and degradation along
with the integration of fuzzy logic in order to
define the complex regulatory mechanism

adjacency matrix with
other parameters

list object in R

RENCO [28] Uses pre defined network topology or
generates topologies to model ordinary
differential equations and use Copasi for
simulating expression data.

Text file Text file

SynTReN [8] The interactions of a network uses non-linear
functions based on Michaelis-Menten and
hill enzyme kinetic equations to model gene
regulation

Text file Text file



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 3 of 12

as realistic wiring diagrams for the interactions between
genes.
The paper is organized as follows. In the next section

we describe our gene expression simulator sgnesR in detail
and present some working examples. These examples will
demonstrate the capabilities of sgnesR. The paper finishes
with a summary and conclusions.

Implementation
In this section, we provide a description of the organi-
zational structure corresponding to the workflow of the
sgnesR package and its components. Schematically, the
overview of the workflow is shown in Fig. 1. The first step
consists in specifying the network topology. Here the user
has two choices: A) use an external network or B) generate
a simulated network. For B) we are using the igraph pack-
age in R. The igraph package provides a comprehensive set
of functions that allows to generate or create several types
of networks and compute several network related features;
for the visualization of networks see [15]. A user can eas-
ily generate a network forming the connections for a set of
reactions as the input of the SGNS algorithm [13]. Alter-
natively, a user can select biological networks as input as
provided by public databases, e.g., [16, 17]. For conve-
nience, we provide two biological networks in the sgnesR
package. The first one is a transcription regulator network
of E. coli [18] and the second a subnetwork of the human
signaling network [19].
In addition to the specification of a graph topology, the

assignment of initial populations of RNAs and proteins for
each node and the activation or suppression indicator for
each edge of the network are initialized in the first step
of the sgnesR package. In the following, a brief description
of the generation of the set of reactions from a network
topology is provided.
Suppose, we have a network consisting four genes

(nodes) A, B, C and D. Their interactions are described as
follows:

B -[activates]-> A

C -[activates]-> A

D -[suppress]-> A

In order to represent the following network topology as
a set of chemical reactions we assume that each node
is represented by a promoter, an RNA and a protein
product. For example the node A is represented as ProA
(promoter), RA (RNA) and PA (protein produce). In the
following example below, A interacts with three nodes so
A has three different promoter sites where the protein
products of different genes (B, C and D) bind to activate
or suppress the expression of A. The set of reactions are
divided into three sections as follows:

1. Reactions for translation and degradation for each
gene: In this step, three steps of reactions describe
the translation of RNAs of each node into the protein
products and the respective decay of each RNA and
protein product. The example is shown below.

RA --[ <translation rate> ]

--> RA (<RNA-delay>)

+ PA (<protein-delay>);

RA --[ <rna degradation rate> ]--> ;

PA --[ <protein degradation rate> ]--> ;

RB --[ <translation rate> ]--> RB+ PB;

RB --[ <rna degradation rate> ]--> ;

PB--[ <protein degradation rate> ]--> ;

RC --[ <translation rate> ]--> RC + PC;

RC --[ <rna degradation rate> ]--> ;

PC--[ <protein degradation rate> ]--> ;

RD --[ <translation rate> ]--> RD+ PD;

RD --[ <rna degradation rate> ]--> ;

PD --[ <protein degradation rate> ]--> ;

Generate network topology

Parameters:
Network size, edge density,
network type(scale free, 
random, small world)

Generate reaction data

Global parameters:
initial time, stop time, readout interval

Reaction parameters:
initial population, reaction rate, 

 reaction rate,  delay parameters,  
 declaring substrates as catalyst or inhibitor 

SGNS Algorithm

Timeseries data or 
 ensembl of steady-state
samples as a “sgnesR” 
object in R

igraph class object S4 class object in R

Fig. 1 A flow chart of R implemented interface of Stochastic Gene Networks Simulator



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 4 of 12

2. Binding-unbinding reactions: This set of reactions
describe the binding of protein products of
interacting genes to the promoter sites of interacted
gene. In the given example, genes B and C activate
and gene D suppress the expression of gene A so the
protein products of B, C, and D interact with their
respective promoter sites ProA.NoB, ProA.NoC and
ProA.NoD in gene A and form intermediary products
ProA.B, ProA.C and ProA.D. These intermediary
products take part in the transcription process of the
gene A. The gene D suppresses the expression of
gene A, in this process an intermediary product of
suppressor gene (ProA.D) is formed by Protein
product of D (PD) by binding to the promoter site of
the gene A (ProA.NoD). The intermediary product of
suppressor gene D (ProA.D) does not allow to
express gene A, therefore avoids the transcription
process and releases after sometime. The example of
binding and the unbinding of proteins to promoters
sites is shown below.
ProA.NoB + PB --[ <binding rate> ]

