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Abstract: This paper addresses the energy-inefficiency problem of four-degrees-of-freedom (4-DOF)
hydraulic manipulators through redundancy resolution in robotic closed-loop controlled applications.
Because conventional methods typically are local and have poor performance for resolving
redundancy with respect to minimum hydraulic energy consumption, global energy-optimal
redundancy resolution is proposed at the valve-controlled actuator and hydraulic power system
interaction level. The energy consumption of the widely popular valve-controlled load-sensing (LS)
and constant-pressure (CP) systems is effectively minimised through cost functions formulated
in a discrete-time dynamic programming (DP) approach with minimum state representation.
A prescribed end-effector path and important actuator constraints at the position, velocity and
acceleration levels are also satisfied in the solution. Extensive field experiments performed
on a forestry hydraulic manipulator demonstrate the performance of the proposed solution.
Approximately 15–30% greater hydraulic energy consumption was observed with the conventional
methods in the LS and CP systems. These results encourage energy-optimal redundancy resolution
in future robotic applications of hydraulic manipulators.

Keywords: hydraulic manipulator; redundancy resolution; energy optimisation; energy-optimal;
global; dynamic programming; actuator limits; load-sensing system; constant-pressure system;
mobile hydraulic valve

1. Introduction

Hydraulic loaders are powerful, typically 4-degrees-of-freedom (4-DOF) manipulators, that are
used for heavy-duty material handling on mobile machines, such as trucks and forest forwarders.
Currently, hydraulic loaders are predominantly operated by humans, but loader manufacturers
are interested in diversifying their offerings through robotic functionality to remain competitive.
On the research side, and in the industry, subjects dealing with reducing reliance on the expertise of
human operators in loader control have consequently received much attention. Several next-generation
robotic semi-automated approaches, for example, have been proposed to help alleviate the
operator’s workload by automating the repetitive work tasks that would normally be the operator’s
responsibility [1,2]. On one hand, these semi-automated approaches discuss closed-loop control,
and on the other hand, they involve redundancy resolution because hydraulic loaders are typically
kinematically redundant. Although both problems are important, it is safe to estimate that redundancy
resolution of hydraulic manipulators has received less and too little interest in academia in relation to
the importance of redundancy resolution compared to closed-loop control problems. This is probably
because so many different types of redundancy resolutions [3–9] have been proposed for general
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systems that the general understanding is that these redundancy resolutions can effectively reduce the
energy consumption of hydraulic manipulators, for example, through the minimum velocity norm or
weighted pseudo-inverse solutions [10]. One of the aims in this paper is to show that these general
redundancy resolutions can be sub-optimal at the valve-controlled hydraulic system level.

Moreover, because there are many different redundancy resolution strategies for different
objectives, choosing the most compelling objective for a hydraulic manipulator is not always
straightforward. Looking at the handful of redundancy resolutions dealing with specific problems
and objectives pertaining to hydraulic manipulators, however, it becomes evident that global
energy-optimal redundancy resolutions are lacking. To explain the importance of global energy-optimal
redundancy resolution, system energy inefficiency is a major problem in hydraulic manipulators [11].
Therefore, to address this problem, we resolve the redundancy in a highly desirable hydraulic
energy-optimal manner and effectively treat the inherently limited joint motions of hydraulic
manipulators by enforcing important actuator position, velocity and acceleration limits in our solution.

