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Abstract24

Aerobic wastewater management is energy intensive and, thus anaerobic processes are of interest.25

In this study, a microbial fuel cell was used to produce electricity from xylose which is an important26

constituent of lignocellulosic waste. Hydraulic retention time (HRT) was optimized for the27

maximum power density by gradually decreasing the HRT from 3.5 d to 0.17 d. The highest power28

density (430 mW/m2) was obtained at 1 d HRT. Coulombic efficiency decreased from 30% to 0.6%29

with HRT’s of 3.5 d and 0.17 d, respectively. Microbial community analysis revealed that anode30

biofilm contained known exoelectrogens, including Geobacter sp and fermentative organisms were31

present in both anolyte and the anode biofilm. The peak power densities were obtained at 1-1.7 d32

HRTs and xylose degraded almost completely even with the lowest HRT of 0.17 d, which33

demonstrates the efficiency of up-flow MFC for treating synthetic wastewater containing xylose.34
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1. Introduction42

Sustainablity in wastewater management requires energy and performance efficiencies. The energy-43

rich compounds in wastewater should be converted to useful energy. One possibility to recover44

energy from wastewaters is production of electricity using microbial fuel cells (MFCs) [1,2]. In45

MFCs, microorganisms oxidize  wastewater constituents and convert their chemical energy into46

electricity with simultaneous wastewater purification [3].47

48

In Finnish paper, cardboard and pulp mills, in 2013, approximately 500 Mm3 of wastewater was49

produced [4] containing cellulose and hemicellulose. Glucuronoxylans with xylose as the most50

abundant monomer, are hemicellulose that is present in high concentrations especially in hardwood51

[5]. The occurrence of  hemicellulose  and thus, xylose in forest industry wastewaters decreases the52

cost-effectiveness of the treatment process if xylose is not degraded [6]. For example, a yeast S.53

cerevisiae cannot utilize xylose for bioethanol production without gene modification [7]. However,54

it has been reported that in MFCs xylose can be anaerobically converted to electricity [8,9,10,11].55

56

Continuous treatment is a prerequisite for efficient and low-cost wastewater treatment. Only a few57

studies have reported continuous electricity production from xylose [8,10]. In continuous operation,58

organic loading rate (OLR) has a remarkable effect on electricity production [12] and the OLR is59

controlled by the HRT used. By now, several different reactor configurations have been tested for60

simultaneous electricity production and wastewater treatment, from which up-flow reactors are61

easily scalable and have comparatively low space requirements and thus, have potential for future62

applications [12,13,14,15,16]. Up-flow reactors can be operated with  high OLRs [17], i.e. low63

HRTs, and to treat wastewaters containing compounds, such as phenol [18]. Recently, granular64

activated carbon (GAC) has been reported at the MFC anodes to increase the surface area and65

performance of anodes as well as their wastewater treatment efficiency [19,20]. GAC can be66
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combined with up-flow reactors, i.e. fluidized bed reactors [21], which further highlights the67

importance of up-flow configuration for bioelectrochemical systems in the future. [20]  To make68

MFCs economically feasible for wastewater treatment, the treatment time should be close to the69

conventional processes. This makes HRT an important operational parameter [22].70

71

This study examined the effects of HRT and organic loading rate on the ability of an up-flow MFC72

to convert xylose to electricity by further optimizing the operation parameters reported by Lay et al.73

[10]. The COD removal efficiencies and microbial communities at the anolytes were determined for74

each tested HRT. In addition, the microbial community of the biofilm was characterized in the end75

of the experiment.76

77

2. Materials and Methods78

2.1 MFC construction and operation79

The up-flow MFC used was similar to the one used by Lay et al. [10]. Anode and cathode chambers80

(working volumes 500 mL and 250 mL, respectively) of dual-chambered up-flow MFC (Figure 1)81

were separated with an anion exchange membrane (Ø 4.5 cm, AMI-7001, Membranes International82

Inc. USA). The membrane was changed on days 23, 78, 117, 132, and 159 due to membrane83

fouling. Flat plate graphite electrodes at the anode and cathode (0.00385 m2, McMaster-Carr,84

Aurora, OH) and 100 Ω external resistance were used [10]. A reference electrode (Ag/AgCl in 3M85

KCl solution, -205 mV vs. standard hydrogen electrode (SHE), SENTEK QM710X) was attached86

to the anode recirculation tubing on day 15 through a glass capillary (QiS, the Netherlands).87

