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Adaptive  generalizations  to ISI-distance,  SPIKE-distance  and SPIKE-synchronization.
Generalizations  disregard  spike  time  differences  not  relevant  on  a more  global  scale.
Rate-independent  extension  RIA-SPIKE-distance  focuses  specifically  on spike  timing.
Correction  of edge  effects  and treatment  of  special  cases.
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a  b  s  t  r  a  c  t

Background:  Measures  of  spike  train  synchrony  are  widely  used  in  both  experimental  and  computational
neuroscience.  Time-scale  independent  and  parameter-free  measures,  such  as  the  ISI-distance,  the  SPIKE-
distance  and  SPIKE-synchronization,  are  preferable  to time  scale  parametric  measures,  since by adapting
to  the local  firing  rate they  take  into  account  all  the  time  scales  of  a  given  dataset.
New method:  In  data  containing  multiple  time  scales  (e.g.  regular  spiking  and  bursts)  one is typically  less
interested  in  the  smallest  time  scales  and  a more  adaptive  approach  is  needed.  Here  we  propose  the  A-
ISI-distance,  the  A-SPIKE-distance  and A-SPIKE-synchronization,  which  generalize  the  original  measures
by  considering  the  local  relative  to the  global  time  scales.  For  the  A-SPIKE-distance  we  also  introduce  a
rate-independent  extension  called  the  RIA-SPIKE-distance,  which  focuses  specifically  on spike  timing.
Results: The  adaptive  generalizations  A-ISI-distance  and  A-SPIKE-distance  allow  to  disregard  spike time
differences that are  not  relevant  on a  more  global  scale.  A-SPIKE-synchronization  does  not  any  longer
demand  an  unreasonably  high  accuracy  for  spike  doublets  and  coinciding  bursts.  Finally,  the  RIA-SPIKE-
distance  proves  to be  independent  of rate  ratios  between  spike  trains.
Comparison  with  existing  methods:  We  find  that  compared  to the original  versions  the  A-ISI-distance
and  the  A-SPIKE-distance  yield  improvements  for spike  trains  containing  different  time  scales  without

exhibiting  any  unwanted  side  effects  in other  examples.  A-SPIKE-synchronization  matches  spikes  more
efficiently  than  SPIKE-synchronization.
Conclusions:  With  these  proposals  we  have  completed  the  picture,  since  we  now  provide  adaptive  gener-
alized  measures  that  are sensitive  to firing  rate only  (A-ISI-distance),  to  timing  only  (ARI-SPIKE-distance),

ime  (
and  to  both  at the  same  t
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1. Introduction

In neuroscience the neuronal action potential and its complex
molecular behavior (Bear et al., 2007) is often reduced to time-

discrete events called spikes.  Due to the all-or-nothing paradigm of
neurons together with the long silent periods, the time stamps of
the spike events are considered to be an accurate enough descrip-
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ion of the neuronal membrane potential (Quian Quiroga and
anzeri, 2013). These sequences of consecutive spikes are called
pike trains. While spike trains do not directly provide information
bout the connections between neurons, some form of link between
wo neurons is often inferred by the similarity of their spike trains.

 spike train distance does not take into account the specific type
f linkage, but simply quantifies how (dis)similar the two spike
rains are. This makes spike train distances universal and as such
hey can be applied to all systems that can be reduced to point
rocesses. In addition to the obvious neuroscience applications,
hey have already been used to study inter-personal coordination
Rabinowitch and Knafo-Noam, 2015) and social cognition (Zapata-
onseca et al., 2016) among many other fields.

Over the years many different measures have been devel-
ped in order to quantify similarities between two or more spike
rains (see Victor, 2015; Naud et al., 2011; Kreuz, 2011 for an
verview). The two most known time scale parametric measures,
he Victor–Purpura (Victor and Purpura, 1996) and the van Rossum
istance (van Rossum, 2001), describe spike train (dis)similarity
ased on user-defined time scales to which the measures are mainly
ensitive. One drawback of these measures is the fixed time scale,
ince it sets a boundary between rate and time coding for the whole
ecording. However, for real data which typically contain many
ime scales (such as regular spiking and bursts), this is difficult to
etect with a measure that is mainly sensitive to only one of them
Chicharro et al., 2011).

The problem of having to choose one time scale has been elim-
nated in the three time-resolved and time scale independent

easures ISI-distance (Kreuz et al., 2007, 2009), SPIKE-distance
Kreuz et al., 2011, 2013) and SPIKE-synchronization (Kreuz et al.,
015). The ISI-distance (Kreuz et al., 2007) is a measure of instan-
aneous rate dissimilarity. It uses the interspike intervals (ISIs) to
stimate the local firing rate of spike trains and quantifies their
ifferences in a time-resolved manner. The SPIKE-distance (Kreuz
t al., 2011) compares the spike time accuracy between spike trains
nd uses instantaneous firing rates to adapt to the local time scale.
inally, SPIKE-synchronization (Kreuz et al., 2015) is a discrete
ime-resolved measure of similarity based on ISI-derived coinci-
ence windows that are used to determine if two  spikes from
ifferent spike trains are coincident or not. These measures have
lready been successfully applied in many different contexts; for
xample they have been used to detect determinism in point pro-
esses (Andrzejak et al., 2014), to find correlations between spike
rains and behavior in an inverse neurocontroller (Dura-Bernal
t al., 2016) and to evaluate a bio-inspired locomotion system in
obotics (Espinal et al., 2016).

Since they always adapt to the local firing rate, all three of these
easures are time scale free. While they correctly identify the rel-

tive firing rate differences, they have no concept of actual time
cales and treat all time scales as equally important. This has the
onsequence that for very small time scales even minor deviations
rom perfect synchrony lead to very high values of dissimilarity.
owever, for real data the smallest time scales are often not very

elevant and any dissimilarities there can mostly be disregarded.
hus in this case the measures’ focus on the local time scales results
n a (spurious) amplification of dissimilarities which compared to
he global time scales are rather negligible.

Here we address this problem by proposing generalizations to
he three measures called adaptive ISI-distance (A-ISI-distance),
daptive SPIKE-distance (A-SPIKE-distance) and adaptive SPIKE-
ynchronization (A-SPIKE-synchronization). These generalized
efinitions add a notion of the relative importance of local differ-

nces compared to the global time scales. In particular, they start
o gradually ignore differences between spike trains for ISIs that
re smaller than a minimum relevant time scale (MRTS). The MRTS
ence Methods 287 (2017) 25–38

is implemented by an additional variable T which can either be
defined as a parameter or estimated directly from the data.

In some neuroscience applications only the similarity of spike
timing is important and rate differentiation is not a desired prop-
erty. While the A-ISI-distance is sensitive to firing rate alone and the
A-SPIKE-distance responds to differences in both rate and timing,
there is currently no measure that focuses only on spike tim-
ing. Therefore, in a second step we  extend the A-SPIKE-distance
into the rate-independent adaptive SPIKE-distance (RIA-SPIKE-
distance) which still identifies spike time differences but ignores
any rate deviations between the spike trains.

