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Abstract

There is recent interest in GPU architectures designed to accelerate ray tracing, especially on mobile systems with limited
memory bandwidth. A promising recent approach is to store and traverse Bounding Volume Hierarchies (BVHs) [KK86], used
to accelerate ray tracing, in low arithmetic precision. However, so far there is no research on refitting or construction of such
compressed BVHs, which is necessary for any scenes with dynamic content. We find that in a hardware-accelerated tree up-
date, significant memory traffic and runtime savings are available from streaming, bottom-up compression. Novel algorithmic
techniques and hardware implementations are proposed to reduce backtracking inherent in bottom-up compression: modulo
encoding, treelet-based compression and minimum scale adjustment. Together, these techniques reduce backtracking to a small
fraction. Compared to a separate top-down compression pass, streaming bottom-up compression with the proposed optimiza-
tions saves on average 42% of memory accesses for LBVH construction and 56% for refitting of compressed BVHs, over 16
test scenes. In architectural simulation, the proposed streaming compression reduces LBVH runtime by 20% compared to a
single-precision build, and 41% compared to a single-precision build followed by top-down compression. Since memory traffic
dominates the energy cost of refitting and LBVH construction, energy consumption is expected to fall by a similar fraction.

CCS Concepts
•Computing methodologies → Ray tracing; Graphics processors;

1. Introduction

In the last decade, ray tracing GPU architectures have been the
subject of intensive research and industrial interest. Ray trac-
ing accelerators have been proposed based on fixed-function
pipelines [LSL∗13, NKK∗14, WSS05, LV16], programmable
MIMD processors [SKKB09, SKBD12], and augmenting conven-
tional GPUs [Kee14]. There has been a special focus on archi-
tectures targeting mobile systems [LSL∗13, NKK∗14, SKBD12,
Pow15], where they might, e.g., enable photorealistic augmented
reality applications [LSL∗13]. High-performance ray tracing is
based on indexing the scene geometry in an acceleration datastruc-
ture, typically a Bounding Volume Hierarchy (BVH), which speeds
up ray-scene collision queries. Recently, a potential breakthrough
in ray tracing GPU architecture is to store and traverse BVHs at
low arithmetic precision, e.g., 5-6 bits per coordinate. We refer to
these structures as Compressed BVHs (CBVH). Keely [Kee14] esti-
mates that the use of CBVHs – combined with compact leaf storage
and treelet scheduling – reduces the arithmetic energy cost of ray
traversal by 23x, and memory traffic by 6–22x.

However, there is no research yet on updating CBVHs in real
time to match animated scenes. Many rendering applications in-
clude dynamic scene content, and a key advantage of plain BVHs

has been the ability to rapidly construct new BVHs, or to refit an
existing BVH to match deformed geometry [WBB08]. It is inter-
esting whether this advantage is preserved in CBVH. Fast uncom-
pressed BVH update algorithms have been studied extensively for
GPUs [Wal07, LGS∗09, KIS∗12], and hardware accelerators have
been proposed [DFM13, VKJ∗15, NKP∗15]. The reduced cost of
rendering in CBVHs will, through Amdahl’s law, increase the rela-
tive share of tree updates, and make their performance more critical
to the system. Meanwhile, compression introduces new complica-
tions to tree updates.

Tree updates are highly memory-intensive, and especially in
the context of mobile systems and custom hardware pipelines, the
amount of external memory traffic they generate is a major factor
in their performance and energy efficiency [DFM13,VKJ∗15]. Fig-
ure 1 shows the basic motivation and goal of this paper. A straight-
forward way to update a CBVH is to first produce a full-precision
BVH tree and then subsequently compress it. We would like to, in-
stead, directly output a CBVH in a streaming manner, saving up to
ca. 50% of memory accesses for construction and 64% for refitting.
Streaming compression is straightforward with a top-down algo-
rithm, but the fastest approaches to tree update, refitting [WBS07]
and Linear BVH (LBVH) [LGS∗09], output BVHs in bottom-up or-
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(a) LBVH construction (b) Refitting

Figure 1: External memory traffic of different hardware tree update strategies, bytes per input primitive; assuming LBVH unit similar
to [VKJ∗15] and trees with one primitive per leaf. Updating or refitting to single-precision BVH and postprocessing into CBVH has a large
overhead compared to direct CBVH output. (Up to ca. 2x more traffic for LBVH and 2.6x for refit.)

der. Bottom-up compression, in turn, is nontrivial since each CBVH
node is encoded with reference to its parent. Consequently, in order
to emit a node, we need to make assumptions about its parent, and
backtrack to repair the hierarchy when said assumptions are falsi-
fied. The memory traffic from backtracking can eclipse the traffic
saved by streaming compression.

In this article, we investigate the bottom-up streaming compres-
sion of CBVHs, and especially techniques to reduce backtracking.
The main contributions of this paper are as follows:

• A novel modulo encoding for CBVH coordinates which reduces
the backtracking overhead by ca. 2

3 .
• A treelet-based bottom-up compression algorithm, which elim-

inates roughly a further 2
3 of backtracking per level of treelet

depth used.
• An analysis of minimum scale adjustment to eliminate back-

tracking due to sections of geometry with a degenerate axis.
• Hardware architectures which implement the above algorithmic

techniques.

Together, these techniques reduce backtracking to a small fraction,
so that streaming compression gives close to ideal traffic savings.

This paper is organized as follows. Section 2 discusses related
work. In Section 3, we describe the baseline CBVH encoding. Sec-
tion 4 discusses the proposed approach of bottom-up streaming
compressions, and proposes optimizations to reduce backtracking
memory traffic inherent in the approach. Section 5 gives an evalua-
tion of the proposed techniques, and Section 6 concludes the paper.