Anolyte temperature was maintained at 37 °C with heating coils around the anode chamber.88

Temperature was measured from the circulated anolyte which had a flow rate of 60 mL/min [10].89

Medium was prepared as described by Mäkinen et al. [23] without addition of EDTA, yeast extract,90
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and resazurin. Xylose (0.5 g/L) was used as substrate and pH of the medium was adjusted to 7.091

with NaOH before feeding. During continuous operation, influent container was kept in a cool box92

(approximately 9 °C) to minimize microbial growth outside the reactor. The catholyte was93

potassium ferricyanide (50 mM K3Fe(CN)6) in phosphate buffer (100 mM Na2HPO4, pH 7.0).94

Catholyte was circulated after day 83 through a container (500 mL) with a minimum flow rate of95

0.2 mL/min. MFC was started as fed-batch where 0.5g/Lanode chamber volume xylose was added with an96

interval of 4-7 days. Continuous operation was started on day 43 with 3.5 d HRT, and HRT was97

gradually decreased to 0.17 d. Inoculum [10] was originally enriched from a compost culture.98

99

100

Figure 1. Diagram of MFC construction. 1) Anode electrode, 2) Cathode electrode, 3) Reference101

electrode, 4) External resistance, 5) Temperature sensor, 6) Anion exchange membrane, 7) – 9)102
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Peristaltic pumps, 10) Electrical wires connected to data logger, a) - c) Sampling ports. The figure is103

104 not drawn to scale. 

105

106

2.2 Analyses107

2.2.1 Electrochemical measurements and calculations108

Cell voltage and anode potential were measured at 2 min intervals with an Agilent 34970A data109

Acquisition/Switch Unit (Agilent, Canada). The current was calculated from cell voltage (U) and110

external resistance (R) with ohm´s law. Current and power densities were calculated against the111

projected area of the anode electrode (0.00385 m2) or the volume of the anode chamber (0.5*10-3112

m3).113

114

Performance analyses were performed at the end of each HRT by measuring cell voltage and anode115

potential after 30 min of stabilization with different external resistances (1000 Ω, 499 Ω, 240 Ω,116

100 Ω, 10 Ω) and at open circuit mode. Power density and polarization curves were drawn from117

performance analyses results. Internal resistances were further estimated from the slopes of118

polarization curves according to [24].119

120

Coulombic efficiency (CE) was calculated at each HRT using the measured cell voltage and the121

added influent xylose concentration over the periods with stable cell performance according to122

Equation 1123

124

ாܥ =
ெೞ ∫

ೆ
ೃௗ௧

೟మ
௧భ

ி௕೐ೞ
೟್ೡೌ
ಹೃ೅௖

, (1)125

126
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where Ms = molecular weight of xylose (g/mol), t2-t1 = time period of the measurement (d), F =127

Faraday’s constant (96 485 C/mol*e), bes = number of the electrons released per mol of xylose (20128

e-), va = working volume of anode chamber (L), HRT = hydraulic retention time (d) and c = xylose129

concentration (g/L).130

131

2.2.2 Sampling and chemical analysis132

Xylose concentration, pH, and volatile fatty acids (VFAs) and alcohols were analyzed 3 times a133

week. During batch mode operation, samples were taken from sample port a (Figure 1) before134

substrate was added. During continuous operation, samples were taken from sample port b (Figure135

1) and from effluent and influent. Samples for VFA, ethanol and xylose analysis were filtered136

through 0.2 or 0.45 μm PET filter. WTW pH 330 meter was used for measuring pH.137

138

Xylose concentration was measured with phenol-sulphuric acid method [25] using customized139

sample and reagent volumes (1 mL sample, 0.5 mL 5% phenol solution, and 2.5 mL sulphuric acid)140

and measuring the absorbance at 485 nm with UV-visible spectrophotometer (Shimadzu UV-1601).141

VFAs and alcohols were measured with a gas chromatograph (Shimadzu Ordior GC-2010 plus)142

equipped with ZB-WAXplus column (Phenomenex,  USA) and flame ionization detector (FID).143

The oven temperature was held at 40 °C for 2 min, increased 20 °C/min to 160 °C, and 40 °C/min144

to 220 °C, where the temperature was held for 2 min. Temperature of injector and detector was 250145