The remainder of this paper is organized as follows. In Section 2
we describe the generalized definitions of the three measures, the
A-ISI-distance (Section 2.1), the A-SPIKE-distance (Section 2.2), and
A-SPIKE-synchronization (Section 2.3). In Section 2.4 we  introduce
a way  to estimate the threshold value directly from the data. We
then investigate using both simulated and real data how both the
original measures and the adaptive generalizations deal with multi-
ple time scales (Section 2.5). In Section 3 we  add a rate-independent
extension to A-SPIKE-distance (Section 3.1) and afterwards study
the effects of the extension (Section 3.2). The implications of the
extensions are discussed in Section 4. Finally, in Appendix A we
cover some non-trivial subtleties of the definitions for all three
measures. First we provide the definitions for the periods before
the first and after the last spike in a spike train (where the inter-
spike interval is not defined), and then we deal with the two  special
cases of empty spike trains and spike trains with only one spike.
The two experimental datasets used in Section 2.5 are described in
Appendix B.

2. Adaptive generalizations

In this section we  introduce the adaptive generalizations of
the established measures ISI-distance (Kreuz et al., 2007), SPIKE-
distance (Kreuz et al., 2011) and SPIKE-synchronization (Kreuz
et al., 2015), which we  will call A-ISI-distance, A-SPIKE-distance,
and A-SPIKE-synchronization. All three generalizations are built on
a minimum relevant time scale (MRTS) which is implemented via
the threshold parameter T.  This threshold is used to determine if
a difference between the spike trains should be assessed in a local
context or in relation to the global time scales. This threshold is used
for all three measures, but the way  it is applied varies. The gener-
alized measures fall back on the original definitions when T = 0.
In the following this is what we refer to whenever we  talk of the
original measures. In this case even the smallest time scales matter
and all differences are assessed in relation to the local context only.

Note that the upcoming definitions only apply to the interval
between the first and the last spike. In Appendices A.1 and A.2 they
will be completed to range from the start of the recording ts to the
end of the recording te. Equally, some of the following equations
are ill-defined when there are less than two spikes in a spike train.
These special cases will be handled in Appendices A.3 and A.4.

Throughout the paper we denote the number of spike trains by
N, indices of spike trains by n and m,  spike indices by i and j and the
number of spikes in spike train n by Mn. The spike times of spike
train n are denoted by {t(n)

i
} with i = 1, . . .,  Mn.

2.1. Adaptive ISI-distance

The A-ISI-distance measures the instantaneous rate difference
between spike trains (see Fig. 1A). It relies on a time-resolved pro-
file, meaning that a dissimilarity value is defined for each time

instant. To obtain the profile, we assign to each time instant t the
time of the previous spike

t(n)
P (t) = max{t(n)

i
|t(n)

i
≤ t} for t(n)

1 � t � t(n)
Mn

(1)
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Fig. 1. Schematic drawing for all three measures. (A) Illustration of the variables
that  define the ISI-distance. The instantaneous interspike intervals x(n)

ISI
(t) are used

as  estimates of the local firing rate. (B) Additional variables employed in the defini-
tion of the SPIKE-distance. (C) Coincidence criterion for SPIKE-synchronization. The
coincidence window of each spike is derived from its two  surrounding interspike
intervals. Here we  illustrate two different examples. The two spikes on the left side
a
r
o

a

t

F
l

x

I
v

I

T
w

I

T
g

D

I
b

2

b

re considered coincident since both lie in each other’s coincidence windows. On the
ight there is no coincidence since the spike from the second spike train is outside
f  the coincidence window from the spike of the first spike train.

nd the time of the following spike

(n)
F (t) = min{t(n)

i
|t(n)

i
> t} for t(n)

1 � t � t(n)
Mn

. (2)

rom this for each spike train n an instantaneous ISI can be calcu-
ated as
(n)
ISI (t) = t(n)

F (t) − t(n)
P (t). (3)

For the A-ISI-distance we define the MRTS such that when the
SIs of both spike trains are smaller than a threshold value T,  this
alue is used instead. The pairwise A-ISI-profile is then defined as

A
n,m(t) = |x(n)

ISI (t) − x(m)
ISI (t)|

max{x(n)
ISI (t), x(m)

ISI (t), T}
. (4)

he multivariate A-ISI-profile is obtained by averaging over all pair-
ise A-ISI-profiles

A(t) = 2
N(N − 1)

N−1∑
n=1

N∑
m=n+1

IA
n,m(t). (5)

his is a non-continuous piecewise constant profile and a final inte-
ration over time gives the A-ISI-distance

A
I = 1

te − ts

∫ te

ts

IA(t) < dt. (6)

f the threshold T is set to zero, the generalized ISI-distance DA
I falls

ack to the original ISI-distance DI.
.2. Adaptive SPIKE-distance

The A-SPIKE-distance measures the accuracy of spike times
etween spike trains relative to local firing rates (see Fig. 1B). In
nce Methods 287 (2017) 25–38 27

order to assess the accuracy of spike events, each spike is assigned
the distance to its nearest neighbor in the other spike train

�t(n)
i

= min
j

(|t(n)
i

− t(m)
j

|). (7)

These distances are then interpolated between spikes using for all
times t the time differences to the previous spike

x(n)
P (t) = t − t(n)

i
for t(n)

i
� t � t(n)

i+1, (8)

and to the following spike

x(n)
F (t) = t(n)

i+1 − t for t(n)
i

� t � t(n)
i+1. (9)

These two  quantities define a time-resolved dissimilarity profile
from discrete values the same way as Eqs. (1) and (2) did for the
A-ISI-distance. The instantaneous weighted spike time difference
for a spike train can then be calculated as the interpolation from
one difference to the next

Sn(t) =
�t(n)

i
(t)x(n)

F (t) + �t(n)
i+1(t)x(n)

P (t)

x(n)
ISI (t)

, t(n)
i

� t � t(n)
i+1. (10)

This function is analogous to the term x(n)
ISI for the ISI-distance, with

the only difference that it is piecewise linear instead of piecewise
constant. It is also continuous.

The pairwise A-SPIKE-distance profile is obtained by averaging
the weighted spike time differences, normalizing to the local firing
rate average and, finally, weighting each profile by the instanta-
neous firing rates of the two  spike trains

SA
m,n(t) = Snxm

ISI(t) + Smxn
ISI(t)

2〈xn,m
ISI (t)〉 max{〈xn,m

ISI (t)〉, T} . (11)

We define the MRTS by using a threshold, that replaces the denom-
inator of weighting to spike time differences if the mean is smaller
than the threshold T.  This profile is analogous to the pairwise A-
ISI-profile IA

n,m(t), but again it is piecewise linear, not piecewise
constant. Unlike Sn(t) it is not continuous, since typically it exhibits
instantaneous jumps at the times of the spikes. The multivariate
A-SPIKE-profile is obtained the same way as the multivariate A-ISI-
profile, by averaging over all pairwise profiles

SA(t) = 2
N(N − 1)

N−1∑
n=1

N∑
m=n+1

SA
m,n(t). (12)

Finally, also the A-SPIKE-distance is calculated as the time integral
over the multivariate profile

DA
S = 1

te − ts

∫ te

ts

SA(t) dt. (13)

For T = 0 also the A-SPIKE-distance falls back to the SPIKE-distance.
The effect of applying the threshold can be seen in Fig. 2. The first

event of five spikes is compressed more and more until it becomes a
single burst in the fourth event. The original SPIKE-distance profile
S(T) has the same proportions of dissimilarity for all events, since it
uses local context only and thus considers all time scales as equal,
while the A-SPIKE-distance profile SA(t) is scaled down when the
differences become small compared to the global time scales.