1.1. Literature Review

In the literature, Mettin et al. [12], Löfgren [13] and Ortiz Morales et al. [1] addressed the
joint-limited minimum-time redundancy resolution of hydraulic manipulators, and Löfgren [13]
has also studied redundancy resolution which maximises load capacity. Furthermore, Beiner and
Mattila [10] have derived a pseudo-inverse method for redundancy resolution in the hydraulic
manipulator’s actuator space to minimise the cylinder velocity norm or the weighted kinetic energy
instantaneously. In addition, Flacco et al. [9] have proposed a joint-limited pseudo-inverse-based
algorithm, which is also suitable for hydraulic applications, that saturates joint velocities in the
null space. These different solutions, however, do not discuss hydraulic energy-optimality. In addition,
generally minimising the energy consumption of actuators, as proposed by Vukobratovic and
Kircanski [14] as a local solution and developed by Hirakawa and Kawamura [15] as an optimal
control problem, can be a sub-optimal strategy for hydraulic manipulators. This is a direct consequence
of the fact that the actuators’ energy consumption does not equate to the energy consumption
of the typical valve-controlled load-sensing (LS) and constant-pressure (CP) hydraulic systems
because the pressure losses encountered in these systems are not considered. It is important to
derive energy-optimal redundancy resolutions for these commonly used systems. Whereas LS
systems are predominantly used in hydraulic commercial manipulators in general, CP systems
are used mostly in robotic closed-loop controlled applications and next-generation energy-efficient
secondary-controlled applications because of the systems’ superior damping and simplicity compared
with the LS systems [16–18].

1.2. Paper Contribution and Organization

In this paper, we minimise the energy consumption of the widely used LS and CP hydraulic
systems through redundancy resolution to address the major problem of energy-inefficiency in
hydraulic manipulators. This solution is in stark contrast to known conventional methods that are
not energy-optimal at the valve-controlled actuator and hydraulic power system interaction level.
To summarise, our redundancy resolution entails moving the manipulator hydraulic cylinders in an
energy-optimal manner while the manipulator’s end-effector follows a prescribed path, and actuator
limits at the position, velocity and acceleration levels are satisfied. To address both of these hydraulic
systems optimally, we propose a tailored cost function of the energy consumption for each. For example,
the simpler CP system is shown to require minimisation of the pump flow rate. This objective
leads to our effective solution in which the cylinder’s effective areas scale the cylinder velocities
in a discontinuous manner. Minimising the CP system energy cost, hence, intuitively amounts to
minimising the cylinder volumes displaced in the solution. The cylinder areas among the manipulator’s
hydraulic cylinders, including the different piston and rod-side areas of the asymmetric cylinders,
render minimisation of the CP system’s energy consumption, in particular, a highly tractable objective.
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With the objectives in place, the redundancy could obviously be resolved by formulating the
optimal control problem so that the motions of all the joints are optimised subject to specific motion
constraints. However, that approach would result in a high-dimensional problem, which would be
unsuitable for a global dynamic programming (DP) solution and generally inconvenient. To reduce
the problem dimensionality and computational complexity, in this study, only the motion of the
redundant extension cylinder is directly optimised. The optimal non-redundant joint motions are,
instead, resolved by employing non-singular inverse kinematics, motivated by the formulation used
by Choi [19] and Flacco et al. [20]. Moreover, in the present study, hydraulic system properties are
incorporated in the cost functions proposed in steady-state equations. This approach results in our
desirable minimum-state problem, which requires only two states and one control and which uses
the computational resources available much more sparingly than the approach of simultaneously
optimising all of the joint motions. However, because of the modelling simplifications in our problem
formulation, a natural concern that could arise is whether significant hydraulic aspects of the
problem are neglected. Thus, extensive experiments, which compare the energy consumptions of the
redundancy resolutions proposed in this study against other global and instantaneous strategies in the
LS and CP systems is presented.

This energy-optimal solution is primarily suitable as an offline approach, much like the
minimum-time solutions that were proposed by Ortiz Morales et al. [1] and Mettin et al. [12],
and it is practical as such. Extensive measurements by Ortiz Morales et al. [1], Mettin et al. [12]
and Westerberg [2] have shown that the typical workspace activity for 4-DOF manipulator is
concentrated on specific areas, which consequently means that there are in practice a limited number
of significant point-to-point movements to optimise with respect to energy consumption. However,
at the implementation stage, it might be feasible to pre-compute the energy-optimal trajectories over
a few time horizons for all of these significant point-to-point movements so that it would be possible
to choose between slower and faster energy-optimal trajectories in real-time. Furthermore, with our
proposed methodology, one significant implication is that only the redundant joint’s trajectories are
necessary for real-time applications. If having more storage space were considered more important
than having more computational power reserve, then the non-redundant motion trajectories could be
resolved online from the remaining non-singular inverse kinematics.