°C. The flow of helium (carrier gas) was 30 mL/min. Internal standards were crotonic acid (100146

mg/L) and 1-propanol (60 μL/L), and 0.06 M oxalic acid solution was used to acidify the samples.147

148

COD removal was calculated by converting the analysed effluent VFAs and xylose concentrations149

to COD equivalents according to van Haandel & van der Lubbe [26].150

151
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2.2.3 Microbial community analyses152

Microbial community samples were obtained from the anodic solution at each HRT at stabilized153

conditions and from the anode biofilm in the end of the experiment. The biofilm sample was154

removed from the anode electrode by sonicating 5 min in 0.9% NaCl solution, followed by further155

separation of biomass with a centrifuge (5000 x g, 10 min). DNA was extracted from defrosted156

pellets with PowerSoil DNA isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA). PCR157

was used to amplify partial 16S rRNA genes as described by Koskinen et al. [27] using GC-BacV3f158

[28] and 907r [29] primers. DGGE was performed as described by Lakaniemi et al. [30]. Separated159

DNA sequences were reamplified according to Koskinen et al. [27] before sequencing at Macrogen160

Inc. (Seoul, Korea). BioEdit software and BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were161

used for analyzing sequence data.162

163

164

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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3. Results and discussion165

3.1 Electricity generation166

167

Electricity production with the studied up-flow microbial fuel cell was mainly affected by the168

changes in HRT. The effects of other variables, such as fast reduction of catholyte and changes in169

internal resistance caused by membrane fouling, were minimized by circulating the catholyte and by170

changing the membrane periodically, respectively (Figure A2). During reactor operation, cell171

voltage increased from 344 mV to the highest value of 408 mV when HRT was decreased from 3.5172

d to 1 d. Decreasing HRT to 0.75 d and further to 0.17 d decreased the cell voltage remarkably to173

218 mV and 156 mV, respectively (Figure A2). Similar trend was observed in performance analysis174

(Figure 2), which was done at the end of each HRT.175

176

177
A) B)

178 Figure 2. A) Cell voltage and B) power density as a function of current density in the up-flow 

179 microbial fuel cell operated with different HRTs. 
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The highest current density of 2460 mA/m2 and the highest voltages with all tested external181

resistances (10-1000 Ω) were obtained with HRT of 1 d (Figure 2A). At HRTs above 1 d the182

current densities and voltages were lower than at HRT of 1 d. The OLR at HRTs above 1 d was183

below 0.4 g COD/L/d, which may not have provided enough substrate for the microorganisms to184

sustain higher voltages [8]. Also decreasing HRT below 1 d decreased the current densities, cell185

voltages (Figure 2A) and CEs and increased VFA concentrations (Chapter 3.2), which indicates that186

at lower HRTs the biofilm could not utilize xylose for current production as efficiently as at higher187

HRTs. Increasing mass transfer or diffusion limitations likely affected the decreasing performance188

of the cell [31 32].189

190

Internal resistances of the cell were smaller in batch mode (90 Ω) and at HRTs between 1 and 3.5 d191

(70-90 Ω) and increased remarkably when HRT was decreased below 1 d (270-450 Ω). Ieropoulos192

et al. [31] and Lee & Oa [17] also found the increase in internal resistance with higher influent flow193

rates. On reason for this can be insufficient substrate transfer to biofilm and proton transfer into194

cathode chamber [17] (mass transfer and diffusion limitations), which could be prevented by195

improving the anode electrode geometry [33] and reactor design. Ieropoulos et al. [31] also196

suggested that the increase in internal resistance is partly due to the increased microbial growth on197

anode electrode at lower HRTs resulting in diffusion limitations or due to the changes in microbial198

community that may have caused mass transfer limitations with higher flow rates. At each HRT of199

this study, the time reserved for stabilization was at least 10 times the HRT. These periods were200

long enough for causing changes in biofilm thickness and increasing internal resistance. Although201

the highest current densities were measured with 1 d HRT, anode potential reached the most202

negative stable values (with 100 Ω resistance) of -455 ± 2 mV vs. Ag/AgCl with the smallest HRTs203

of 0.17-0.5 d compared to -416 mV vs. Ag/AgCl at HRT of 1 d (Table 1). This indicates that the204
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performance of the anodic biofilm did not deteoriate with decreasing HRTs. However, at smaller205