2.3. Adaptive SPIKE-synchronization

A-SPIKE-synchronization quantifies how many of the possible
spike coincidences in a dataset are actually occurring (Fig. 1C).
While the A-ISI-distance and the A-SPIKE-distance are measures

of dissimilarity which obtain low values for similar spike trains,
A-SPIKE-synchronization measures similarity. If all the spikes are
coincident with a spike in all the other spike trains, its value will be
one. In contrast, if none of the spikes are coincident, it will be zero.
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Fig. 2. An example spike train pair and its SPIKE-distance and A-SPIKE-distance
profiles. (A) Two spike trains consisting of four events with five spikes each. The
sequence is the same for all four events, only the time scale is getting shorter and
shorter. From a global perspective the first event consists of non-synchronous indi-
vidual spikes, while the last event consists of coincident bursts. The two  events in the
middle are intermediates. (B) The SPIKE-distance considers only the local context
and thus the profile shape is the same for all four events. (C) The A-SPIKE-distance
takes into account also the global time scales. Like the SPIKE-distance it judges the
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rst event as very dissimilar, but in contrast to the SPIKE-distance it scales down the
mall spike time differences in the bursts and thus considers the coincident burst in
he  last event as very similar.

The original SPIKE-synchronization (Kreuz et al., 2015) is
arameter- and time scale-free, since it uses the adaptive
oincidence detection first proposed for the measure event syn-
hronization (Quian Quiroga et al., 2002). The coincidence window,
.e., the time lag below which two spikes from two different spike
rains, t(n)

i
and t(m)

j
, are considered to be coincident, is adapted to

he local firing rate. Spikes are coincident only if they both lie in
ach other’s coincidence windows.

For A-SPIKE-synchronization we generalize the definition by
ntroducing a threshold, which decides if the window is determined
ocally or if the global time scales should be taken into account. As

 first step, we define the ISI before the spike as

(n)
iP

= lim
t→ti−

x(n)
ISI (t) (14)

nd the ISI after the spike as

(n)
iF

= lim
t→ti+

x(n)
ISI (t). (15)

he coincidence window for spike i of spike train n is defined by
etermining the minimum coincidence window size for a spike as
alf the length of the two ISIs adjacent to the spike

(n)
i

= 1
2

min{x(n)
iP

, x(n)
iF

}, (16)

nd allowing asymmetric coincidence windows based on MRTS.
his is done by replacing �(n)

i
with the threshold value T,  if it is

he smaller of the two. Since the threshold value is derived from
SIs and the coincidence window spans both sides of the spike,
nly half of the threshold spans each side. For the A-ISI- and the
-SPIKE-distance the changes induced by the threshold appear
radually, but for A-SPIKE-synchronization they occur as an abrupt
ump from 0 to 1. Therefore, to compensate for the binary nature of
-SPIKE-synchronization, the threshold is divided by two, resulting

n an overall factor of 1/4. The coincidence windows of neighbor-
ng spikes are not allowed to overlap, and thus each side is limited

o half the ISI even if the threshold is larger. Thus, the coincidence
indow before the spike is determined as

(n)
iP

= min
{

max
(

1
4
T,  �(n)

i

)
,

1
2

x(n)
iP

}
(17)
ence Methods 287 (2017) 25–38

and the coincidence window after the spike as

�(n)
iF

= min
{

max
(

1
4
T,  �(n)

i

)
,

1
2

x(n)
iF

}
. (18)

The combined coincidence window for spikes i and j is then defined
as

�(n,m)
ij

=

⎧⎪⎨
⎪⎩

min{�(n)
iF

, �(m)
jP

} if ti � tj

min{�(n)
iP

, �(m)
jF

} otherwise

. (19)

The coincidence criterion can be quantified by means of a coin-
cidence indicator

C(n,m)
i

=

⎧⎪⎨
⎪⎩

1 if minj{|t(n)
i

− t(m)
j

|} < �(n,m)
ij

0 otherwise

. (20)

This definition ensures that each spike can only be coincident with
at most one spike in the other spike train. The coincidence criterion
assigns either a one or a zero to each spike depending on whether
it is part of a coincidence or not. For each spike of every spike train,
a normalized coincidence counter

C(n)
i

= 1
N − 1

∑
m /= n

C(n,m)
i

(21)

is obtained by averaging over all N − 1 bivariate coincidence indi-
cators involving the spike i in spike train n.

This way  we  have defined a coincidence indicator for each indi-
vidual spike in the spike trains. In order to obtain one combined
similarity profile, we pool the spikes of the spike trains as well as
their coincidence indicators by introducing one overall spike index
k. This yields one pooled set of coincidence indicators

{Ck} =
⋃

n
{C(n)

i
} (22)

from which the A-SPIKE-synchronization profile CA(tk) can be
obtained via CA(tk) = C(k). Finally, A-SPIKE-synchronization is
defined as the average value of this discrete profile

SA
C = 1

M

M∑
k=1

CA(tk), (23)

where M is the overall number of spikes. In Fig. 3 we
illustrate how the asymmetric coincidence windows of A-SPIKE-
synchronization allow for a better coverage of burst events which
makes it easier to match spikes when compared to the original
SPIKE-synchronization (A-SPIKE-synchronization with T = 0). It is
important to note that reducing differences below threshold adds
coincidences and thus, since it is a measure of similarity, A-SPIKE-
synchronization can only increase.

2.4. Selecting the threshold value

In neuroscience typical time scales are in the range of millisec-
onds or sometimes seconds and any time scales below this will not
be considered relevant. In fields such as meteorology the respective
time scales could be hours and days or even months and years. The
relevant time scales clearly depend on the system under consider-
ation. Setting the minimum relevant time scale (MRTS) for a given
dataset might not be a simple task. To address this, we propose a
method to extract a threshold value from the spike trains, that is

based on the proportions of the different time scales present in the
data.

It is important to note that the selected MRTS is not an indicator
of a time scale of the system; it just determines the outcome of the
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Fig. 3. SPIKE-synchronization (A), A-SPIKE-synchronization (B) and their difference
(C) illustrated using five spike trains with four simple events. For the original mea-
sure (A) the small interspike intervals of spike doublets (first and second event) or
bursts (third event) result in an unreasonably high demand for spike timing accu-
racy. With the adaptive generalization (B) for all these cases the likelihood increases
that at least one of the spikes is part of a coincidence. On the other hand, if there are
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Fig. 4. Threshold value vs. the mean of the ISI-distribution. (A) Dependence on the
number of spikes (first criterion). In each iteration the number of spikes is increased
by  concatenating two half-length copies of the previous iteration. Both the mean
and the threshold decrease with spike count. (B) Dependence on the ISI-distribution
(second criterion). From iteration to iteration the ISI-distribution is changed by halv-
ing the three short ISIs and prolonging the long ISI accordingly. Since the spike count
o  doublets or bursts (last event), nothing changes (best seen in (C)). Note that
he  color scales differ, for better visibility we use gray-black in (A) and (B) but
hite-black in (C).

daptive generalizations. It is also not a hard set limiter neglecting
verything below the threshold, but rather it marks the time scale
rom which on differences are considered in the global instead of
he local context. Thus from this time scale on deviations from syn-
hrony are treated as less and less relevant the smaller they get,
ven if they are large in relation to the local time scales.

The purpose of the threshold is to act as an indicator of what
lobally is a high rate or inversely a small ISI. The original normal-
zations are based on the ISIs, so it is reasonable to determine the
hreshold from the pooled ISI-distribution. We use the ISIs after the
dge effect has been corrected (see Appendix A.1). The threshold
hould fulfill two main criteria. First, it needs to decrease pro-
ortionally to the spike count, so that increasing rates (or longer
ecordings with the same rate) do not change the threshold. Sec-
nd, the threshold should respond to changes in the ISI-distribution
o that it is able to adapt between single and multiple time scale
atasets. In Fig. 4 we use a simple spike train motive of just four
pikes to illustrate these two criteria.