This paper is an extension of our previous work [21]. As an extension of previous work,
redundancy resolution is expanded from vertical plane three-degrees-of-freedom (3-DOF) serial-link
hydraulic manipulators to complex 4-DOF serial-link hydraulic manipulators, which include boom
base motion. The system model proposed for the energy-optimal solution is also systematically
presented in this study. A third contribution of this paper compared to our previous simulation study
concerning 3-DOF serial-link hydraulic manipulators is the extensive field experimental evaluation of
the redundancy resolution proposed for 4-DOF serial-link hydraulic manipulators and its comparison
to existing conventional methods. In this experimental evaluation, the performance of the proposed
DP solution is compared to a “bootstrapped” DIDO solution [22] by employing the proposed problem
formulation. The performance of the globally hydraulic energy-optimised redundancy resolution has
not been previously experimentally evaluated.

This paper is organized as follows. First, the test system, which is a commercial forestry hydraulic
manipulator, is described in Section 2. Second, a simplified mathematical model of this complex
manipulator is presented in Section 3. In Section 4, the hydraulic manipulator’s optimal control
problem is reduced to the bare essentials with the minimum-state formulation. The problem’s desirable
global dynamic programming solution is discussed in Section 5. Finally, we experimentally evaluate
the proposed redundancy resolution by comparing its performance to that of conventional methods
in Section 6. The experimental results are from the real test-bed introduced in Section 2. Conclusions
are provided in Section 7.
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2. Test-Bed

Our test-bed is the K70M hydraulic manipulator on the Ponsse Caribou S10 8-wheel forest
forwarder (Figure 1). In the following, we describe this manipulator in more detail.

Cab

Log grapple

Load space

Log-loader 
manipulator

Outer boom

Inner boom

Lift (q2)

Tilt (q3)

Base (q1)

Pillar

Telescope 1

Telescope 2 

= Extension (q4)

Figure 1. Kinematically redundant K70M hydraulic manipulator on Ponsse Caribou S10 forwarder,
with log grapple end-effector.

2.1. System Description

The K70M hydraulic manipulator is a standard log-loader that has a grapple end-effector attached
to the crane tip. The manipulator has four principal joints, which consist of the base, lift, tilt and
extension joints shown in Figure 1. These joints are actuated by using proportional valve-controlled
hydraulic cylinders (see Table 1). The manipulator also has two telescoping links in series to extend its
reachability. Measuring from the base to the tip, the manipulator can extend to approximately 9.1 m,
and at this distance, its load-carrying capacity is 650 kg.

Table 1. Hydraulic cylinder dimensions of the test-bed manipulator.

i �AAi/ABi − Stroke [mm] Explanation

1 2×�115/115− 720 Base cylinders
2 �120/70− 610 Lift cylinder
3 �115/60− 725 Tilt cylinder
4 �70/45− 1850 Extension cylinder

A two-stage, pressure-compensated Parker K170LS mobile hydraulic valve is used to control
the manipulator’s cylinders; see Figure 2, where the valve’s spool types are illustrated. The mobile
hydraulic valve also includes very complex in-built hydro-mechanical functionality, such as a standard
counter pressure valve, which raises the tank pressure, and anti-cavitation valves in each actuator
port (not shown in Figure 2). In the over-running load case, in particular, these anti-cavitation
valves allow any fluid flow rate from the tank line to the non-loaded cylinder chamber to exist
before the chamber pressure drops to a level below a preset minimum hydraulic cylinder pressure.
This hydro-mechanical functionality can be significant since these anti-cavitation valves may reduce
pump flow rate requirement.
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The manipulator, as an industrial standard, is powered by a LS hydraulic pump; see [23–25].
Therefore, an electro-hydraulic CP system was built in parallel to allow comparison to the LS system
for the experiments. Hence, the same hydraulic pump and pump LS regulator valve can be used
to control the pump displacement. The hydraulic pump is an A11VLO130DRS variable axial piston
pump from Bosch Rexroth with a maximum flow rate of 325 dm3/min at 2500 rotations per minute
(including the charge pump flow) and 21.5 MPa maximum supply pressure.