HRTs the high internal resistances decreased power densities.206

207

The internal resistance of the cell was high (70 Ω, Figure 2) also with the optimal HRT of 1 d208

indicating that the reactor configuration requires improvements. This could be done, for example,209

by decreasing the distance between the electrodes [13] and improving the membrane operation, e.g.210

by increasing the area of the membrane. For example, Sevda et al. [34] reported that the hindered211

ion flow through a separator between anode and cathode compartments caused more resistance with212

smaller HRTs in their reactor.213

214

According to the power density curves (Figure 2B), 1 and 1.7 d HRTs resulted in the highest power215

densities and 1 d HRT gave 11% higher values than 1.7 d HRT. On the other hand, during the stable216

operation (Figure 3, Figure A2) 1.7 d HRT gave 26% higher power densities than 1 d HRT. When217

taking into account the variations in cell voltage (Figure A2) caused by the fast reduction of218

catholyte, xylose consumption in the feeding tank, and membrane fouling, the cell performance at219

HRTs 1 and 1.7 d was comparable. Thus, both 1 d and 1.7 d are near the optimal HRT for the220

studied up-flow MFC in relation to the electricity production from synthetic wastewater containing221

xylose (Figure 3). These are in the same range with the HRTs of the existing activated sludge222

wastewater treatment plants in pulp and paper mill [35].223
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224

225 Figure 3. Organic loading rate (OLR, gCOD/d), average current density (ID, mA/m2), power 

226 density (PD, mW/m2) and Coulombic efficiency (CE, %) as a function of hydraulic retention time 

227 (HRT, d) in up-flow microbial fuel cell. The error bars show the minimum and maximum values in 

228 stable conditions.

229

The peak power densitiy obtained at 1 d HRT is significantly higher than 8.4 ± 0.4 mW/m2 reported230

by Huang et al. (Table 1) with xylose. They suggested that low power densities were due to non-231

optimal cultivation conditions. Huang & Logan [8] measured 1093 ± 43 mW/m2 (against projected232

surface of cathode electrode) for continuous process fed with xylose (3 g/L). This value was 150%233

higher than the maximum power density in our study, but their estimated anode electrode surface234

was approximately 300 times higher than the cathode electrode area resulting in unreliable235

comparison.236

237
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Max. Power
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Air cathode MFC 3 g/L (fed-batch) in 100 mM PBS 673 ± 43a n.g. [8]
Air cathode MFC 3 g/L (fed-batch) in 200 mM PBS 944 ± 32a n.g. [8]
Air cathode MFC 3 g/L (continuous); 0.83 d HRT 1093 ± 43a 41 [8]

Up-flow; two-chamber 0.5 g/L (fed-batch) 107 21.3 ± 1.0 [11]
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Up-flow; two-chamber 0.5 g/L (continuous); 3.5 d HRT 72 12.7 ± 0.6 [11]
Up-flow; two-chamber 0.5 g/L (continuous); 1 d HRT 430 9.2 This study
Two-chamber system 0.08 g/L (fed-batch) 2.6 ± 0.2 41 ± 1.6 [31]
Two-chamber system

with stirring 1.5 g/L (fed-batch) 8.4 ± 0.4 36 ± 1.2 [31]
a normalized to cathode electrode area, n.g.=not given238

Table 1. Maximum power densities and coulombic efficiences measured in this study and reported239

in literature.Maximum power density is normalized to anode electrode area unless otherwise stated.240

241

CEs (calculated from the stable operational period, Figure A2) decreased with HRT during the242

whole experiment (Table 1). The highest CE of 30% measured with 3.5 d HRT was remarkably243

higher than reported by Lay et al. ([10] in Table 1) in the same reactor configuration as used in this244

study.  Furthermore, power density with 3.5 d HRT measured in this experiment was three times245

higher compared to the results of Lay et al. [10] with the same HRT. One reason for the better CE246

and power density in this experiment can be the longer acclimation time, which helps bacteria to247

adapt to the operational conditions. Also regular membrane changes due to membrane fouling might248

have improved the results of this experiment, since they decreased the internal resistance. For249

example, with 1 d HRT, membrane change improved the cell voltage by 17% (measured one day250

after the membrane change). Later with smaller HRTs the differences were even higher (Figure A2)251

indicating that smaller HRT increased membrane fouling. Huang & Logan [8] were able to252

transform 13-40 % of the chemical energy of the removed xylose (initial concentration 20 mM =253