The most straightforward threshold would be the mean length
f the ISIs

LISI〉 =
∑G

g=1Lg
ISI

MISI
= L

MISI
. (24)

ere Lg
ISI denotes the ISI-length and MISI is the total number of ISIs in

he pooled ISI-distribution. In the numerator the sum of the lengths
f all ISI equals the overall length L of the pooled ISIs. Apart from
dge effect corrections this is equal to the product of recording
ength and number of spike trains which is a constant. Thus while
he mean of ISIs depends on the number of spikes (Fig. 4A), for a
iven number of spikes (number of ISIs) it is completely indepen-
ent of how the ISIs are distributed around the mean (Fig. 4B). It
dapts to the spike count but not to the proportions in which the

SIs appear in the data thus fulfilling the first but not the second
riterion.

To fulfill both criteria one needs to not just count the interspike
ntervals but weight them by their length. This reduces the impor-
(and  thus the number of ISIs) is kept constant, the mean does not respond to this
change. However, the threshold correctly increases with the heightened importance
of  the long ISI.

tance of short ISIs and allows the long ISIs to influence the threshold
according to their contribution and not just number. It is equivalent
to taking the mean of the second moments of the ISIs

T =
√

〈(LISI)
2〉 =

√∑G
g=1Lg

ISI
2

MISI
. (25)

Note that in order to obtain a value with the right dimension the
square root of the average must be taken. This threshold value has
roughly the same dependence on the number of spikes as the mean
value (Fig. 4A), however, in contrast to the mean it is also sensitive
to changes in the ISI-distribution. In summary, using T as the MRTS
fulfills both criteria set for the threshold.

2.5. Results

In this section we investigate how both the adaptive general-
izations (with automated thresholding) and the original measures
deal with multiple time scales. For the A-ISI-distance and the
A-SPIKE-distance we  use a test spike train set consisting of sim-
ulated and real spike trains to study the effect of the generalized
versions (Section 2.5.1). After that, in Section 2.5.2, we study on
real MEA  recordings how A-SPIKE-synchronization differs from
SPIKE-synchronization. In Section 2.5.3 we systematically test the
influence of the amount of bursts on the difference between adap-
tive and original measures. Finally, in Section 2.5.4 we investigate
how the adaptive versions change the analysis of neuronal reliabil-
ity in an experimental dataset.

2.5.1. Adaptive ISI-distance and adaptive SPIKE-distance
We address two  points. First, we look at the sensitivity of the

adaptive generalizations and verify that in the presence of bursts
they perform better than the original measures. Second, we  also
make sure that the changes are specific, e.g., we  confirm that in
all other cases and especially if there are no bursts, the adaptive

generalizations do not exhibit unwanted side effects.

To this aim, we  use a test set composed of both artificial and real
spike trains (Fig. 5) to compare A-ISI-distance to ISI-distance and A-
SPIKE-distance to SPIKE-distance. We  use two  models to generate
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Fig. 5. Spike train test set used to compare the generalized vs. the original measures
of  spike train synchrony. Spike trains 1–25 are artificially constructed examples
which cover a range of archetypical spiking patterns, whereas spike trains 26–30
are selected examples of neuronal spiking data from a neuronal culture recorded on
a  micro electrode array (see Appendix B.1). All spike trains are normalized by their
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As a side effect of being time scale adaptive, SPIKE-
synchronization demands very high spike timing accuracy during
otal length.

ur samples. For the spike trains with perfect periodicity we use a
ime varying steady rate (fixed ISI) model. For samples with more
ariability in spike timing we used a Poisson spiking model, where
he rate is fixed for a certain window at a time. In some cases we
dd small jitter noise to both models. The artificial spike trains 1–25
re designed to exhibit a variety of stereotypical spiking behaviors
ncluding both single and multiple time scales. The experimental
pike trains 26–30 consist of short recordings from neuronal cul-
ures on microelectrode arrays (see Appendix B.1 for details). For
he adaptive versions the threshold is estimated from the data (see
ection 2.4) for each pair separately.

In the analysis every spike train is paired with all the others.
ecause for both the A-ISI-distance and the A-SPIKE-distance the
RTS T can only reduce but never increase the dissimilarity value,

ll pairs are found in the lower half of the scatter plot (Fig. 6). Fur-
hermore, all values between pairs of spike trains are close to or on
he diagonal, which means that both versions attain very similar
alues or even the same value. The differences between the two
PIKE-distances are slightly more pronounced than the differences
etween the two ISI-distances. Such seemingly small differences
an still be of high significance since in a typical experimental
etup it is rarely the absolute value of similarity that matters but
ather the relative order of similarity for different conditions. More-
ver, in real data the range of similarity values obtained is usually
uite small which further increases the relative importance of small
hanges in similarity.

For one spike train at a time we then look at all its pairings
nd sort the results in ascending order according to the original
ersions. The results from the adaptive versions are arranged in
he same order. If the order of the spike train pairs does not match,
here is a clear difference in the way the two measures consider
pike train similarity.

We now investigate in more detail not only the largest absolute,
ut also the largest relative changes observed in Fig. 7. First, the

argest absolute changes are identified by calculating the Euclidean
istances between the results for the two spike train pairs. They
ypically take place for pairs of spike trains with large distances.
ext, since deviations from near perfect synchrony are more promi-
ent and easier to detect than differences between various levels

f high dissimilarity, we also look at relative changes. These can
e found by dividing each distance by its corresponding ISI- and
ence Methods 287 (2017) 25–38

A-ISI-distance or SPIKE- and A-SPIKE-distance average. For both
distances they mostly occur for pairs of very similar spike trains.

For the A-ISI-distance, the spike train pairs showing the largest
absolute change compared to the ISI-distance can be seen in Fig. 7A.
The two measures show a different order of similarity; while the
ISI-distance increases, the A-ISI-distance decreases from the first
to the second pair. Spike trains 27 and 30 in the first pair are seen
very similarly (deviation <1%) by both measures. However, when
spike train 27 is paired with spike train 9, the ISI-distance con-
siders the local time scale only and thus has unreasonably high
demands on the spikes of the burst in spike train 27 which leads to
large fluctuations in similarity. For the A-ISI-distance on the other
hand the burst matches another event with relatively high rate and
treats this event as a coinciding burst. Outside of the burst the two
measures agree that the spike trains are very dissimilar.

Fig. 7B depicts the two spike train pairs exhibiting the largest
relative change between the two  ISI-distances. While the first pair
is seen as relatively similarly (deviation <5%), the main difference is
found for the second spike train pair. Here the ISI-distance looks at
the detailed structure and judges the interspike intervals within the
bursts as very dissimilar, whereas the A-ISI-distance sees simply
matching bursts and attains a considerably lower distance value
than the ISI-distance (0.100 vs. 0.129).

For the A-SPIKE-distance, the pairs of spike trains showing
the largest absolute change compared to the SPIKE-distance are
depicted in Fig. 7C. As there are no bursts in either of the two spike
trains, both measures attain exactly the same value for the first
spike train pair. This is a very good example for the specificity of
the generalized version. On the other hand, the original distance
considers the second spike train pair (periodic spiking vs. periodic
bursts) as much more dissimilar (increase >10%). In contrast to the
SPIKE-distance, it rightly considers the spike time differences in the
middle of two  bursts as larger than the differences in the middle of
the burst.