--> ProA.B;

ProA.B --[ <unbinding rate> ]

--> ProA.NoB + PB;

ProA.NoC + PC --[ <binding rate> ]

--> ProA.C;

ProA.C --[ <unbinding rate> ]

--> ProA.NoC + PC;

ProA.NoD + PD --[ <binding rate> ]

--> ProA.D;

ProA.D --[ <unbinding rate> ]

--> ProA.NoD + PD;

3. Transcription reactions: This is a set of reactions of
the transcription process of the gene to which all
possible combinations of the intermediary products
of the activators of the genes contributes to the
expression of gene A. In this example, the two
activators B and C can have three possible choices to
contribute to the expression of A in which the
intermediary product of only B, intermediary
product of only C and intermediary products of both
B and C contribute to the expression of the RNA of
gene A. The example reaction is shown below:

ProA.B + ProA.NoC + ProA.NoD

--[ <transcription rate> ]

--> ProA.B(<promoter-delay>)

+ ProA.NoC(<promoter-delay>)

+ ProA.NoD+ RA(<promoter-delay>) ;

ProA.NoB + ProA.C + ProA.NoD

--[ <transcription rate> ]

--> ProA.NoB(<promoter-delay>)

+ ProA.C(<promoter-delay>)

+ ProA.NoD(<promoter-delay>)

+ RA(<promoter-delay>) ;

ProA.B + ProA.C + ProA.NoD

--[ <transcription rate> ]

--> ProA.B(<promoter-delay>)

+ ProA.C(<promoter-delay>)

+ ProA.NoD(<promoter-delay>)

+ RA(<promoter-delay>)

These three sets of reactions along with other reaction
parameters are passed to the SGNS algorithm to gener-
ate the expression profiles for the different genes. The
additional reaction parameters needed are the initial pop-
ulation, reaction rates and delay parameters which are
described in the following:

• Initial populations: The initial population of
parameters assigns the initial values of promoters,
RNAs and proteins for all the genes in the network.

• Reaction rates: The reaction rate parameter assigns
values for reaction-rate to different reaction types for
translation and degradation reactions as translation
rate, RNA degradation rate and protein degradation
rate. For binding and unbinding reactions it assigns
binding and unbinding rates and for transcription
rates it assigns transcription rate.

• Delay parameters: The delay parameter assigns a
delay time for RNAs and proteins in translation and
degradation reactions to be released at a certain time
point. Also, the promoter delay is assigned to the
products of transcriptions reactions to be released at
a certain time point.

The sgnesR package provides two options to obtain the
expression profiles of different genes as either time series
data or steady-state values. The time series data is a set
of expression values of different genes between the differ-
ent time points of starting time and end time of reactions
which are captured at fixed time intervals. The steady
state values are final expression values of different genes
at the end of the reaction. Furthermore the sgnesR pack-
ages allows to repeat the simulation of a input network n
times and generates this way an ensemble of steady-state
expression values of sample size n.

Results and discussion
In this section, we present some working examples for
the usage of our package sgnesR. These examples demon-
strate some of the available features of its capabilities. The
sgnesR package provides options to apply various param-
eters using base R functions and a variety of network
topologies, based on several network features as param-
eters for generating simulated data. Further parameters
are assigned to each reaction by defining two data objects
of the “rsgns.param” and “rsgns.data” class. These are
defined as follows.



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 5 of 12

• “rsgns.param”: This class defines the initial
parameters which include “start time”, “stop time”
and “read-out interval” for time series data.

• “rsgns.data”: The class defines a data object for the
input which includes the network topology and other
parameters such as the initial populations of RNA
and protein molecules of each node/gene, rate
constants, delay parameters and initial population
parameters of different molecules.

• “rsgns.waitlist”: This class defines the molecules
placed in a waiting list and to be released a specific
number of molecules at a particular time during the
reaction. This class includes “nodes”, “time”, “mol”
and “type” for time series data.

R functions for generating data from a given network
• getreactions : This function generates an object of

class “rsgns.reactions” which contains a set of
reactions, their initial values and the wait-list of
reactions. This object can be supplied to the SGNS
API for generating gene expression data. The
“rsgns.reactions” object is a list containing six
components which are “population”, “activation”,
“binding_unbinding”, “trans_degradation” and
“waitlist”. Each component of the list is a matrix
object and user can modify those reaction parameters
depending on the requirements before passing it to
“rsgns.rn” function as an input.

• rsgns.rn: This function is an interface to the SGNS
API for simulating timeseries data. A user can either
provide a “rsgns.reactions” class object directly to the
function or the “rsgns.data” class object to receive the
output. There are further options available to tune
the reaction parameters. The function itself returns a
“sgnesR” class object which contains the generated
expression data, the input network and the reaction
kinetics information.