2. Related work

BVH compression with quantized coordinates has been investi-
gated in software by Mahovsky [MW06] and later Segovia [SE10]
for the purpose of out-of-core ray tracing of very large static
scenes. Keely [Kee14] proposed a hardware architecture based

on augmenting a conventional GPU with CBVH traversal hard-
ware. A traversal point update method was proposed to tra-
verse CBVHs with low-precision arithmetic computations, allow-
ing traversal with compact hardware accelerators. Vaidyanathan
et al. [VAMS16] approached CBVHs from a more formal frame-
work and gave an alternate, provably watertight traversal algorithm,
while reusing AABB coordinates from parent nodes as in [FD09] to
further shrink the memory footprint and arithmetic cost of CBVHs.

The quality of BVH trees is typically measured with the Sur-
face Area Heuristic (SAH) [GS87]. The classical build meth-
ods of SAH sweep and binned SAH sweep [Wal07] recursively
partition the scene primitives guided by SAH values of candi-
date splits. Most tree construction methods aiming for fast build
speed are based on the Linear BVH (LBVH) approach of Lauter-
bach et al. [LGS∗09], which has been optimized by several au-
thors [PL10, GPM11, Kar12, Ape14]. LBVH is a fast, low-quality
build algorithm, and state-of-the-art builders further process the
resulting tree to improve quality; e.g., the Agglomerative Treelet
Restructuring BVH algorithm (ATRBVH) algorithm [DP15] rear-
ranges an LBVH tree to give better tree quality than SAH sweep at
a fraction of the runtime.

Another broad approach to tree update is to refit an existing
tree to new geometry [WBS07]. This is a faster operation than
full rebuild, but restricted to animations that conserve mesh topol-
ogy. Tree quality tends to deteriorate over many refits, so it is of-
ten periodically refreshed with an asynchronous high-quality re-
build [IWP07], or maintained with tree rotations during the re-
fit [KIS∗12].

Hardware accelerators have been proposed to update trees es-
pecially on mobile platforms, where energy and memory band-
width constraints prevent the use of GPGPU algorithms. Nah et
al. [NKP∗15] propose a scheme similar to [IWP07] based on re-
fitting and asynchronous rebuilds, however, refitting is accelerated
with hardware Geometry and Tree Update (GTU) units. Doyle
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et al. [DFM13] proposed a hardware BVH builder based on the
binned SAH sweep algorithm, which optimizes memory traffic by
performing stages of the algorithm in a pipelined manner. Viitanen
et al. [VKJ∗15] have proposed an LBVH builder which gives a sim-
ilar tradeoff as desktop LBVH compared to [DFM13]: the build is
much faster, at the cost of reduced tree quality, which needs to be
recovered with postprocessing.

In this paper, we describe how to augment LBVH and refitting
hardware such as [VKJ∗15, NKP∗15] to emit CBVHs in a stream-
ing manner. To our best knowledge, this is the first study on CBVH
construction and refitting. The present work is focused on hard-
ware implementation, but may also be applicable to GPGPU tree
updates.

3. Background

We start from a formal description of quantized trees similar to the
one given by Vaidyanathan et al. [VAMS16]. In a full precision
BVH, each node is represented by an Axis-Aligned Bounding Box
(AABB) consisting of a lower bound p and a upper bound q, where
(p,q) ∈R3. We write the components of vectors as, e.g., px, py, pz.
In CBVH, the bounds are quantized to a low resolution grid aligned
with the parent AABB, represented as low-precision (e.g. 5–6 bit)
integers, and decompressed during traversal. This results in a lossy
compression where the AABB’s memory footprint is sharply re-
duced, at the cost of some extra node tests due to enlarged bounds.
If the quantized grids are zero-aligned, the local grid coordinates
(ri,si) for each axis i can be computed as

ri =

⌊
pi−uparent

i

2eparent
i

⌋
; si =

⌊
qi−uparent

i

2eparent
i

⌋
+1, (1)

where e is the local grid scale exponent, and uparent is the quan-
tized parent lower bound. The per-axis grid scale exponents ei of a
node are chosen to be the minimum where the node fits in 2N grid
intervals, so that its r,s can be expressed in N bits, i.e.,

ei = argmin
k

(
(vi−ui)/2k ≤ 2N

)
. (2)

When traversing the tree, the decompressed bounds (u,v) can be
computed as

ui = uparent
i + ri2

eparent
i ; vi = uparent

i + si2
eparent

i . (3)

The original bounds (p,q) are enclosed in the decompressed
bounds, such that u ≤ p ≤ q ≤ v. Note that in order to encode or
traverse a CBVH node with Equations 1 and 3, we need values for
the parent scale and lower bound eparent,uparent. We refer to these
values as a traversal context.

Methods have been proposed to traverse CBVHs at a low arith-
metic precision instead of unpacking each node and using single-
precision collision tests [Kee14, VAMS16]. In single-precision
traversal, the input ray is tested against each AABB with the slabs
test [KK86], which first computes parametric distances to each
plane,

tu_i = (pi−oi)d
−1
i ; tv_i = (qi−oi)d

−1
i , (4)

(a) Postprocessing, top-down compression
HW

(b) Streaming, bottom-up compression HW (proposed)

Figure 2: Hardware organizations for two CBVH compression
strategies.

where o,d are the ray origin and direction, and tui and tvi are the
parametric distances to the lower and upper bound planes on axis
i, respectively. The distances are then combined with min and max
operations to form parametric near and far distances (tnear, t f ar) to
the AABB. If t f ar < tnear, the ray does not intersect the AABB. The
most recent low-precision approach [VAMS16] instead computes
plane distances incrementally during traversal:

tlb_i = tparent
lb_i + r2eparent

i d−1
i ; tub_i = tparent

ub_i − s′2eparent
i d−1

i . (5)

As a result, single-precision multiplications can be replaced with
cheaper 24×6 bit multiplications. In order to guarantee watertight
traversal, the quantized offset s′ is computed from the parent up-
per bound rather than the lower bound, and rounding modes are
selected to maximize t f ar and minimize tnear.