Finally, the largest relative change between the two SPIKE-
distances is shown in Fig. 7D. Again, there is not much difference
between the two distances for the first spike train pair. However,
the SPIKE-distance considers the second spike train pair much more
dissimilar (>62% higher) due to the large relative deviations in spike
timing within their coinciding bursts. In contrast, the A-SPIKE-
distance puts much less weight on the differences within bursts,
but still reacts to the spikes outside of the bursts. This is an example
of the sensitivity of A-SPIKE-distance.

All these results show that the effect of both generalized ver-
sions is strongest in situations with multiple time scales in the
spike trains. A prominent example is bursts embedded in long silent
periods. In this case the long ISIs (of the silent periods) strongly
influence the global time scales such that deviations of synchrony
on the smallest time scales (within the bursts) are weighted less.

2.5.2. Adaptive SPIKE-synchronization
A-SPIKE-synchronization cannot be meaningfully tested by

using the spike train set of Fig. 5. The perfect periodicity in
many spike trains makes analysis of the A-ISI-distance and the
A-SPIKE-distance simple, but causes very abrupt changes in A-
SPIKE-synchronization due to its binary nature. The values can be
computed, but the largest differences are not meaningful with this
dataset, since many spike trains with bursts jump from zero to a
large value and there is no way of ordering different pairs hav-
ing zeros in the original measure. Thus, we here use a qualitative
approach together with insights from the analysis of A-ISI-distance
and A-SPIKE-distance.
fast firing. This leads to situations such as the one shown in Fig. 3
(Section 2.3). For spike trains 3 and 4 the spikes in the first event
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Fig. 6. Scatter plots showing the A-ISI-distance between all pairs of spike trains vs. the original ISI-distance (A) and the A-SPIKE-distance vs. the SPIKE-distance (B). The
diagonal  line marks where the measures would show equal distance. The pairs were sorted according to rising order of the original distances. Thus, if the order changed
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or  adaptive extension, there is a negative slope in a line connecting all the pairs. F
he  five largest absolute changes are indicated in magenta, the five largest relative
relative) change. Overall, while the changes are seemingly small on an absolute sca

re considered coincident, but the doublet in between them in spike
rain 2 is not judged as coincident with either of them. In contrast,
or A-SPIKE-synchronization the coincidence windows are adapted
o the distribution of all ISIs in the dataset and the two sides of the
oincidence window are allowed to be of different length. With this
hange each of the spikes in the doublet becomes coincident with
ne of the spikes (the respective closest one) in spike trains 3 and
.

As a by-product of the adaptation, A-SPIKE-synchronization also
ncreases the coincidence window coverage within and at the edges
f a burst and thus matches as many spikes as possible. For SPIKE-
ynchronization many of these spikes would be ignored due to
he unreasonably small coincidence windows. This phenomenon
ccurs very often with real data. An example containing two small
nd one large burst event is shown in Fig. 8. In the first two events
-SPIKE-synchronization is able to detect a few additional coinci-
ences compared to SPIKE-synchronization. The difference is much
ore pronounced for the third and largest event. Here for SPIKE-

ynchronization many potential matches are left out and this leads
o a rather low overall value of 0.238. Instead, when A-SPIKE-
ynchronization is used, there are almost 45% more matched spikes
ithin the burst and this strongly increases the overall synchro-
ization value to 0.345.

Fig. 8C clearly shows that the additional spike matching of A-
PIKE-synchronization only occurs in the high frequency events for
hich small differences in the ISIs cause gaps between the coinci-
ence windows of adjacent spikes. Coincidences outside of these
igh frequency events are not affected.

.5.3. Systematic evaluation of the influence of bursts
Next we test how the effect of the automated threshold changes

hen spikes are forming tighter bursts (Fig. 9). To do this we
rst create two Poisson spike trains which are divided into four
qually long segments. These segments are then increasingly com-
ressed which prolongs the ISIs between them such that the total
ength remains constant (Fig. 9A). We  use the relative length of
he interburst intervals R as a parameter and track the difference
etween the adaptive and the original versions. The results for the

SI-distance and the SPIKE-distance are very similar and we  only
h line with a negative slope we calculated its length using the Euclidean distance.
es in cyan. In addition, a magenta (cyan) arrow points to the very largest absolute

e relative changes can be very significant.

show the latter. From Fig. 9B we can see that the SPIKE-distance
decreases almost linearly with R since the relative importance of the
common silence in the interburst intervals increases. The adaptive
version decreases sub-linearly with the largest absolute difference
between the two measures occurring around R = 0.4. For higher R-
values the reduction of the burst length overshadows the increases
in similarity at burst times and the difference increases up to a
point and then starts to decrease. The relative difference increases
over the whole interval (data not shown, but can be appreciated
by observing the difference approaching the SPIKE-distance value
toward R = 1).

While for the SPIKE-distance the interburst intervals have an
effect on the overall value, SPIKE-synchronization is sensitive to
the matching of spikes only and is based on one coincidence indi-
cator value per spike. Thus, the effect is increasing only until all
possible spike pairs within the bursts are matched. For our example
the increase saturates at R = 0.4 (Fig. 9C) at which point all possi-
ble spike pairings (encompassing roughly half of the spikes) have
been identified. This is in agreement with what we  demand from a
distance sensitive to bursting structure for a systematic increase of
the ratio between interbursts intervals and synchronous bursts.

2.5.4. Application to real data: reliability of neurons
In order to demonstrate the effects of the adaptive generaliza-

tion in a more realistic scenario, we  re-analyze data previously used
to study the effect of membrane potential resting state on neuronal
reliability (Zeldenrust et al. (2013), see Appendix B.2 for details
on the recordings). When in the original study frozen noise was
injected into thalamocortical relay cells of rats, it was found that
the reliability of the cell response increases with depolarization
(Zeldenrust et al., 2013).

Here we use both the original versions and the adaptive gen-
eralizations of all three measures to assess the reliability of the
responses from the two neurons for which all four levels of
membrane potential were recorded. The adaptive versions use a

threshold obtained from the data by pooling all spike trains of each
level and trial together. In Fig. 10 we  show the results of the cell with
the more prominent effect but we get similar results for the other
cell as well. The cells analyzed were recorded three times for each
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Fig. 7. Largest absolute and largest relative change between ISI-distance and A-ISI-distance (A and B) as well as SPIKE distance and A-SPIKE-distance (C and D) for the spike
train  set shown in Fig. 5. In both cases the two measures show a different order of similarity. The original distances increase from the first to the second pair, while the
adaptive extensions decrease. The first pairs attains distance values in between the second pairs, which results in a different order of similarity between the measures (see
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ig. 6). Upper subplots: the spike train pairs with the largest changes. Lower subplo
he  two profiles emphasized. The distance values for the first (second) pair are show
nd  by a solid line for the adaptive distance.

olding membrane potential and reliability was assessed by trial
o trial variations. For the highest hyperpolarization (Fig. 10A) the
riginal SPIKE-distance yields spuriously high values for the local
issimilarity during the bursts, since it only evaluates the local con-
ext. Even when the A-SPIKE-distance takes the global context into
ccount, both measures agree that there are large dissimilarities in
he spike trains.
For the most depolarized state (Fig. 10B) the membrane poten-
ial is considerably closer to the action potential threshold. The
atterns are closely matching the burst positions of Fig. 10A, but
lso additional events appear. The neuron no longer responds in
pective original distance vs. adaptive version profiles with the difference between
top (at the bottom). They are also marked by a dashed line for the original distance

clearly distinguished bursts and it is considerably more difficult to
determine where a burst begins or ends. Since the generalized ver-
sion adapts to time scales found in all the spike trains, it is able to
distinguish when a burst-like pattern emerges and considers them
as more similar.