• plot.sgnesR : This function provides different options
to visualize the expression profiles. The function has
two major options available. The first one is to
visualize the expression values in terms of RNA
numbers at different time points and the second
option is to visualize the distribution of RNA
numbers for different nodes/genes at different time
points or the sample-distribution of an ensemble of
steady state values.

Generating time series data from a scale-free network
The first example we demonstrate how to use sgnesR
package to generate time series data from a scale-free net-
work. The code for this is presented in Example 1. For
reasons of simplicity, in this example we do not consider
delay parameters for the translation and transcription pro-
cesses (see Example 2 for an extension). The visualization

of the network and the generated expression values are
shown in Fig. 2.

Generating time series data from a scale-free network with
delay parameters
In Example 2 we provide a working example to gener-
ate time series data from a scale-free network with delay
parameters. That means we are assigning delay parame-
ters for the translation reactions of the RNA delay and the
protein delay and in transcription reactions for a promoter
delay. The user can assign delay parameters chosen from a
Gaussian distribution with different mean values and vari-
ance. Further choices are delay functions such as a gamma
distribution or an exponential function for the delays.
However, for simulating real biological gene expression
data it is preferable to use the “gamma” function to assign
delays [20].

Generating steady-state samples of expression values from
an Erdos-Renyi network
Here ’steady-state samples’ means ’asymptotic samples’ in
the sense that we run our simulations until the expression
values of the genes reach constant values where a further
continuation of the simulations lead to no further changes
of expression values of the molecules. Example 3 provides
a working example to demonstrate the usage of our pack-
age. The visualization of the results of the network and
the distribution of the ensemble of generated expression
profiles is shown in Fig. 3. We want to remark that the
’sample’ option for the function ’rsgns.rn’ means that the
simulations are repeated n times, as defined by the value
of ’sample=n’, by using the same initial values of all param-
eters. In case the user wants to use different initial values,
then ’sample=1’ needs to be used and an explicit loop over
’rsgns.rn’ needs to be carried out.

Generating time series data from a known set of equations
In this example we demonstrate how to use sgnesR pack-
age to generate time series data from a user defined set
of reactions. The code for this is presented in Example 4.
This example is based on the toggle switch reactions with-
out cooperative binding. The purpose of this example is to
simulate a set of reactions when we know the information
of promoter regions along with RNA and protein bind-
ing information. Suppose the equations are described as
follows:

1. ProA + *Ind –[0.002]–> A + ProA
2. ProB + *Ind –[0.002]–> B + ProB
3. A –[0.005]–>

4. B –[0.005]–>

5. A + ProB + *ProA –[0.2]–> ProB.A
6. B + ProA + *ProB –[0.2]–> ProA.B



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 6 of 12

Example 1: Generation of time series data from a scale-free network without delay parameters
1: Generation of a random scale free network with 20 nodes using barabasi-game model [21].

g<-sample_pa(20)

2: Assigning random initial values for the RNAs and protein products for each node.

V(g)$Ppop <- (sample(100, vcount(g), rep=T))

V(g)$Rpop <- (sample(100, vcount(g), rep=T))

3: Assign -1 or +1 to each directed edge to represent that an interacting node is either acting as a activator, if +1, or as
a suppressor, if -1

sm <- sample(c(1,-1), ecount(g), rep=T, p=c(.8,.2))

E(g)$op <- sm

4: Initiate global reaction parameters.

rp<-new(‘‘rsgns.param’’,time=0, stop_time=1000, readout_{i}nterval=.1)

5: Specify the reaction parameters.
6: Specifying the reaction rate constant vector for the following reactions: (1) Translation rate, (2) RNA degradation

rate, (3) Protein degradation rate, (4) Protein binding rate, (5) unbinding rate, (6) transcription rate.

rc <- c(0.002, 0.005, 0.005, 0.005, 0.01, 0.02)

7: Specify the reaction rate function for the protein unbinding reactions
rn1 <- list(‘‘invhill’’, c(10,2), c(0,1))

rn2 <- list(‘‘’’,‘‘’’)

rn <- list(rn2,rn2,rn1)

8: Specifying the input data object
rsg <- new(‘‘rsgns.data’’,network=g, rn.rate.function=rn, rconst=rc)

9: Call the R function for the SGN simulator
xx <- rsgns.rn(rsg, rp)

0 2000 4000 6000 8000 10000

0
20

40
60

Time(s)

R
N

A
 N

u
m

b
er

s

g1
g2
g4
g5Act

Rep
Act

Act Act

Act

Act

Act

Act

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

(A) (B)
Fig. 2 A plot of sample network and the expression values at different time points of different nodes from the simulation. a The input network
b Expression values of genes which show incoming edges



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 7 of 12

Example 2: Generation of time series data from a scale-free network by assigning delay parameters.
1: Generation of a random scale-free network with 20 nodes using barabasi-game model [21].

g<-sample_pa(20)

2: Assigning initial values to the RNAs and protein products to each node randomly.