4. Algorithm

In this section, we describe the basic idea of streaming bottom-up
CBVH update, followed by techniques to reduce the backtracking
memory traffic inherent in the approach.

4.1. Bottom-up construction and backtracking

Top-down compression of a quantized tree is straightforward by
evaluating Equation 1. In bottom-up compression, however, a
traversal context is unavailable, and has to be estimated. A stream
of BVH node pairs in depth-first, bottom-up order can then be com-
pressed into a CBVH as in Algorithm 1. A traversal context is es-
timated for each processed BVH node and placed on a traversal
context stack. When processing an inner node, the contexts of its
children can be found at the top of the stack. By decoding the newly
generated node and comparing the produced child traversal con-
texts to the stored contexts, we may detect whether a child was in-
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validated by the new node, i.e., whether the context estimated when
encoding the child was incorrect. The algorithm then recursively
backtracks to repair the invalidated children (function Backtrack
in Algorithm 1).

Context estimation (function EstimateContext) is straight-
forward for eparent by examining the exponent of q− p. For uparent

it is difficult with the formulation of [VAMS16] where the toplevel
grid is aligned to the uncompressed lower bound of the scene, as
this is unknown until the end of bottom-up traversal. We instead
align all grids to zero, i.e.,

ui = k2eparent
i ; vi = l2eparent

i k, l ∈ Z. (6)

Each backtracking iteration decodes the target compressed node
with its original context and recodes the single-precision bounds
with a new context. Child contexts are then checked to determine
whether to continue recursion further.

The approach so far is able to produce correct trees. However,
backtracking may cause enough memory traffic to undo the savings
from streaming compression. It should be noted that backtracking
is more expensive than the original encoding, and makes random
accesses to the memory, while the main streaming compression
algorithm has a more efficient linear access pattern. In our initial
experiments on bottom-up update, backtracking almost completely
eliminates the memory traffic savings from streaming compression.
Hence, it is interesting to minimize backtracking. We next investi-
gate approaches to reduce backtracking.

4.2. Modulo encoding

When applying the above compression scheme to test scenes, we
note that child nodes are often invalidated even though their de-
compressed bounds are unchanged. We examine a typical case in
Fig. 3, in which a node A is combined with a primitive to form a
new node B. When encoding A, a scale s = 1 is used. When encod-
ing B, the bounds of A are snapped to a grid with scale s = 2 and
rounded. Though the child coordinates encoded by A still refer to
the same coordinates, they are relative to the node bounding box
derived from B, which has shifted. We find that in real scenes a ma-
jority of backtracking is due to this type of context mismatch. It is,
then, interesting to find an encoding where the low-precision co-
ordinates can represent the same points as the relative coordinates,
but are robust to small changes in parent bounds.

We describe here a novel encoding which has this desired prop-
erty, and follows from the global grids described earlier. Given that

ui = k2eparent
i ; vi = l2eparent

i k, l ∈ Z, (7)

we can replace (r,s) used in Equations 1 and 3 with modulo coor-
dinates (r̂, ŝ) such that

r̂ = k mod 2N ; ŝ = l mod 2N , (8)

where mod is the integer modulo operation, i.e., a = bba/bc+
(a mod b). To traverse a modulo encoded tree, given the parent’s
lower-bound modulo coordinate in the local grid r̂parent , we can

Algorithm 1: Bottom-up streaming CBVH compression algo-
rithm

Data: nodes
Data: nodeCount
Data: contextStack

1 Function Backtrack(ptr, oldContext, newContext) is
2 oldChildContexts[]
3 ← Decode ( nodes[idx], oldContext ) ;
4 nodes[idx], newChildContexts[]
5 ← Encode ( oldChildContexts[0].aabb,
6 oldChildContexts[1].aabb,
7 newContext) ;
8 foreach i ∈ 1,2 do
9 if oldChildContexts[i].scale 6=

newChildContexts[i].scale then
10 Backtrack(nodes[idx].ptr[i],
11 oldChildContexts[i], newChildContexts[i] );
12 end
13 end
14 end
15 Function BUCompress(bvhNode) is
16 context← EstimateContext(bvhNode) ;
17 nodes[nodeCount], childContexts[]
18 ← Encode ( bvhNode.aabbs[0],
19 oldChildContexts[1].aabbs[1],
20 context) ;
21 nodeCount← nodeCount + 1 ;
22 foreach child ∈ 2,1 do
23 if child is a leaf then
24 storedContext← contextStack.Pop() ;
25 if childContexts[child].scale 6= storedContext.scale

then
26 Backtrack(bvhNode.ptr[child],

storedContext, childContexts[child]) ;
27 end
28 end
29 end
30 contextStack.Push(context) ;
31 end

recover relative coordinates as

r = (r̂− r̂parent) mod 2N ;

s =

{
(ŝ− ŝparent) mod 2N if r̂ 6= ŝ,
(ŝ− ŝparent) mod 2N +2N if r̂ = ŝ.

(9)

Note that parent lower bound modulo coordinates rparent are
needed for traversal, i.e., they are added to the traversal context. As
with relative encoding, as long as the parent bounds limit a range
of up to 2N gridcells in the local scale, modulo coordinates can en-
code any child range. However, the modulo encoding is robust to
changes in parent bounds as long as the parent scale is unchanged.