T

A B

P

LS

(a)

T

A B

P

LS

(b)

Figure 2. Mobile hydraulic spool valves of the test-bed manipulator: (a) Typical mobile hydraulic
spool, used with the base, lift and tilt cylinders; and (b) differential spool (see position on the left) used
with the extension cylinder.

The LS system’s conventional low-level operating principle, which is reported in [23], is illustrated
in Figure 3a. In this system, the maximum driven chamber pressure among the base, lift, tilt and
extension cylinders is fed back to the variable displacement pump’s hydro-mechanical controller,
which sets the pump supply pressure a LS pressure margin ∆pLS above this feedback value. With the CP
electro-hydraulic control method of the hydro-mechanical feedback system shown in Figure 3b, on the
other hand, the pressure reference for the variable displacement pump’s hydro-mechanical controller is
generated directly from the supply pressure based on the electrical input of the proportional pressure
relief valve between the minor (0.7 mm) orifice and the tank-connected pressure valve. This control
method is called “remote control” in the Bosch Rexroth catalog [26]. We have simplified the symbol of
the metre-in side load control valve and omitted the metre-out side for clarity.
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Figure 3. Hydraulic systems of the test-bed manipulator: (a) Conventional load-sensing system; and
(b) electro-hydraulic constant-pressure system.
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2.2. Instrumentation and Data Acquisition

The hydraulic manipulator was equipped with multiple sensors for the experiments:

(1) the base angle was measured using an RCC absolute angle resolver from LTN with a resolution
of 0.01◦;

(2) the lift and tilt angles were measured using incremental angle encoders ROD 456–5000 from
Heidenhain with resolutions of 0.0072◦ and 0.0029◦, after 10-fold and 25-fold interpolation;

(3) the extension cylinder position was measured with a DG 60 L incremental position encoder from
Stegmann with a resolution of 160 µm;

(4) the pump supply pressure and, for identification purposes, cylinder pressures were measured
using an NAH250 analogue pressure transducer from Trafag with an accuracy of ±0.1% from
full-scale 25 MPa and

(5) the pump flow rate was measured using a gear type flow meter VC 5 F2 PS from Kracht with
a resolution of 0.005 dm3 and a range of −250 to 250 dm3 per minute.

The joint encoder installations are shown in Figure 4. These sensor measurements were recorded at
a 2 ms sampling rate, and the hydraulic valves were controlled via CAN using a dSPACE MicroAutoBox
II processing unit for the experimental evaluation.

Gear
mechanism

Encoder

(a)

Encoder

LinkageInterpolation unit

(b)

Encoder

Linkage

(c)

Encoder

Rope length
transmitter

(d)

Figure 4. Joint encoders installed at the principal joints of the hydraulic manipulator: (a) Base angle
(q1) encoder; (b) lift angle (q2) encoder; (c) tilt angle (q3) encoder; and (d) extension length (q4) encoder.

3. Model of the Kinematically Redundant Four-Degrees-of-Freedom Hydraulic Manipulator

Next, the test-bed is described in more detail. For redundancy resolution of this test-bed
manipulator, the mathematical model of the manipulator is systematically presented in the following,
with particular attention paid to the applicability of the model for optimising energy consumption.
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3.1. Forward Kinematics in the Joint Space

The hydraulic manipulator is shown in Figure 5. The joint-position vector of this manipulator can
be defined as follows:

q =
[
q1 q2 q3 q4

]T
(1)

where q1 denotes the base angle, q2 denotes the lift angle, q3 denotes the tilt angle and q4 is the total
extension length (a prismatic joint). These are the principal hydraulically actuated joints. All qi are
taken positive counter-clockwise.

q1

xw ,x0

yw, z0

x1

y1

x
2

y
2

x4

y4

q2

q3

x3

z3

L2

L1

ox

oy

L3 + q4

Figure 5. 4-DOF kinematically redundant hydraulic manipulator, with coordinate frames attached to
the links based on the classical Denavit-Hartenberg convention.