As can be seen in Figs. 10C and 10D, the original versions, with-
out adaptation and only using the local context, attain a higher

level of similarity for −60 mV  than for −50 mV, which contradicts
both the results in the original study and the results for SPIKE-
synchronization (Fig. 10E). Since the adaptive versions are able
to make use of the global context of all the spike trains, they
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Fig. 8. Real data example from MEA  recordings (see Appendix B.1 for more details).
Ten  spike trains from the dataset are plotted and their coincidence windows are
drawn as obtained by SPIKE-synchronization (A) and A-SPIKE-synchronization (B).
The difference is plotted in (C). Due to the adaptive coincidence windows, A-SPIKE-
synchronization is able to match around 45% more spikes between bursting spike
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whereas the A-SPIKE-distance additionally uses differences in rate
to determine similarity.
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rains than SPIKE-synchronization. As in Fig. 3, the color scale is gray-black in (A)
nd (B) and white-black in (C).

ttain results without this spurious dissimilarity and thus for higher
embrane potentials the similarity increases monotonously.
A-SPIKE-synchronization works slightly differently (Fig. 10E).

ue to the tight bursts that cause excessively small coincidence
indows, the largest difference occurs for the hyperpolarized

tates. However, both versions agree that the reliability as quan-
ified by spike to spike matching in the response patterns clearly
how a monotonous increase over the baseline membrane poten-

ial. In summary, the results obtained by the A-SPIKE-distance and
-ISI-distance seem to be appropriate and more in line with the
riginal results.

ig. 9. Effect of bursts on the adaptive versions evaluated by using the relative length R 

rain  pairs with increasing levels of burstiness for one example realization. (B) Effect of bu
or  the ISI-distance looks very similar and is thus omitted. (C) Equivalent results for A-SP
s  dotted vertical lines.
nce Methods 287 (2017) 25–38 33

3. Rate-independent extension

Sometimes in neuroscience one is interested in the pure simi-
larity of spike timing, independent of any differences in spike rates.
Thus there is the need for a measure which can identify differ-
ences in spike timing but is able to ignore any differences in rate
between the spike trains. Here we propose such a rate-independent
extension for the A-SPIKE-distance.1

3.1. RIA-SPIKE-distance

In order to understand how rate-independence for A-SPIKE-
distance is achieved, we  need to separate Eq. (11) (Section 2.2) for
the pairwise A-SPIKE-distance profile into its three components.

The first two  components are the mean of spike time dissimi-
larity and the normalization to firing rate

Sm,n(t) = Sn(t) + Sm(t)
2

· 1
max{〈xn,m

ISI (t)〉, T} , (26)

where Sn(t) and Sm(t) are the weighted spike time differences for
spike trains n and m defined by Eq. (10). The third component is
a weighting of the spike time dissimilarity according to the firing
rate difference that is applied to the first component

Sn(t)xm
ISI(t) + Sm(t)xn

ISI(t)

〈xn,m
ISI (t)〉 . (27)

The rate-independent adaptive SPIKE-distance (RIA-SPIKE-
distance) simply leaves out this last weighting and can thus be
written as

SRIA
m,n(t) = Sn(t) + Sm(t)

2 max(〈xn,m
ISI (t)〉, T)

.  (28)

The RIA-SPIKE-distance shares all the properties of A-SPIKE-
distance, but it only evaluates normalized spike timing differences,
1 The A-ISI-distance is a measure of instantaneous rate difference and a rate-
independent measure of rate difference makes little sense. A-SPIKE-synchronization
is  rate-dependent by definition, since it is calculated as the average value of spike-
based coincidence indicators (Eqs. (20) and (23)).

of interburst intervals. The values are averages over 10 realizations. (A) Five spike
rstiness on the difference between A-SPIKE-distance and SPIKE-distance. The graph
IKE-synchronization. The R-values of the examples in (A) are marked in (B) and (C)
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Fig. 10. Analysis of neuronal responses to multiple presentations of frozen noise for four different levels of the membrane potential. (A) Spike train responses (top) to two
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f  the three noise presentations for a membrane potential of −80 mV and corresp
etween  the two profiles is marked in red. (B) Same as in (A) but for a membrane p
f  all three trials at four different voltage levels for the ISI-distance (C), the SPIKE-d

.2. Results

In this section we compare the RIA-SPIKE-distance to the reg-
lar A-SPIKE-distance regarding their response to differences in
ate. First, in Fig. 11A we look at Poisson spike trains with dif-
erent rate ratios. The regular A-SPIKE-distance exhibits a clear
ate dependency obtaining its lowest value for spike trains with
dentical rates and increasing for higher rate differences. The RIA-
PIKE-distance on the other hand starts near 0.25 and remains
elatively constant for all rate ratios. These deviations from perfect
ate-independence occur because of the irregularities of the Pois-
on spike trains. When we repeat the same analysis with steady
ate instead of Poisson spike trains (Fig. 11B), thereby removing
he effects of the Poisson statistics, the RIA-SPIKE-distance exhibits
ndeed perfect rate-independence.

Regarding the original distances, in Fig. 11A they would show
ery similar behavior to the adaptive generalizations. Only for rate
atios close to 1 there would be a small increase due to coincident
urst-like events within the Poisson spike trains. In Fig. 11B the
urves would overlap perfectly since there is only one time scale in
teady rate spike trains (both results not shown).

. Discussion

In this manuscript we introduce adaptive generalizations to the

hree existing measures ISI-distance, SPIKE-distance and SPIKE-
ynchronization as well as a rate-independent extension to the
eneralized SPIKE-distance. These new measures address two  dis-
inct problems.
g profiles for both A-SPIKE-distance and SPIKE-distance (bottom). The difference
al of −50 mV.  Results of the original and the adaptive measures for spike train sets
e (D) and SPIKE-synchronization (E).

The adaptive generalizations allow to disregard spike time dif-
ferences that are not relevant on a more global scale. By means
of a specifically constructed library of both stereotypical and real
data spike trains, we can show that both A-ISI-distance and A-
SPIKE-distance indeed yield improvements for pairs of spike trains
containing different time scales without exhibiting any unwanted
side effects in other examples. Thus the changes are both sensi-
tive and specific. Regarding the size of the changes, even if they
are seemingly small on an absolute scale, the relative changes can
be very significant. For our test set the largest relative change
reaches 29% for the A-ISI-distance and even up to 62% for the
A-SPIKE-distance. With a more qualitative approach we  then
show that A-SPIKE-synchronization fixes the problem of SPIKE-
synchronization which demands an unreasonably high accuracy
for spike doublets and coinciding bursts. By introducing a global
reference frame, it manages to match spikes more efficiently (for
our test data we found an increase of 45%).

In order to test the adaptive measures methodologically we
tested them in a controlled environment where two Poisson spike
trains were split into bursts using increasingly large interburst
intervals. We  designed the adaptive extension to be sensitive
to bursting structure, therefore for increasing relative length of
interburst intervals we  expect a larger difference between the
original and the adaptive versions. We  show that the relative differ-
ence indeed increases monotonously with an increase in the ratio
between interbursts interval and bursts.
The absolute difference obtains its maximal value when the dif-
ferences ignored in the bursts are large and the bursts are long
enough in comparison to the total length of the recording. When
very similar spike trains are compared their relative difference
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Fig. 11. Rate-independent RIA-SPIKE-distance vs. A-SPIKE-distance and A-ISI-
distance for Poisson (A) and steady-rate spike trains (B). (A) Distances for two
Poisson spike trains with varying rate ratios. The overall number of spikes in the two
spike trains is kept constant. Each data point is an average over 100 trials. In contrast
to the clearly rate-dependent A-ISI- and A-SPIKE-distances, the rate-independent
RIA-SPIKE-distance exhibits an almost constant curve. (B) For the steady-rate spike
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rain curves each data point is an average over 100 trials with random phase shifts
etween the two  spike trains. In this case the line for the RIA-SPIKE-distance is

ndeed perfectly constant.

ecomes dominant and internal structures of coinciding bursts
ecome less relevant.