C pseudocode for traversal is shown in Fig. 4. Note that the par-
ent modulo coordinate needs to be scaled to the local grid before
use (line 1). In the code, floating-point coordinates are recovered
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(a) Inputs of a bottom-up merge (b) Result of merge

Figure 3: Example of a bottom-up CBVH merge of a primitive with a 2-primitive node. 3 bit coordinates are used, i.e., a node can be up to 8
internal gridcells wide. After snapping the child node bounds to the new parent’s grid, its relative coordinates are invalidated. The proposed
modulo coordinates are more robust and only invalidated by a parent scale change. Note that unlike full-precision BVHs, plane reuse from
the parent box changes the resulting bounds.

(lines 7–8), but we could instead use the relative coordinates di-
rectly for ray tracing as in Vaidyanathan’s [VAMS16] work. In this
case, the upper bound coordinate relative to parent upper bound, s′,
is recovered as

s′ = (ŝparent − ŝ) mod 2N , (10)

and the parent upper bound sparent needs to be added to the traver-
sal context. The grid scale is saturated close to the minimum repre-
sentable floating point number (line 17).

We next discuss a hardware-friendly way to compress a given
floating point node pair to modulo encoding. C pseudocode for
compression, along one axis, is shown in Fig. 5. First, the input
floating point upper and lower bounds are broken into sign, man-
tissa and exponent (lines 1–5). They are then aligned to local grid
scale, rounding the lower bound down and upper bound up (lines
7–8). Next the mantissas are converted from sign-magnitude rep-
resentation to two’s complement (lines 10–12). The low mantissa
bits now correspond to the quantized modulo coordinates r̂, ŝ and
are extracted (lines 16–18). Note that the input scale must be se-
lected such that at this point ub_m − lb_m ≤ 2N . We now have
enough information to store the compressed node in memory. In
a bottom-up build, we next need to decide whether to backtrack,
and compute a traversal context for backtracking. Backtracking de-
tection is based on the scale, while the context additionally has a
quantized child AABB (in single precision), and a lower-bound
coordinate in the child grid, i.e., lb_mod scaled to the child grid.
These are computed next (lines 20–39).

4.2.1. Hardware complexity

The overhead of modulo encoding in traversal consists of low-
precision arithmetic. Lines 3, 4, 10 in Figure 4 represent N-bit
adders, while lines 13–17 can be implemented with a priority en-
coder and a low-precision subtractor. The child axis computation
logic of lines 10–17 is also present in relative coordinate traversal.
In total, the overhead is equal to ca. 2 N-bit adders and 1 shifter per
AABB axis, or 12 adders and 6 shifters for a node pair. Using the
component costs in [VAMS16], the overhead of the adders is 5% in
addition to a traversal point update traversal unit, or 13% against a
shared-plane traversal unit.

A hardware implementation of a single-axis compressor shares
much of its structure with a floating-point adder. Figure 6 con-
trasts a compressor to the significand datapath of an adder. The
main components of an adder are input alignment, significand ad-
dition/subtraction, normalization and rounding. In Fig. 5, we align
two inputs like the adder equivalent, apply rounding, and normalize
back to IEEE-754 single-precision. The cost of conversions to and
from two’s complement representation is similar to that of round-
ing. In summary, a single-axis compressor has roughly 2x the input
alignment, 2x the normalization, and 6x the rounding logic of a
single-precision adder. We can approximate it as the equivalent of
two adders, as significand addition is more expensive than round-
ing. A BVH node pair compressor has six single-axis compressors
and, in a bottom-up build, scale estimators for each axis, which are
the equivalent of single-precision subtractors, for a total cost of 15
single-precision adders. This appears a reasonable cost considering
that, e.g., the tree builder in [DFM13] has over 500 FPUs.
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1 parent_lb_mod <<= (parent_scale - scale);

3 int rel_lb = (lb_mod - parent_lb_mod) &
((1<<QUANT_BITS)-1);

int rel_ub = (ub_mod - parent_lb_mod) &
((1<<QUANT_BITS)-1);

5 if(rel_ub==0) rel_ub += (1<<QUANT_BITS);

7 clb_out = parent_clb + glm::ldexp(float(
rel_lb), scale);

cub_out = parent_clb + glm::ldexp(float(
rel_ub), scale);

9

int gridsize = rel_ub - rel_lb;
11 child_scale_out = scale;

while(gridsize < (1<<(QUANT_BITS-1))) {
13 gridsize <<= 1;

child_scale_out--;
15 }

if(child_scale_out < -126)
17 child_scale_out = -126;

Figure 4: Modulo-encoded CBVH traversal along one axis.
clb_out, cub_out: Decompressed lower and upper bound
(ui,vi). lb_mod, ub_mod: Modulo coordinates of lower and up-
per bound (r̂i,ŝi). parent_lb_mod: Node lower bound modulo
coordinate, in parent scale (r̂parent

i ). parent_scale, scale,
child_scale_out: scale (ei) of parent, current and child node.

4.3. Treelet-based compression

We find from experiments with real scenes that backtracking typ-
ically only descends one or two hierarchy levels before terminat-
ing. Fig. 7 shows the depth histogram of backtracking iterations in
a test scene: it is visible that the distribution is top-heavy. Since
the working set for possible, e.g., 1- or 2-level backtracks is easily
stored on chip, there are many possible ways to avoid the memory
traffic from these short backtracks. We describe one approach here
which eliminates backtracking down to a fixed depth while always
retaining fully pipelined throughput.

In the proposed approach, we place logic after the compression
and update unit to collect BVH nodes into small treelets with a fixed
maximum depth M. Each treelet is then compressed top-down.
Context estimation is done only at the treelet root node, while only
the nodes at level M are output. This is almost equivalent to pre-
emptively backtracking all treelets, except there is no need to de-
compress nodes, simplifying the hardware. A hardware architecture
with a depth of 3 is shown in Figure 8. An M-level treelet has up
to M2− 1 nodes, so the cost of this approach grows quickly, but
it is evident from Figure 7 that removing backtracks of even 1–
2 levels gives most of the benefits available. Treelet collection is
performed by similar stack-based hardware as backtrack detection:
each stack element has space for a treelet of depth M− 1. Plane
sharing [FD09] may be used to compress the treelets and reduce
chip area, as the compression and decompression is very cheap in
fixed-function hardware.