V(g)$Ppop <- (sample(100,vcount(g), rep=T))

V(g)$Rpop <- (sample(100, vcount(g), rep=T))

3: Assign -1 or +1 to each directed edge to represent that an interacting node is either acting as a activator, if +1, or as a
suppressor, if -1

sm <- sample(c(1,-1), ecount(g), rep=T, p=c(.8,.2))

E(g)$op <- sm

4: Specify global reaction parameters.

rp<-new(‘‘rsgns.param’’,time=0,stop_time=1000,readout_interval=.1)

5: Specify the reaction parameters.
6: Declaring reaction rate constant vector for following reactions: (1) Translation rate, (2) RNA degradation rate, (3)

Protein degradation rate, (4) Protein binding rate, (5) unbinding rate, (6) transcription rate.

rc <- c(0.002, 0.005, 0.005, 0.005, 0.01, 0.02)

7: Specifying the reaction rate function for the protein unbinding reactions

rn1 <- list(‘‘invhill’’, c(10,2), c(0,1))

rn2 <- list(‘‘’’,‘‘’’)

rn <- list(rn2,rn2,rn1)

8: Defining the delay parameters for RNA and protein delay and promoter delay

dl1 <- list(‘‘gamma’’, c(5,15)) #promoter delay

dl2 <- list(‘‘gamma’’, c(3,12)) #RNA delay

dl3 <- list(‘‘gamma’’, c(4,12)) #protein delay

dlsmp <- list(dl1, dl2, dl3)

9: Specifying the input data object

rsg <- new(‘‘rsgns.data’’,network=g, rn.rate.function=rn, rconst=rc)

10: Call the R function for the SGN simulator

xx <- rsgns.rn(rsg, rp)

7. ProB.A –[0.01]–> ProB + A
8. ProA.B –[0.01]–> ProA + B
9. ProB.A –[0.005]–> ProB
10. ProA.B –[0.005]–> ProA

Application in network inference
In this section, we present two examples to generate
expression profiles and the inference of networks from
the expression profiles using BC3NET [22]. BC3NET is
a network inference method based on the ensemble of

inferred networks by assigning an edge for a gene-pair
if at least one of these two genes show maximal mutual
information with respect to all other genes [23]. For sim-
ulation, we chose two types of networks the first one
are the scale-free artificial networks with 50 nodes and
edges of different edge densities. The second network is
a subnetwork of ecoli transcription regulatory network
[24] which contains 59 nodes and 60 edges. The sub-
network is shown in Fig. 5(a). The generated expression
profiles of ecoli transcription subnetwork are based on



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 8 of 12

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 g20

0
10

20
30

40
50

60

Genes

R
N

A
 N

u
m

b
er

s

Act
Act

Act

Rep

Act

Act

Act

Act

Rep

Rep

Act

ActRep

Rep

Rep

Rep

Act

Rep

Act

Act

Act

Act

Act

Act

Act

Act
Rep

Act

Act

Act

Act

Act

ActAct

Act
Act Act

Act
Act

Act

Act

Act

ActAct

Act

Act

Act

Act

Act

Act

Act

Rep

Act

Act

Act

Act

Act

Rep

Act

ActAct

Act

Act

g1

g2

g3

g4

g5

g6

g7

g8

g9

g10

g11

g12

g13

g14

g15 g16

g17

g18

g19

g20

(A) (B)

Fig. 3 A plot of input network and the the distribution of expression values of different samples from the simulation. a The input network
b Distribution of expression values of genes for different samples

hypothetical promoter regions where an RNA molecule
of a gene binds to a hypothetical promoter region of
another gene if there is an edge exist between them.
The other parameters of the reactions are hypothetical
assumptions for the reactions. The details of these param-
eters and generation of expression profiles are provided
in the supplementary R file (ecolisim_script.R). In the
first step, we generate expression profiles of artificial net-
works and ecoli subnetwork using sgnesR, in the second
step we used expression profile for inferring networks
using BC3NET . For all three types of artificial networks,
we repeat simulation 20 times. For each simulation step,
the mutual information is calculated between all pairs of
nodes using BC3NET which assigns weights to all pair
of nodes. In this simulation, we highlight the distribution
of weights of gene-pairs which are connected by edges
and gene-pairs which are not connected with each other
(non-edge). The results are shown in Fig. 4. Similarly,
we generate expression profiles using the ecoli network
and inferred the network using BC3NET . The distribution
of weights of gene-pairs which are connected by edges
and gene-pairs which are not connected with each other
(non-edge) are shown in Fig. 5(b). In these examples, we
clearly see that the BC3NET assigns higher weights by

computing mutual information of expression profiles to
the pairs of nodes for edge components compare to the
non-edge components of simulated networks and ecoli
subnetwork. Similarly, the other measures can be used to
evaluate the performance of different network inference
methods.