Additionally, we apply the measures to a dataset previously ana-
yzed for reliability and find that the adaptive methods agree with
he previous results better than the original versions. The A-ISI-
istance and the A-SPIKE-distance seem to yield more reasonable
esults than the ISI-distance and the SPIKE-distance. On the other
and when the coincidence windows of the original version get
puriously small, A-SPIKE-synchronization can match spikes much
ore efficiently. The effect can be especially meaningful in applica-

ions in which leader-follower relationships based on the temporal
rder of spikes are determined (Kreuz et al., 2017).

The rate-independent extension on the other hand focuses on
pike time accuracy while disregarding rate differences in the
wo spike trains. The original SPIKE-distance considers spike time
ifferences but also has a feature that takes into account the fir-

ng rate difference between the spike trains. However, sometimes
nly the spike time accuracy is of interest and for that purpose
he RIA-SPIKE-distance disregards any deviations in firing rate.

e can show that the RIA-SPIKE-distance is approximately rate-
ndependent for Poisson spike trains (apart from minor statistical
ffects) and perfectly rate-independent for strictly periodic spike
rains. With this final addition we have completed the picture,
ince we now have measures that are sensitive to rate only (A-ISI-

istance), to timing only (ARI-SPIKE-distance), and to both at the
ame time (A-SPIKE-distance).

The adaptive generalizations are implemented for cases where
e have prior knowledge of the system or where we  want to reduce
nce Methods 287 (2017) 25–38 35

the importance of very small details. However, one has to be care-
ful with this method. If the threshold parameter that defines the
minimum relevant time scale (MRTS) is chosen too high, this can
introduce spurious synchrony. To facilitate the selection, we intro-
duce a method for automatically extracting the threshold from the
spike train data. This is done by using the second moment the ISI-
distribution of the whole dataset, thereby giving more weight to
longer ISIs.

Here it is important to note that while this automated estima-
tion of MRTS gives us a threshold value for each dataset, one has
to be very careful when comparing results obtained with different
threshold values. Thus, one cannot use the adaptive version for two
recordings from the same source without using the same threshold
for both recordings, even if the ISI-distributions differ. In such cases,
the preferable option would be to combine the ISI-distributions
before calculating the threshold and to use the resulting value for
both recordings. However, this might not work in all cases. For
example, recordings before and during an epileptic seizure can
have very different ISI-distributions. This means that a globally
meaningful threshold cannot be extracted due to a very bi-modal
distribution of all the ISIs from the whole recording. The resulting
threshold would be in between the two  modes which would cause
the adaptive measures to basically consider one of the recordings as
a long burst and the other as an almost silent period. Thus, in cases
where a suitable threshold cannot be found, it is preferable to just
set it to zero and consider only local information. This is equivalent
to using the original versions.

Many time scale parametric measures like the Victor–Purpura
and the van Rossum distance use a parameter to define the time
scale of the system. The threshold set for the adaptive versions is
philosophically different in the sense that it does not define a single
time scale, but sets a line below which the effects of the smaller
time scales are being toned down. All different time scales are still
considered at the same time, but weighted differently depending
on how they compare to the threshold.

Other measures that deal with multiple time scales exist. For
example, Lyttle and Fellous have proposed a metric to specifically
assess the similarity of spike trains with bursts or common silent
periods (Lyttle and Fellous, 2011). While in the proposed adap-
tive measures the time scale parameter is limiting full time scale
independence of the original measures, in many measures the time
scale is a fixed value. With the method proposed by Lyttle and Fel-
lous they can detect bursts as well as silent periods. However, this
comes with a cost, since the method requires two time scale param-
eters and three additional parameters; length of minimum silent
period, length of burst ISI, minimum number of spikes in a burst,
scaling factor to decide how important bursts are in comparison to
single spikes, and another factor to decide between importance of
burst and silent period detection. While the large array of options
gives the experimenter a powerful tool and provides more control
over the analysis, it also increases the complexity of the overall
experiment. This may  cause problems, in particular when the data
has many dimensions. Similarly, Rusu and Florian have introduced
a new class of metrics (Rusu and Florian, 2014). The max-metric
and the modulus-metric are well suited for measuring distances
between spike trains where information is encoded in bursts but
single spike accuracy within burst is not relevant. The max-metric
depends on the kernel chosen and a time scale parameter deciding
its size. The modulus-metric is parameter free like the ISI-distance,
the SPIKE-distance, and the SPIKE-synchronization. This is achieved
by using a very simplified kernel. However, the results obtained
with both methods are not normalized. Thus based on the dis-

similarity value alone it is not possible to say anything about the
similarity of the two  spike trains, but only about the order of dif-
ferent pairs.
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Another often used alternative to spike train distances are cor-
elation measures (see e.g. Cutts and Eglen, 2014). However, these
easures traditionally require windowing or binning and this cre-

tes the problem that their performance can depend crucially on
he window length or bin size and also on the starting points and
he overlap of the windows which clearly reduces the objectivity
f the results.

The results confirmed our initial expectation that the main dif-
erences between the adaptive generalizations and the original

easures is in their assessment of the similarity of bursty data.
ince bursts are ubiquitous and have been identified as an impor-
ant area of neuroscience research (see e.g. Izhikevich et al., 2003;
herman, 2001), there is a strong need for this kind of similarity
easurement. For the ISI-distance, a method has been proposed

or evaluating the similarity of bursty data by identifying bursts
nd assigning spikes at the beginning of the bursts (Qu et al.,
016). However, burst detection is a notoriously difficult prob-

em for which rather complicated methods have been developed
see for example Kapucu et al., 2012). Thus, a measure based on
ssigning spikes to bursts inherits the problems of burst detection.
nother problem with the measure proposed in Qu et al. (2016) is

hat it disregards differences in spiking behavior within the bursts.
n contrast, our adaptive versions do not detect bursts at all, but
utomatically adapt their behavior whenever there are burst-like
eatures in the data.

All the measures presented here are symmetric and thus invari-
nt to the order of the spike trains. Recently we have developed a
omplementary directional approach consisting of two  new mea-
ures called SPIKE-order and Spike Train Order (Kreuz et al., 2017).
his approach utilizes the adaptive coincidence detection of SPIKE-
ynchronization to first sort multiple spike trains from leader
o follower and then to quantify the consistency of the spatio-
emporal propagation patterns. A natural continuation of the work
resented in this article would be to use the adaptive measures for
his new approach as well.