1 //inputs -> sign, exponent, mantissa
int lb_s, lb_e, lb_m;

3 int ub_s, ub_e, ub_m;
break_float(lb, lb_s, lb_e, lb_m);

5 break_float(ub, ub_s, ub_e, ub_m);

7 alignf(lb_e, lb_m, lb_s, scale, RND_DOWN);
alignf(ub_e, ub_m, ub_s, scale, RND_DOWN);

9

//sign-magnitude -> 2’s complement
11 if(lb_s) lb_m = -lb_m;

if(ub_s) ub_m = -ub_m;
13

ub_m++;
15

// Output modulo coordinates
17 lb_mod_out = lb_m & ((1 << QUANT_BITS)-1);

ub_mod_out = ub_m & ((1 << QUANT_BITS)-1);
19

// Output child scale
21 int gridsize = ub_m - lb_m;

child_scale_out = scale;
23 while(gridsize < (1<<(QUANT_BITS-1))) {

gridsize <<= 1;
25 child_scale_out--;

}
27 if(child_scale_out < -126)

child_scale_out = -126;
29

// Decode bounds
31 lb_s = (lb_m < 0) ? 1 : 0;

if(lb_s < 0)
33 lb_m = -lb_m;

ub_s = (ub_m < 0) ? 1 : 0;
35 if(ub_s)

ub_m = -ub_m;
37

clb_out = pack_float(lb_m, scale, lb_s);
39 cub_out = pack_float(lb_m, scale, ub_s);

Figure 5: Hardware-oriented algorithm for modulo-encoded
CBVH compression. lb,ub: Input uncompressed lower and upper
bound (pi,qi). lb_mod_out, ub_mod_out: Output modulo co-
ordinates (r̂i,ŝi).

4.4. Minimum scale adjustment

The techniques proposed so far nearly eliminate backtracking in
many practical scenes. However, they have difficulties in the spe-
cial case where the input BVH has large subtrees where all nodes
share a degenerate axis, i.e., they have zero width along an axis. In
practice, this arises when the scene has axis-aligned, planar, finely
tesselated geometry. In this case, the entire subtree is first encoded
bottom-up at the minimum scale, e.g. 2−126 - close to the minimum
representable floating point number - in Figure 5. On encountering
non-degenerate geometry with nonzero width along that scale, the
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Figure 6: Hardware implementation of a CBVH compressor (as
in Figure 5 based on modulo coordinates, contrasted to a floating-
point adder. LZC: leading zero counter. For clarity, only the signif-
icand datapath of the FP adder, which comprises most of the logic,
is shown. The single-axis compressor has similar computational
resources as two FP adders.

subtree is backtracked, such that the scale gradually approaches the
minimum throughout the subtree. Since each backtracking itera-
tion can only decrease scale by a factor of 2N , the entire subtree is
backtracked. Modulo encoding is unhelpful in this case since the
scale difference is large, and the distribution of backtracking depth
is unfavorable for treeletwise compression.

An example from the cloth scene is shown in Fig. 9. This type
of geometry is rare in typical scenes, but may easily occur in, e.g.,
synthetic animated scenes, such as the example. In this work, we
approach this type of scene by selecting a minimum scale that is
coarse enough to avoid the above issue, but fine enough that tree
quality is unaffected. As a drawback, a parameter is added to the
construction and traversal algorithms which may need adjustment
based on scene size. However, we find later in evaluation that there
is a wide margin for the value in practical scenes.

Another approach we experimented with was to snap upper
bound coordinates up to numbers which are higher than the lower
bound and exactly representable in single-precision floating point.
For example, the degenerate geometry in the cloth scene lies on
the plane z = −0.4. The corresponding primitive bounding boxes
would, then, be ulp(−0.4) = 2−25 wide, where ulp() is the unit
in the last place function. This has similar effects as a manageable
minimum scale. This approach avoids adding a parameter, however,
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Figure 7: Depth histogram of backtracking iterations in the Ele-
phant scene with relative and modulo coordinates.

Figure 8: Hardware architecture for treelet compression

it does not work with degenerate geometry where the correspond-
ing coordinate is zero.

4.5. Plane sharing

The methods described so far assume that 6 coordinates are stored
per bounding box. It can be beneficial in terms of memory footprint
to further compress the tree by reusing coordinates from the parent
node, i.e., plane sharing [FD09]. This technique can also be used
in CBVHs to reduce the arithmetic cost of traversal [VAMS16]. In
this scheme, 6 coordinates are stored per a pair of bounding boxes,
and the remaining 6 are reused from the parent AABB. Extra bits
are included in the node datastructure to denote which coordinates
are reused. However, unlike full-precision BVH, in CBVH this is
a lossy process: a coordinate quantized to a coarse scale at a high
hierarchy level often differs from the same coordinate quantized
to a finer scale. This causes only modest quality loss, but greatly
complicates bottom-up construction, as it often invalidates nodes
far down in the hierarchy. So far, we do not have a satisfactory
solution for plane sharing, and it is left as an open problem.