The manipulator’s end-effector position can be expressed from the base frame 0 to frame 4
in accordance with the classical Denavit-Hartenberg (DH) convention [27]. By using the DH
transformation matrix Ai−1

i , which determines the coordinate transformation between successive
frames, we get:

A0
4 = A0

1A1
2A2

3A3
4 (2)

as the overall coordinate transformation expressed in the base frame. The transformation matrix
Ai−1

i ∈ R4x4 used consecutively is defined as:

Ai−1
i =


cθi −sθi cαi sθi sαi aicθi

sθi cθi cαi −cθi sαi aisθi

0 sαi cαi di
0 0 0 1

 (3)

where, for example, cαi denotes cos(αi) and sαi denotes sin(αi). The DH parameters given in Table 2
determine these matrix elements.

By transforming from the base frame to the xw, yw and zw coordinates, which denote the x-, y-
and z-positions of the end-effector expressed in the global frame, respectively, we get:
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xw = cos(q1)
{

L1 cos(q2)− L2 sin(q2 + q3) + (L3 + q4) cos(q2 + q3) + ox
}

(4)

yw = L1 sin(q2) + L2 cos(q2 + q3) + (L3 + q4) sin(q2 + q3) + oy and (5)

zw = sin(q1)
{

L1 cos(q2)− L2 sin(q2 + q3) + (L3 + q4) cos(q2 + q3) + ox
}

(6)

as the final end-effector position, which we denote with xt = [xw yw zw]
T. Constants L1 and L3 denote

the manipulator link lengths, L2 is an offset between the tilt joint and the extension link and ox and oy

are the offsets in the direction of the x- and y-axes, respectively, from the global frame to the lift joint.
The workspace of the test-bed manipulator in the vertical plane is depicted in Figure 6 by using the
parameters given in Table 2.

Table 2. Denavit-Hartenberg parameters of the 4-DOF hydraulic manipulator.

Frame No. ai [m] αi [rad] di [m] θi [rad]

1 ox = −0.208 π/2 oy = 1.605 q1
2 L1 = 3.504 0 0 q2
3 L2 = 0.376 π/2 0 q3 + π/2
4 0 −π/2 L3 + q4 = 2.13 + q4 0

−4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8

10

x
w

 (m)

y
w

 (
m

)

 

 

Max. extension Min. extension

Figure 6. Theoretical reachable workspaces of the K70M hydraulic manipulator in this vertical plane.
Reachable workspaces with maximum (q4 = 3.7 m) and minimum extension (q4 = 0 m) have
been presented.

Differentiating xt in view of Equations (4)–(6) with respect to time yields the end-effector velocity:

ẋt = J(q)q̇ = J1q̇1 + J2q̇2 + J3q̇3 + J4q̇4 (7)

where ẋt = [ẋw ẏw żw]
T, the joint velocity vector q̇ = [q̇1 q̇2 q̇3 q̇4]

T and the Jacobian matrix J(q) is
the partial derivative of xt with respect to q. This equation was also expressed by using the column
vectors Ji, for i ∈ {1, 2, 3, 4}, for future reference. Differentiating ẋt once more yields:

ẍt = J̇(q, q̇)q̇ + J(q)q̈ (8)

with the end-effector acceleration ẍt and the joint acceleration vector q̈ defined similarly to Equation (7).
The elements of the Jacobian time derivative J̇ can be resolved from:
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J̇(q, q̇)ji =
∂J(q)ji

∂q
q̇ =

4

∑
n=1

∂J(q)ji

∂qn
q̇n (9)

over the workspace dimensions j ∈ {1, 2, 3} and the joint dimensions i ∈ {1, 2, 3, 4}. Because the
Jacobian matrix J(q) ∈ R3×4 is non-square, the inverse kinematics clearly have an infinite number of
solutions inside the workspace. Thus, a redundancy resolution is required.