Computational complexity
Overall, the computational complexity of the algorithm
depends on the edge density of the used network and
specifically on the in-degree of each node. However, for
networks with up to ∼ 1000 genes the package gener-
ates rapid results. A practical overview of the run time
of our sgnesR package is shown in Table 2. The average
run time is shown in seconds for different network sizes.
We repeated the analysis 10 times for each network size
shown in the table.
We would like to remark that the theoretical com-

putational complexity of the implementation of the
SGNS algorithm has a formal time complexity of
O

(
TR ∗ (D logR + logW )

)
. Where T = simulation time,

R = number of reactions, D = max degree in propensity
update dependency graph between reactions, W = max
wait list size. However, our sgnesR package contains an

(A) (B) (C)
Fig. 4 The distribution of edge-weights of gene-pairs of non-edge components and edge components of inferred networks using BC3NET from the
simulated expression profiles of artificial networks generated by sgnesR. In (a), (b) and (c) example networks are shown that have a different number
of edges



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 9 of 12

Example 3: Generation of steady-state samples of expression values from an Erdos-Renyi network without delays
1: Generation of a random scale-free network with 20 nodes using an Erdos-Renyi network model.

g <- erdos.renyi.game(20,.15, directed=T)

2: Assigning initial values to the RNAs and protein products to each node randomly.

V(g)$Ppop <- (sample(100,vcount(g), rep=T))

V(g)$Rpop <- (sample(100, vcount(g), rep=T))

3: Assign -1 or +1 to each directed edge to represent that an interacting node is acting either as a activator, if +1, or as
a suppressor, if -1

sm <- sample(c(1,-1), ecount(g), rep=T, p=c(.8,.2))

E(g)$op <- sm

4: Specifying global reaction parameters.

rp<-new(‘‘rsgns.param’’,time=0,stop_time=1000,readout_interval=500)

5: Specifying the reaction rate constant vector for following reactions: (1) Translation rate, (2) RNA degradation rate,
(3) Protein degradation rate, (4) Protein binding rate, (5) unbinding rate, (6) transcription rate.

rc <- c(0.002, 0.005, 0.005, 0.005, 0.01, 0.02)

6: Declaring input data object

rsg <- new(‘‘rsgns.data’’,network=g, rconst=rc)

7: Call the R function for SGN simulator

xx <- rsgns.rn(rsg, rp, timeseries=F, sample=50)

(A) (B)
Fig. 5 a A subnetwork of transcription regulatory network of ecoli used to simulate expression profiles using sgnesR. b The distribution of
edge-weights of gene-pairs of non-edge components and edge components of inferred network using BC3NET from the expression profiles of ecoli
subnetwork generated by sgnesR



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 10 of 12

Example 4: Generation of expression values from a toggle switch reactions

1: Initialize a dataframe object
toggle <- getrndf()

2: Set different properties of molecules participating in the reactions and adding to the object “toggle”.
setmolprop(‘‘toggle’’, rnindex=1, name=‘‘ProA’’, molcount=1,type=‘‘s’’,

rc=.0002,pop=1)

setmolprop(‘‘toggle’’, rnindex=1, name=‘‘Ind’’, inhib=‘‘*’’, molcount=1,type=‘‘s’’,

rc=.0002,pop=100)

setmolprop(‘‘toggle’’, rnindex=1, name=‘‘A’’, type=‘‘p’’, pop=1)

setmolprop(‘‘toggle’’, rnindex=1, name=‘‘ProA’’, type=‘‘p’’)

setmolprop(‘‘toggle’’, rnindex=2, name=‘‘ProB’’, molcount=1, type=‘‘s’’,

rc=.0002,pop=1)

setmolprop(‘‘toggle’’, rnindex=2, name=‘‘Ind’’, inhib=‘‘*’’, molcount=1,type=‘‘s’’,

rc=.0002)

setmolprop(‘‘toggle’’, rnindex=2, name=‘‘B’’, type=‘‘p’’, pop=1)

setmolprop(‘‘toggle’’, rnindex=2, name=‘‘ProB’’, type=‘‘p’’)

setmolprop(‘‘toggle’’, rnindex=3, name=‘‘A’’, type=‘‘s’’, rc=.005)

setmolprop(‘‘toggle’’, rnindex=4, name=‘‘B’’, type=‘‘s’’, rc=.005)