5. Evaluation

In order to evaluate the proposed methods, we implemented the
proposed streaming bottom-up compression algorithms, as well as
baseline top-down compression, in software. The algorithms are
evaluated for LBVH construction and refitting, assuming hardware
units like [VKJ∗15, NKP∗15]. A set of 16 test scenes is used for
evaluation, as listed in Figure 11. Common assumptions about input
and output data layouts are as follows. Input primitive data is stored
as an array-of-structures of triangles with three vertices (á 36B)
and a primitive ID (4B) per triangle. We assume a CBVH format
with a memory footprint of 16B per node pair, which is the same
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Figure 9: Example scene (cloth) with a large amount of geometry
with a degenerate axis (red).

density as in [Kee14]. Further space could be saved by optimizing
the child pointer representation as in, e.g., [SE10, LV16], but this
is outside the scope of this work. Each node in a pair has six 6-bit
relative or modulo coordinates and a leaf bit, which leaves space for
a 27-bit child pointer. Leaf pointers in the CBVH index a primitive
ID array as in, e.g., [Wal07], which references the input primitive
data. LBVH needs to output the ID array, while refitting leaves it
unchanged.

5.1. Minimum scale

We first calibrate the minimum scale parameter to be used in later
benchmarks. As discussed in Subsection 4.4, the minimum scale
should be coarse enough to avoid issues with axis-aligned, planar
geometry. However, an overly coarse scale has an adverse effect on
tree quality. The measured tradeoff is illustrated in Figure 10. In
our set of benchmarks, only cloth has a significant amount of thin
geometry, so we examine cloth and the other scenes separately.
With a fine minimum scale, cloth exhibits a large amount of back-
tracking, but this is mostly eliminated at a minimum scale of 2−30.
Conversely, up to a minimum scale of 2−15, there was no effect on
scene quality. Therefore, there appears to be a wide margin for the
minimum scale parameter. In the following benchmarks, we use a
value of 2−30. It should be noted that though axis-aligned geome-
try is often found in indoor and architectural scenes, several such
scenes were included in the benchmark (crytec, conference, ital-
ian, babylonian), but did not cause significant backtracking even
without minimum scale adjustment. Axis-aligned geometry, there-
fore, only seems to become an issue in synthetic worst-case scenes.

5.2. Backtracking and memory traffic

Memory traffic is computed based on the numbers of primi-
tives, nodes and backtracking iterations recorded from the software
builder. For LBVH, we assume the hardware builder [VKJ∗15] is
modified to output large leafs when multiple primitives share the
same Morton code. The builder reads input primitives (40B traf-
fic per primitive), sorts their AABBs (64B per node), and out-
puts a CBVH hierarchy (16B per node) and primitive ID array
(4B per primitive). For refitting, we update LBVH trees to match
the original geometry (as the exact geometry has no bearing on
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Figure 10: Effect of minimum scale on tree quality and backtrack-
ing: cloth scene and average of other scenes. Tree quality is repre-
sented by SAH cost normalized to minimum value. The number of
backtracking steps is normalized to scene size. The planar geom-
etry in cloth begins to cause significant backtracking with a mini-
mum scale of less than 2−30. An overly coarse minimum scale, ca.
2−10, harms tree quality.

memory traffic). Refitting is assumed to proceed by Wald’s algo-
rithm [WBS07], i.e., it needs to read the CBVH hierarchy (16B per
node), primitive ID array (4B per primitive) and primitives (40B per
primitive), and output an updated CBVH hierarchy (16B per node).
In the case of one primitive per leaf, this gives the memory traffic
in Fig. 1. Finally, each backtracking iteration with the bottom-up
builds requires a minimum-size DRAM read and write. We assume
a DRAM interface with a 64B access granularity, e.g., a LPDDR4
interface with a 64-bit channel.

Table 1 shows results in aggregate and Table 3 per scene. We see
that modulo encoding gives roughly the same benefits as one level
of treeletwise compression: they reduce backtracking by 4.4x and
6.8x, respectively. The gains from modulo encoding are orthogonal
with treeletwise compression: together, they reduce backtracking
by 15x. With two-level treelet compression or one-level compres-
sion combined with modulo encoding, the amount of backtracking
is so low that the memory traffic results are close to ideal.

The main scene parameter affecting memory traffic savings is
the number of primitives per leaf: the worst-case conference scene
has 8.7 triangles per leaf, while most scenes have 1–2. It should
be noted that some LBVH builders store one primitive per leaf,
e.g. [Kar12]. For this type of tree, streaming construction would
consistently give best-case savings.

In LBVH, plain streaming bottom-up construction saves 16%
memory traffic compared to the baseline of BVH output and post-
processing compression. Modulo coding improves savings to 37%,
a single level of treelet compression to 39%, and a combination of
both techniques to 41%. At this point backtracking traffic is small,
so adding two more levels of treelet compression improves savings
only to 42%, even as backtracking falls 10x. In refitting the savings
are larger: on average 21% without either backtracking optimiza-
tion, 54% with both optimizations, and 56% with 4-level treelet
compression.

Since modulo encoding adds some overhead to traversal, and
similar memory traffic savings can be recovered by adding a level
of treelet compression which only complicates the update, it may
be advantageous to store the CBVH in relative coordinates and rely
on treelet compression. In this case, modulo encoding is used to
enable inexpensive compression hardware as in Figure 6, though
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Table 1: Normalized backtracking and memory traffic results with (baseline) postprocessing top-down compression and streaming bottom-up
compression, with combinations of proposed modulo coordinates and treelet-based compression (with different treelet depths). Backtracking
results are normalized to R0 and memory traffic to Base.