3.0 g/L) into electricity with HRTs of 10-38 h. They used graphite fiber brushes as anodes which254

enabled a larger surface area and lower internal resistance (2-3.4 Ω) than used in this study. Thus,255

decreasing the internal resistance in the reactor configuration of this study will likely increase CE256

and power densities.257

258

The purpose of this study was to examine the effects of different HRTs to the performance of the259

anode. To further optimize the economical feasibility of the process, different anode electrode260
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materials and structures should be tested. Also reactor configuration optimization is needed for261

more efficient electricity production. Potassium ferricyanide is a very good electron acceptor for262

studying reactions at anode chamber. For practical application, however, this has to be replaced263

with an inexpensive and environmental friendly choice, such as efficient cathode based on O2264

reduction.265

266

3.2 Metabolic activity in up-flow MFC267

268

On average, 99% of the xylose was removed at the anode during the continuous reactor operation.269

The xylose removal was very efficient even with the lowest HRT of 0.17 d compared to the other270

MFC studies with continuous xylose feeding. For example, in the studies of Huang and Logan [8]271

51-96% of xylose was degraded with HRTs of 5-38 h. However, the influent xylose concentration272

was lower in our study, which might have affected removal efficiency.273

274

The COD removal calculated from the effluent VFAs and xylose concentrations varied between 57-275

95% due to remaining VFAs in effluent (Table 2). Propionate  remained below 0.5 mM during the276

reactor run, while the acetate increased with decreasing HRT  (2.9 ± 0.6 mM at 0.75 d HRT). With277

lower HRTs than 0.75 d, the acetate concentrations decreased with HRT. The VFA concentrations278

fluctuated as indicated by high standard deviations in Table 2.279

280

HRT
anode potential

(mV vs. Ag/AgCl)

CE

(%)

acetate

 (%)

propionate

(%)

xylose

(%)

calculated

COD removal (%)

3.5 -410 30.3 < 6 <10 3.1 ± 2.6 95

1.7 -383 18.2 8.3 ± 6.6 8.6 ± 5.2 <2 82

1 -417 9.2 21.7 ± 10.1 9.4 ± 3.5 <2 69
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0.75 -444 3.9 35.1 ± 7.6 7.0 ± 2.4 <2 57

0.5 -455 2.5 30.2 ± 10.5 <10 <2 68

0.33 -455 1.5 22.5 ± 3.1 n.d. <2 77

0.17 -455 0.6 21.6 ± 8.5 n.d. <2 78

n.d. = not detected281

Table 2. Stable anode potentials with different HRTs and electron balance of the added xylose282

divided to CE and acetate, propionate and xylose measured from the effluent. Detection limit for283

VFAs was 0.5 mM. CE was calculated for the stable conditions (S1), but concentrations of VFAs284

and xylose in effluent were calculated over the whole operation period at each HRT. COD removal285

was calculated based on the effluent composition.286

287

During batch mode operation, the pH in the reactor decreased to 5.5, at which point it was increased288

with NaOH to 7.0. During continuous operation, the pH values remained between 6.7-7.1 in the289

reactor and 6.8-7.4 in the effluent.290

291

3.3 Microbial community analysis292

Decreasing HRT will likely wash out some of the bacteria not attached to the biofilm [36]. Thus,293

the changes in anolyte microbial community were monitored during the experiment. DGGE was294

used for community profiling although it was realized that it is a semi-quantitative method at best.295

However, it enables the detection of main bacterial species present at the anolyte. The anolyte296

microbial communities changed slightly during the experiments. The intensity of the bands on the297

DGGE gel [27,37] changed at different HRTs indicating that the share of Cristensenella minuta298

increased remarkably after the HRT decreased to 0.5 d (Figure A1, Table 3). C. minuta is a xylose299

fermenting bacterium [38] and its share likely increased due to increased xylose loading rates at300
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lower HRTs and was related to decreasing power densities and CEs. Fermentative bacteria, being301

able to degrade xylose, have a role also in electricity production by offering acetate, propionate and302

butyrate as fermentation end products for exoelectrogenic bacteria [11,39]. However, high substrate303

concentration increases the growth of fermenting bacteria, thus decreasing power density by304

overtaking the anolyte and anode electrode biofilm [40]. The share of a nitrate reducing bacterium305

[41], Petrobacter sp., decreased with HRT. With HRTs of 0.17-0.5 d and the most negative anode306

potentials, the strongest bands belonged to C. minuta, Citrobacter freundii, Clostridium indolis, and307