setmolprop(‘‘toggle’’, rnindex=5, name=‘‘A’’, molcount=1, type=‘‘s’’, rc=.2)

setmolprop(‘‘toggle’’, rnindex=5, name=‘‘ProB’’, molcount=1, type=‘‘s’’)

setmolprop(‘‘toggle’’, rnindex=5, name=‘‘ProA’’,inhib=‘‘*’’, molcount=1,type=‘‘s’’)

setmolprop(‘‘toggle’’, rnindex=5, name=‘‘ProB.A’’, molcount=1, type=‘‘p’’,pop=0)

setmolprop(‘‘toggle’’, rnindex=6, name=‘‘B’’, molcount=1, type=‘‘s’’, rc=.2)

setmolprop(‘‘toggle’’, rnindex=6, name=‘‘ProA’’, molcount=1, type=‘‘s’’)

setmolprop(‘‘toggle’’, rnindex=6, name=‘‘ProB’’,inhib=‘‘*’’, molcount=1,type=‘‘s’’)

setmolprop(‘‘toggle’’, rnindex=6, name=‘‘ProA.B’’, molcount=1, type=‘‘p’’,pop=0)

setmolprop(‘‘toggle’’, rnindex=7, name=‘‘ProB.A’’, type=‘‘s’’,rc=0.01)

setmolprop(‘‘toggle’’, rnindex=7, name=‘‘ProB’’, type=‘‘p’’)

setmolprop(‘‘toggle’’, rnindex=7, name=‘‘A’’,type=‘‘p’’)

setmolprop(‘‘toggle’’, rnindex=8, name=‘‘ProA.B’’, type=‘‘s’’,rc=0.01)

setmolprop(‘‘toggle’’, rnindex=8, name=‘‘ProA’’,type=‘‘p’’)

setmolprop(‘‘toggle’’, rnindex=8, name=‘‘B’’,type=‘‘p’’)

setmolprop(‘‘toggle’’, rnindex=9, name=‘‘ProB.A’’, type=‘‘s’’, rc=.005)

setmolprop(‘‘toggle’’, rnindex=9, name=‘‘ProA’’,type=‘‘p’’)

setmolprop(‘‘toggle’’, rnindex=10, name=‘‘ProA.B’’,type=‘‘s’’, rc=.005)

setmolprop(‘‘toggle’’, rnindex=10, name=‘‘ProB.A’’,type=‘‘p’’)

rw <- new(‘‘rsgns.waitlist’’, time=c(1000000), mol=c(100), type=c(‘‘Ind’’))

rp <- new(‘‘rsgns.param’’, time=0, stop_time=200000, readout_interval=50)

3: Obtaining the set of reactions and call the R function for the SGN simulator
xx <- getreactions(toggle, waitlist=rw)

rnsx <- rsgns.rn(xx, rp)

4: Specifying global reaction parameters.
rp<-new(‘‘rsgns.param’’,time=0, stop_time=1000, readout_interval=500)



Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 11 of 12

Table 2 Estimated time by sgnesR, in seconds for different type
of networks

Network size Average
edge size

Maximum degree
(Average)

Average run time
(seconds)

20 21.9 6.4 0.25

50 55.4 9.0 0.42

100 114.0 10.7 1.92

150 165.2 12.4 7.77

200 227.1 12.5 14.10

500 560.9 15.4 116.31

1000 1110.8 17.8 391.04

additional layer of complexity consisting of the automatic
generation of all reaction equations for a given network
topology.

Conclusions
In this paper, we described the R implementation of the
sgnesR (Stochastic Gene Network Expression Simulator)
package. The main objective of the sgnesR package is to
utilize the applicability of gene expression simulations,
e.g., for validating the performance of network inference
methods [5, 6]. The sgnesR package allows an easy-to-use
interface for the simulation of gene expression profiles
from a given network structure. A user can easily either
utilize a given biological network or generate a topological
structure of different network types for which reaction
parameters are specified in correspondence to given con-
straints. In our package the reaction parameters can be
modeled and used in a very flexible manner, e.g., with
respect to the underlying parameter distributions. The
resulting gene expression data can be either obtained as
time series data for user defined sampling time steps or as
steady-steady data.

Availability and requirements
Project name: sgnesR
Project home page: “Package is currently available on:
https://github.com/shaileshtripathi/sgnesR”
Operating system(s):Windows, Linux, OS X
Programming language: R, C
License: Free

Additional file

Additional file 1: ecolisim_script.R, example R script to simulate
expression profiles and the inference of network from the simulated
profiles using BC3NET . (R 2 kb)

Abbreviations
AUROC: Area under receiver operator characteristics (ROC) curve; sgnesR:
Stochastic gene network expression simulator in R; SSA: Stochastic simulation
algorithm

Acknowledgement
Matthias Dehmer thanks the Austrian Science Funds for supporting this work
(project P26142).