Compression dir. Top-down Bottom-up (proposed)
Coordinates Relative Modulo (proposed)
Treelet depth - - 2 3 4 - 2 3 4

Backtrack Min - 1.00 0.06 0.01 0.00 0.10 0.02 0.00 0.00
iterations Max - 1.00 0.25 0.09 0.03 0.44 0.15 0.06 0.03

Avg - 1.00 0.15 0.04 0.01 0.22 0.06 0.02 0.01
Memory Min 1.00 0.75 0.53 0.51 0.50 0.54 0.51 0.50 0.50
traffic Max 1.00 0.95 0.86 0.84 0.83 0.87 0.84 0.83 0.83
(LBVH) Avg 1.00 0.84 0.61 0.59 0.58 0.63 0.59 0.58 0.58
Memory Min 1.00 0.67 0.41 0.39 0.38 0.42 0.39 0.38 0.38
traffic Max 1.00 0.90 0.74 0.70 0.69 0.76 0.71 0.69 0.68
(Refit) Avg 1.00 0.79 0.49 0.45 0.44 0.52 0.46 0.44 0.44

Table 2: LBVH runtime results (ms) for single-precision build,
postprocessing compression, and streaming compression with and
without proposed optimizations.

Output BVH CBVH
Compression dir. - TD BU (proposed)

Coordinates Float Rel. Rel. Mod. Leaf
Treelet depth - - - 4 size

Toasters 0.2 0.2 0.3 0.1 1.1
Bunny 1.1 1.6 1.9 0.8 1.1

Elephant 1.3 1.9 2.2 1.0 1.1
Cloth 1.5 2.1 2.4 1.1 1.0
Fairy 2.1 2.5 2.6 1.9 3.8

Armadillo 3.4 4.8 5.7 2.6 1.2
Crytek 3.6 4.8 5.4 3.0 2.0

Conference 3.2 3.5 3.4 2.9 8.7
Sportscar 4.3 5.8 6.4 3.5 1.9

Italian 5.0 6.6 7.7 4.2 2.8
Babylonian 6.7 8.8 10.2 5.6 2.4

Hand 9.6 13.3 15.2 7.6 1.5
Dragon 13.4 19.0 21.5 10.3 1.3
Buddha 16.7 23.5 26.0 13.0 1.5

Lion 23.9 33.6 37.7 18.7 1.3
Hairball 40.9 56.5 52.2 32.2 1.4
Average - +36% +52% -20% 2.1

the resulting nodes are immediately converted to relative represen-
tation.

5.3. Runtime

We further examine the runtime effects of the proposed tech-
niques on LBVH construction by means of architectural simula-
tions, based on cycle-level simulation of the LBVH builder. Four al-
ternatives are compared: single-precision BVH build, postprocess-
ing top-down compression, streaming compression, and streaming
compression with the proposed optimizations. In the last alterna-
tive, modulo encoding is used and treelet depth is set at 4. For a
conservative comparison, we use optimistic assumptions for the
postprocessing compression hardware used as baseline, and pes-
simistic assumptions for the backtracking unit required by the pro-

BVH CBVH,
postproc.

CBVH, stream
(REL)

CBVH, stream
(TRL3, MOD)

0

0.4

0.8

1.2

1.6

2

Figure 11: LBVH runtime results, normalized to single-precision
LBVH. Average values and ranges are shown.

posed method. The backtracking unit performs backtracking steps
sequentially, while the compression unit starts each memory oper-
ation immediately after its dependencies are available, correspond-
ing to a highly parallel, multi-threaded implementation. The LBVH
builder is configured with a 256KB scratchpad memory and a buffer
size of 8 AABBs, such that it can handle scenes of up to 4M trian-
gles. The operating frequency is set at 1GHz. We assume a dual-
channel, 32-bit LPDDR3-1600 memory interface with a maximum
bandwidth of 12.8GB/s, which is simulated with the cycle-accurate
Ramulator model [KYM15].

Runtime results are shown in Table 2 and Figure 11. As ex-
pected from the memory traffic results, the proposed method is
consistently faster than single-precision BVH construction, while
postprocessing compression is slower. On average, the proposed
methods are 20% faster than single-precision LBVH, while base-
line post-processing top-down compression is 36% slower.

5.4. Tree quality

In order to verify the quality of the constructed trees, we ray traced
each test scene and counted intersection tests. CBVHs required,
on average, 8% more box tests and 13% more triangle tests than
BVH, in line with previous work [Kee14,VAMS16]. The proposed
techniques had < 1% effect on quality compared to a top-down
build.
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5.5. Watertightness

In addition to performance and tree quality, it is interesting whether
a ray tracing system is watertight, i.e., whether it is guaranteed to
avoid false misses. Vaidyanathan’s traversal algorithm [VAMS16]
is proven watertight based on the criterion that exact parametric dis-
tances tmax, tmin to each AABB are enclosed in the distances com-
puted during traversal. We do not have a formal proof that our trees
satisfy the criterion, but verified that this criterion held over every
box test when path tracing all test scenes. Moreover, decompress-
ing our bounds to single precision always gave AABBs that enclose
the uncompressed AABB.

6. Limitations and Future Work

A main limitation of the present work is that shared-plane CB-
VHs [VAMS16] cannot yet be updated, and are left as an open
problem. It may also be interesting to use shallow hierarchies as
in [VKJT16] instead of shared-plane encoding, as this gives at least
some of the memory footprint advantage of shared-plane encoding
while making bottom-up updates more tractable. Moreover, since
the node size of shared-plane CBVHs is small compared to cache
lines, only a small fraction of the memory footprint advantage
translates into memory bandwidth savings [VAMS16], at least in
a straightforward implementation. From this perspective, it may be
advantageous to use a shallow hierarchy and traverse fewer, larger
nodes.

In this work, full-precision child pointers were used for simplic-
ity, but it seems possible to integrate, e.g., the techniques of Liktor
et al. [LV16] or Segovia et al. [SE10] to compress pointer fields.
Moreover, using compact primitive storage formats such as trian-
gle strips [LYM07] may be a low-hanging fruit to speed up tree
update. Although this article focused on fixed-function hardware,
the proposed encoding may also be interesting for CBVH builds on
a programmable GPU, where bottom-up algorithms are preferred
in order to take advantage of the GPU’s parallel resources.