Proteiniphilum acetatigenes. All of these bacteria are fermenting, but P. acetatigenes cannot308

ferment D-xylose [38,42,43]. C. indolis is a sulfate reducer [44] and C. freundii is an309

exoelectrogenic organism [45]. C. indolis has also been found from a biofilm sample of a MFC310

[37].311

312

The reactor was stopped due to a malfunction in temperature controller, which increased the313

temperature in the reactor causing heat shock. The microbial community of anode biofilm was314

characterized after  this temperature increase, which possibly affected the results. Geobacter sp. was315

identified from biofilm sample as was also an uncultured spirochete, P. acetatigenes and Wolinella316

succinogenes. Geobacter sp. is a well-known exoelectrogenic organism, but also the uncultured317

spirochete and fermenting P. acetatigenes have been found from biofilm of MFC reactors318

[46,47,48]. Cord-Ruwish et al. [49] found syntrophic cooperation between W. succinogenes and319

Geobacter where W. succinogenes kept hydrogen partial pressure low, thus helping Geobacter to320

ferment acetate. The increase in effluent acetate concentration with 0.17 -1 d HRTs indicate that321

acetate oxidation to electricity was the process limiting factor. This was possibly due to liquid flow322

bypass and the following diffusion and mass transfer limitations between anode biofilm and anolyte323

flow, which could be improved with more sophisticated anode electrode design.324

325
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326

Band

label
SL

Sim

(%)
Affiliation (acc) Class / Family Origin of the sample

1
454 -

481

99.7 -

100

Proteiniphilum acetatigenes

(HQ710548.1)

Bacteroidia /

Porphyromonadaceae
Crude oil contaminated soil

2 421 99.5
Wolinella succinogenes

(NR_025942.1)

Epsilonproteobacteria /

Helicobacteraceae
Rumen

3
271 -

444

97.0 -

99.7

Clostridium indolis

(KF611981.1)

Clostridia /

Lachnospiraceae
Pit mud

4
460 -

538
100

Geobacter sp.

(KF006333.1)

Deltaproteobacteria /

Geobacteraceae

MFC, inoculated with

wastewater

5 461 99.3
Christensenella minuta

(AB490809.1)

Clostridia /

Christensenellaceae

Isolated from human

faeces

6 437 99.7
Clostridium oroticum

(AB818947.1)

Clostridia /

Lachnospiraceae
Mud

7 262 100
Enterobacter sp.

(KF934473.1)

Gammaproteobacteria /

Enterobacteriaceae

Sediment samples from

PrydzBay and sea area

8
437 -

482
100

Citrobacter freundii

(AB680434.1)

Gammaproteobacteria /

Enterobacteriaceae
Unknown

9 475
99.5 -

100

Petrobacter sp.

(HM059764.1)

Betaproteobacteria /

Hydrogenophilaceae

Aerobic enrichment of

biodegraded oil sample

10 416 100
Uncultured spirochete

(JF736651.1)
Spirochaetia /  unknown

MFC, inoculated with

activated sludge

327
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Table 3. Identified bands on DGGE gel. SL = sequence length of the sample, Sim (%) = similarity328

(%), Affiliation (acc) = closest species in database and its accession number, and Origin of the329

sample = Origin of the sample with the closest match330

331

332

Fermentative xylose degraders were present in the anolyte and the biofilm contained a known333

exoelectrogen, Geobacter sp. Thus, syntrophic interaction between fermenting and electricity334

producting bacteria likely took place. P. acetatigenes, W. succinogenes, Petrobacter sp., uncultured335

spirochete, and C. freundii were also present in the anolyte of the reactor from which the inoculum336

was obtained for this study [10].337

338

339

4. Conclusions340

341

HRT affected xylose conversion to electricity in up-flow microbial fuel cells as follows: 1) The342

highest power densities were achieved with 1 d and 1.7 d HRTs, while CE decreased with the HRT343

from 30% to 0.6%; 2) Xylose was almost completely removed with all HRTs, but due to incomplete344

acetate oxidation at lower HRTs COD removal remained at 59-95% (70% with 1 d HRT); 3)345

Microbial communities of anolyte and biofilm contained fermentative bacteria and known346

electricity producers, respectively. This demonstrates synergistic interaction between xylose347

fermenting bacteria and exoelectrogens in the biofilm. However, the increasing share of348

fermentative bacteria with HRTs below 0.75 d likely decreased power density by increasing the349

internal resistance.350

351
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