We  would like to finish by pointing out that the implementa-
ions of both the original and the extended measures are provided
nline in three separate free code packages called SPIKY2 (Kreuz
t al., 2015) (Matlab GUI), PySpike3 (Python) (Mulansky and Kreuz,
016) and, most recently, cSPIKE4 (Matlab command line with
EX-files).
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Appendix A. Edge effect correction and treatment of special
cases

Here, we deal with some subtle details in the definitions of
all three measures A-ISI-distance, A-SPIKE-distance and A-SPIKE-
synchronization. First, in Appendices A.1 and A.2, we correct the
edge effect by providing definitions for the periods before the first
and after the last spike in a spike train (for which the interspike
interval is not defined). This is necessary to guarantee that all
measures are well-defined for the whole recording interval. Sub-
sequently, in Appendices A.3 and A.4, we deal with the two special
cases of empty spike trains and spike trains with only one spike.
Even if some spike trains are empty or very sparse, all measures
should still be defined in a way  which is consistent with the regular
definitions.

A.1 Edge effect correction for A-ISI- and A-SPIKE-distance

Since the A-ISI- and the A-SPIKE-distance are time-resolved and
are based on ISIs defined by Eq. (3), there is ambiguity at the edges
before the first spike and after the last spike. To resolve this ambi-
guity we  need to add auxiliary spikes. For the beginning of the spike
train, we  assign an auxiliary spike at the maximum of the distance
between the start of the observation interval and the first spike,
and the first known ISI

t(n)
saux

= t(n)
1 − max{t(n)

1 − ts, t(n)
2 − t(n)

1 }. (A.1)

This definition assumes that the rate stays the same at both sides
of the spike unless the edge is too far away for this to be true, in
which case the auxiliary spike is assigned at the edge. Analogously,
the time of the auxiliary spike at the end is

t(n)
eaux

= t(n)
M + max{te − t(n)

M , t(n)
M − t(n)

M−1}. (A.2)

If the first or last spike is at the edge, no edge correction is neces-
sary at that end. This defines the ISI which is then used not only
for the ISI-distance but also for the A-SPIKE-distance and A-SPIKE-
synchronization.

An auxiliary spike used for the edge effect correction is basically
treated as any other spike, for example they can be the nearest
neighbor to a real spike. But there is one exception: In order to avoid
artificial synchrony at the edges in the A-SPIKE-distance, they use
the distance to the nearest neighbor from the first/last real spike

�t(n)
saux

= �t(n)
1 and �t(n)

eaux
= �t(n)

Mn
. (A.3)

A.2 Edge effect correction for A-SPIKE-synchronization

For the A-SPIKE-synchronization profile we first apply the edge
effect correction described above and then calculate the coinci-
dence windows following Eqs. (14) and (15).

For cases when there is a spike right at the edge, we use the one
ISI that exists for setting the coincidence window of the spike to

�(n)
1 = 1

2
x(n)

1F and �(n)
M = 1

2
x(n)

MP. (A.4)
We also determine that an auxiliary spike can under no circum-
stance be part of a coincidence nor can it have a coincidence
counter. Finally, an auxiliary spike does not count as a spike in the
normalization.
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.3 Special cases for A-ISI- and A-SPIKE-distance

Empty spike trains and spike trains with only one spike do not
rovide the ingredients needed to apply Eqs. (A.1) and (A.2).

In order to define the ISI of an empty spike train without any
pikes, we assign auxiliary spikes to its edges, the beginning and
he end of the recording interval. This is the only interval for which
e can guarantee that there were no spikes.

However, while we can now use Eq. (3), Eq. (A.3) for the distance
o the nearest neighbor of the auxiliary spikes is still ill-defined,
ince there are no real spikes. In this case a value is assigned exactly
s in Eq. (7) and the nearest neighbor can either be a real or another
uxiliary spike. A very reasonable implication of this definition is
hat two empty spike trains will be considered equal by both mea-
ures.

Similarly, it is not possible to assess the rate at either side of a
ingle spike. The most reasonable auxiliary spike location is again at
he edge of the recording. Thus for both cases, the auxiliary spikes
re assigned at the edges as

(n)
saux = ts and t(n)

eaux = te (A.5)

nd this completes the definitions for the A-ISI- and the A-SPIKE-
istance.

.4 Special cases for A-SPIKE-synchronization

For A-SPIKE-synchronization the situation is slightly different,
ince it is not continuous but only defined at the times of the spikes.
his means that by definition an empty spike train cannot have
ynchronous spikes and thus has no value. In case all spike trains
re empty, we set A-SPIKE-synchronization to SA

C = 1, i.e. empty
pike trains are considered to be perfectly synchronous. If a spike
rain contains only a single spike, we use half the spike train length
o define the coincidence window for the spike as

(n)
1 = 1

2
(te − ts). (A.6)

hese special cases complete the definition of A-SPIKE-
ynchronization.

ppendix B. Experimental recordings

.1 Microelectrode array recordings from mouse cortical cells

The electrophysiological data analyzed in Sections 2.5.1 and
.5.2 were recorded in the group of Prof. Jari Hyttinen at Tampere
niversity of Technology / BioMediTech, Tampere, Finland. These

ecordings were performed prior to and independently from the
esign of this study.

Between 5000 and 250,000 commercially available primary
ouse cortical cells (A15586, Gibco, Thermo Fisher) were plated

n five microelectrode arrays (MEAs; four 60MEA200/30iR and
ne 60HDMEA30/10iR, all purchased from Multi Channel Systems,
eutlingen, Germany) following the protocol of Hales, Rolston,
nd Potter (Hales et al., 2010). The dishes were coated with
oly-L-lysine (Sigma–Aldrich, St. Louis, MO,  USA) and laminin
L2020-1MG, Sigma–Aldrich). The medium for the MEA  cultures
as replaced three times a week. All MEAs with cells were kept in an

ncubator (+37 ◦C, 5% CO2, 95% air) prior to and between recordings.
ata were recorded three times a week between the 4th and the
5th day in vitro. Every recording lasted five minutes and was  per-
ormed with 25 kHz sampling rate. Spike detection was carried out

y setting an amplitude threshold at five times the standard devia-
ion of the signal-noise level and the spike time stamps were stored
ith the Neuroshare Library for MATLAB (Multi Channel Systems).
e used two recordings for our examples and test sets.
nce Methods 287 (2017) 25–38 37

The five real data spike trains used in the test set (spike trains
26–30 in Fig. 5) were selected from these data by hand to represent
different time scales but chosen such that spike numbers were quite
constant and comparable to the artificial examples.

B.2 Patch clamp recordings of rat thalamocortical relay cells

The electrophysiological data analyzed in Section 2.5.4 were
recorded at the Swammerdam Institute for Life Sciences, University
of Amsterdam, the Netherlands. Again, these recordings were per-
formed prior to and independently from the design of this study.
The experiments carried out on brain slices from Wistar rats (Har-
lan, Netherlands; postnatal days 12–16) were approved by the
animal welfare committee of the University of Amsterdam.

For details on the animals, slice preparation and electrophysio-
logical recordings, see Zeldenrust et al. (2013). In the current-clamp
measurements the cell was injected with current that consisted of
a DC component with superimposed noise: a computer generated
(MATLAB) time series of Gaussian distributed random numbers
of a length of 300 s, filtered by an exponential filter with a time
constant � = 10 ms  and a standard deviation of � = 100 pA. A slow
feedback system controlled the background DC current to stabi-
lize the membrane voltage at one of the specified values (−80 mV,
−70 mV,  −60 mV or −50 mV)  before the actual recording started;
after the start this DC current component was  fixed. The same
frozen (= an exactly reproduced computer generated) noise train
was injected into the soma of the TCR neuron for every repetition
of the experiment. Signals were filtered at 5–10 kHz and sampled
at 10–20 kHz.

The recordings consisted of trials from five different cells of
which only two included trials for all four levels of membrane
potential. The cells analyzed were recorded three times and reli-
ability was assessed by trial to trial variations.
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