Funding
Source of funding is not available.

Availability of data andmaterials
Not applicable.

Authors’ contributions
FES, OYH, MD, ST conceived and designed the analysis. ST, FES implemented
the algorithms, and analyzed the data. FES, JLP, AR, OYH, MD, ST wrote the
paper. All authors approved the final version.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Predictive Medicine and Data Analytics Lab, Department of Signal Processing,
Tampere University of Technology, Tampere, Finland. 2Department of
Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University,
Boston, USA. 3Laboratory of Biosystem Dynamics, Department of Signal
Processing, Tampere University of Technology, Tampere, Finland. 4Institute for
Theoretical Informatics, Mathematics and Operations Research, Department of
Computer Science, Universität der Bundeswehr München, Munich, Germany.
5Institute of Biosciences and Medical Technology, Tampere, Finland.
6Computational Systems Biology, Department of Signal Processing, Tampere
University of Technology, Tampere, Finland.

Received: 23 May 2016 Accepted: 15 June 2017

References
1. Kauffman SA. The origins of order: Self-organization and selection in

evolution. Underst Origs. 1992;65:153–81.
2. Schadt EE. Molecular networks as sensors and drivers of common human

diseases. Nature. 2009;461:218–23.
3. Emmert-Streib F, Glazko GV. Network Biology: A direct approach to study

biological function. Wiley Interdiscip Rev Syst Biol Med. 2011;3(4):379–91.
4. Vidal M. A unifying view of 21st century systems biology. FEBS Lett.

2009;583(24):3891–4.
5. Emmert-Streib F, Glazko GV, Altay G, de Matos Simoes R. Statistical

inference and reverse engineering of gene regulatory networks from
observational expression data. Front Genet. 2012;3:8.

6. Markowetz F, Spang R. Inferring cellular networks–a review. BMC
Bioinforma. 2007;8:5.

7. de Matos Simoes R, Dehmer M, Emmert-Streib F. B-cell lymphoma gene
regulatory networks: Biological consistency among inference methods.
Front Genet. 2013;4:281.

8. Van den Bulcke T, Van Leemput K, Naudts B, van Remortel P, Ma H,
Verschoren A, De Moor B, Marchal K. Syntren: a generator of synthetic
gene expression data for design and analysis of structure learning
algorithms. BMC Bioinforma. 2006;7(1):43. doi:10.1186/1471-2105-7-43.

9. Di Camillo B, Toffolo G, Cobelli C. A gene network simulator to assess
reverse engineering algorithms. Ann N Y Acad Sci. 2009;1158(1):125–42.
doi:10.1111/j.1749-6632.2008.03756.x.

10. Castelo R, Roverato A. Reverse engineering molecular regulatory
networks from microarray data with qp-graphs. J Comput Biol. 2009;16(2):
213–7.

11. Opgen-Rhein R, Strimmer K. From correlation to causation networks: a
simple approximate learning algorithm and its application to

https://github.com/shaileshtripathi/sgnesR
http://dx.doi.org/10.1186/s12859-017-1731-8
http://dx.doi.org/10.1186/1471-2105-7-43
http://dx.doi.org/10.1111/j.1749-6632.2008.03756.x


Tripathi et al. BMC Bioinformatics  (2017) 18:325 Page 12 of 12

high-dimensional plant gene expression data. BMC Syst Biol. 2007;1(1):37.
doi:10.1186/1752-0509-1-37.

12. Ribeiro AS, Zhu R, Kauffman SA. A general modeling strategy for gene
regulatory networks with stochastic dynamics. J Comput Biol. 2006;13(9):
1630–9.

13. Ribeiro AS, Lloyd-Price J. Sgn sim, a stochastic genetic networks
simulator. Bioinformatics. 2007;23(6):777.

14. Peng RD. Reproducible research in computational science. Science.
2011;334(6060):1226–7.

15. Tripathi S, Dehmer M, Emmert-Streib F. NetBioV: An R package for
visualizing large network data in biology and medicine. Bioinformatics.
2014;30(19):2834–6.

16. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M,
Oughtred R, Lackner DH, Bähler J, Wood V, Dolinski K, Tyers M. The
BioGRID Interaction Database: 2008 update. Nucl Acids Res.
2008;36(suppl_1):D637–40.

17. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C,
Feuermann M, Ghanbarian AT, Kerrien S, Khadake J, Kerssemakers J,
Leroy C, Menden M, Michaut M, Montecchi-Palazzi L, Neuhauser SN,
Orchard S, Perreau V, Roechert B, van Eijk K, Hermjakob H. The IntAct
molecular interaction database in 2010. Nucl Acids Res. 2010;38(suppl_1):
D525–31.

18. Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A,
Muñiz-Rascado L, García-Sotelo JS, Weiss V, Solano-Lira H,
Martínez-Flores I, Medina-Rivera A, Salgado-Osorio G,
Alquicira-Hernández S, Alquicira-Hernández K, López-Fuentes A,
Porrón-Sotelo L, Huerta AM, Bonavides-Martínez C, Balderas-Martínez YI,
Pannier L, Olvera M, Labastida A, Jiménez-Jacinto V, Vega-Alvarado L,
del Moral-Chávez V, Hernández-Alvarez A, Morett E, Collado-Vides J.
Regulondb v8.0: omics data sets, evolutionary conservation, regulatory
phrases, cross-validated gold standards and more. Nucleic Acids Res.
2013;41(D1):203–13. doi:10.1093/nar/gks1201.

19. Wang E. Cancer systems biology. Chapman & Hall/CRC Mathematical and
Computational Biology. 2010.

20. Gibson MA, Bruck J. Efficient exact stochastic simulation of chemical
systems with many species and many channels. J Phys Chem A.
2000;104(9):1876–89. doi:10.1021/jp993732q.

21. Barabási AL, Albert R. Emergence of scaling in random networks. Science.
1999;206:509–12.

22. de Matos Simoes R, Emmert-Streib F. Bagging statistical network
inference from large-scale gene expression data. PLOS ONE. 2012;7(3):
1–11. doi:10.1371/journal.pone.0033624.

23. Altay G, Emmert-Streib F. Inferring the conservative causal core of gene
regulatory networks. BMC Syst Biol. 2010;4(1):132.
doi:10.1186/1752-0509-4-132.

24. Gama-Castro S, Salgado H, Santos-Zavaleta A, Ledezma-Tejeida D,
Muniz-Rascado L, García-Sotelo JS, Alquicira-Hernández K, Martínez-
Flores I, Pannier L, Castro-Mondragón JA, Medina-Rivera A, Solano-Lira
H, Bonavides-Martínez C, Pérez-Rueda E, Alquicira-Hernández S, Porrón-
Sotelo L, López-Fuentes A, Hernández-Koutoucheva A, Moral-Chávez
VD, Rinaldi F, Collado-Vides J. Regulondb version 9.0: high-level
integration of gene regulation, coexpression, motif clustering and
beyond. Nucleic Acids Res. 2016;44(D1):133. doi:10.1093/nar/gkv1156.

25. Mendes P, Sha W, Ye K. Artificial gene networks for objective comparison
of analysis algorithms. Bioinformatics. 2003;19:122–9.

26. Hache H, Wierling C, Lehrach H, Herwig R. Genge: systematic generation
of gene regulatory networks. Bioinformatics. 2009;25(9):1205–7. doi:10.
1093/bioinformatics/btp115. http://bioinformatics.oxfordjournals.org/
content/25/9/1205.full.pdf+html.

27. Haynes BC BM. Benchmarking regulatory network reconstruction with
grendel. Bioinformatics. 2009;25(6):801–7.

28. Roy S, Werner-Washburne M, Lane T. A system for generating
transcription regulatory networks with combinatorial control of
transcription. Bioinformatics. 2008;24(10):1318–20. doi:10.1093/
bioinformatics/btn126. http://bioinformatics.oxfordjournals.org/content/
24/10/1318.full.pdf+html.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.1186/1752-0509-1-37
http://dx.doi.org/10.1093/nar/gks1201
http://dx.doi.org/10.1021/jp993732q
http://dx.doi.org/10.1371/journal.pone.0033624
http://dx.doi.org/10.1186/1752-0509-4-132
http://dx.doi.org/10.1093/nar/gkv1156
10.1093/bioinformatics/btp115
10.1093/bioinformatics/btp115
http://bioinformatics.oxfordjournals.org/content/25/9/1205.full.pdf+ html
http://bioinformatics.oxfordjournals.org/content/25/9/1205.full.pdf+ html
http://dx.doi.org/10.1093/bioinformatics/btn126
http://dx.doi.org/10.1093/bioinformatics/btn126
http://bioinformatics.oxfordjournals.org/content/24/10/1318.full.pdf +html
http://bioinformatics.oxfordjournals.org/content/24/10/1318.full.pdf +html

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Implementation
	Results and discussion
	R functions for generating data from a given network
	Generating time series data from a scale-free network
	Generating time series data from a scale-free network with delay parameters
	Generating steady-state samples of expression values from an Erdos-Renyi network
	Generating time series data from a known set of equations
	Application in network inference
	Computational complexity

	Conclusions
	Availability and requirements
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgement
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	Author details
	References