7. Conclusion

This article showed that the construction and refitting of com-
pressed BVH trees can be significantly optimized by means of
streaming, bottom-up compression. Two novel techniques were
proposed to enable the rapid hardware-accelerated update of
compressed BVHs in animated scenes: modulo encoding and
treelet-based compression. Together, the proposed techniques al-
low streaming compression in bottom-up order, reducing memory
traffic from LBVH construction by 38% and from refitting by 54%
on average, compared to a postprocessing compression step. Since
both LBVH and refitting are memory-bound algorithms, these sav-
ings translate directly into improvements in performance and en-
ergy efficiency, and are especially significant on mobile devices
with limited power budget and memory bandwidth. Runtime was
evaluated for LBVH builds, and was in line with the memory traf-
fic reductions. Notably, it is faster to update CBVHs than uncom-
pressed BVHs with the proposed method. The described work rep-
resents a step toward real-time, mobile ray tracing of large-scale
animated scenes.
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Table 3: Memory traffic with LBVH and refitting. B: Baseline, separate top-down compression. R0: Relative encoding. R1: Relative encoding,
1 layer of treelet-based compression. M0: Modulo encoding. M1: Modulo encoding, 1 layer of treelet-based compression. Red: Separate
compression, blue: construction/refit, orange: backtracking.

LBVH

B R0 R1 M0 M1

2.52.5
2.12.1

1.41.4 1.51.5 1.31.3

B R0 R1 M0 M1

16.216.2

13.313.3
8.68.6 8.78.7 8.38.3

B R0 R1 M0 M1

19.119.1
15.815.8

10.510.5 10.810.8 10.010.0

B R0 R1 M0 M1

21.621.6
17.517.5

12.012.0 12.212.2 11.311.3

Toasters (11K tri.) Bunny (70K tri.) Elephant (85K tri.) Cloth (92K tri.)

B R0 R1 M0 M1

24.324.3 23.023.0

19.219.2 19.419.4 18.818.8

B R0 R1 M0 M1

46.746.7

38.538.5
26.226.2 26.826.8 25.125.1

B R0 R1 M0 M1

44.944.9 42.242.2

31.731.7 32.632.6 30.330.3

B R0 R1 M0 M1

53.253.2 50.050.0

36.836.8 38.938.9 35.535.5

Fairy (174K tri.) Armadillo (213K tri.) Crytek (262K tri.) Sportscar (301K tri.)

B R0 R1 M0 M1

33.633.6 34.034.0 30.730.7 31.231.2 30.230.2

B R0 R1 M0 M1

57.057.0 60.260.2

45.245.2 49.249.2 43.443.4

B R0 R1 M0 M1

79.779.7 81.481.4

60.560.5 66.466.4 58.058.0

B R0 R1 M0 M1

126.3126.3
111.3111.3

76.476.4 77.877.8 74.774.7

Conference (283 tri.) Italian (374K tri.) Babylonian (500K tri.) Hand (655K tri.)

B R0 R1 M0 M1

183.7183.7
155.7155.7

104.8104.8 107.9107.9 101.7101.7

B R0 R1 M0 M1

211.3211.3
188.2188.2

128.4128.4 131.5131.5 124.7124.7

B R0 R1 M0 M1

338.8338.8
280.6280.6

194.5194.5 199.4199.4 187.7187.7

B R0 R1 M0 M1

585.1585.1

438.5438.5

346.4346.4 352.0352.0 335.7335.7

Dragon (871K tri.) Buddha (1.1M tri.) Lion (1.6M tri.) Hairball (2.9M tri.)

Refitting

B R0 R1 M0 M1

2.02.0
1.61.6

0.90.9 1.01.0 0.80.8

B R0 R1 M0 M1

12.912.9

10.410.4

5.55.5 5.85.8 5.15.1

B R0 R1 M0 M1

15.015.0

12.212.2

7.07.0 7.47.4 6.26.2

B R0 R1 M0 M1

17.317.3 17.617.6 8.18.1
10.910.9

7.27.2

Toasters (11K tri.) Bunny (70K tri.) Elephant (85K tri.) Cloth (92K tri.)

B R0 R1 M0 M1

14.314.3
12.712.7

9.59.5 9.89.8 9.09.0

B R0 R1 M0 M1

36.536.5
29.729.7

17.317.3 18.118.1 15.415.4

B R0 R1 M0 M1

30.830.8 27.327.3

18.118.1 19.119.1 16.416.4

B R0 R1 M0 M1

37.337.3
32.132.1

20.620.6 22.922.9 19.119.1

Fairy (174K tri.) Armadillo (213K tri.) Crytek (262K tri.) Sportscar (301K tri.)

B R0 R1 M0 M1

16.816.8 16.116.1
13.913.9 14.514.5 13.513.5

B R0 R1 M0 M1

36.336.3 33.133.1
22.922.9 25.525.5 21.521.5

B R0 R1 M0 M1

52.352.3 49.849.8
34.534.5 38.338.3

31.531.5

B R0 R1 M0 M1

92.992.9
74.574.5

44.844.8 46.046.0 42.042.0

Conference (283 tri.) Italian (374K tri.) Babylonian (500K tri.) Hand (655K tri.)

B R0 R1 M0 M1

141.0141.0
113.5113.5

65.165.1 68.068.0 60.260.2

B R0 R1 M0 M1

156.0156.0 149.8149.8
95.295.2 96.196.1 78.978.9

B R0 R1 M0 M1

260.2260.2
207.4207.4

122.9122.9 130.4130.4 112.4112.4

B R0 R1 M0 M1

441.4441.4
314.9314.9

216.5216.5 225.2225.2 199.4199.4

Dragon (871K tri.) Buddha (1.1M tri.) Lion (1.6M tri.) Hairball (2.9M tri.)
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