3.2. Joint Space to Actuator Space Transformations

Transformations, which yield the cylinder coordinates as a function of the joints, are presented
next. By using the chain rule, we obtain:

ci = ci(qi), (10)

vi =
∂ci(qi)

∂qi
q̇i = ri q̇i and (11)

ai =
∂ri
∂qi

q̇2
i + ri q̈i (12)

as the general equations, where ci(qi), for the actuator index i ∈ {1, 2, 3, 4}, is the cylinder length, vi is
the cylinder (piston) velocity, ai is the cylinder (piston) acceleration, not to be confused with the DH
parameter, and ri is the cylinder torque arm. The joint space to actuator space transformations of the
test-bed are presented in the following.

Firstly, the base cylinder has a constant torque arm r1 because a rack-and-pinion mechanism,
as illustrated in Figure 7, is used

(
Equation (11)

)
. Furthermore, the torque arm r2 of the lift cylinder

can be written as:

β13 = q2 − β11 − β12 + π/2

r2(q2) =
L11L12 sin

(
β13
)

c2
=

L11L12 sin
(

β13
)√

L2
11 + L2

12 − 2L11L12 cos
(

β13
) (13)

as a function of the lift angle q2 and the lift cylinder length c2. The constants L11, L12, β11 and β12 and
the joint angle q2 are illustrated in Figure 8a.

A B

B A

T

A B

P

LS

q1

r1

Figure 7. Rack-and-pinion mechanism at the test-bed manipulator’s base controlled using pressure-
compensated proportional valve.
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q2

L11

β11

β12

c2

L12

(a)

L25

c3

L21

L23L26

L24

L22

π+q3

α
22

β22

β24

L25

L26

L22

α21

β
21

L21

c3

β
21 - α

21

β23

(b)

Figure 8. Joint actuation mechanisms of the test-bed manipulator: (a) Lift joint and associated variables;
and (b) tilt joint and associated variables, with a close-up.

The four-bar linkage of the tilt cylinder is governed by more complex kinematic equations.
These equations, from the tilt angle q3 to tilt cylinder length c3, can be written as follows:

α23 = π + q3 + α21 + α22

L26 =
√

L2
22 + L2

23 − 2L22L23 cos(α23)

β23 = asin
(

L23/L26 sin(α23)
)

β24 = acos
(
(L2

25 + L2
26 − L2

24)/(2L25L26)
)

β22 = π − β21 − β24 + β23 + α21

c3(q3) =
√

L2
21 + L2

25 − 2L21L25 cos(β22)

≈ s5q5
3 + s4q4

3 + s3q3
3 + s2q2

3 + s1q3 + s0

= fq(s, q3),

(14)

where α21, α22, β21, L21, L22, L23, L24 and L25 are the constants and β22, β23, β24 and L26 are the variables
(see Figure 8b, where q3 is negative). Laws of cosines and sines were used. A quintic function fq(s, q3),
with s ∈ R6 as the coefficient vector, can be fitted to the c3 data to simplify the equation of the tilt
torque arm r3. Hence, differentiating c3 with respect to time in view of Equation (11) yields:

v3 = −
∂ fq(s, q3)

∂q3
q̇3

= −(5s5q4
3 + 4s4q3

3 + 3s3q2
3 + 2s2q3 + s1)q̇3

= −r3(q3)q̇3

(15)

as the tilt cylinder’s piston velocity. Multiplication by minus one considers the opposite signs of
the piston and angular velocities. The “torque arm” r4 of the telescoping extension mechanism
is 1/2 because the extension cylinder velocity is half of the joint velocity due to the telescope’s
mechanical multiplier.

3.3. Cylinder Forces

Manipulator dynamics are considered through the hydraulic cylinder forces, which can be
resolved from the inverse rigid-body dynamics as follows:
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F = R−1(M(q)q̈ + G(q) + Ff(q, q̇)︸ ︷︷ ︸
τττ

)
(16)

where the cylinder force vector F equals [F1 F2 F3 F4]
T, τττ is the corresponding cylinder torque vector,

M(q) ∈ R4x4 denotes the positive definite, symmetric inertia matrix at joint position q, G(q) ∈ R4

denotes the gravitational torque vector and Ff(q, q̇) ∈ R4 includes the hydraulic cylinder and joint
friction forces. The inertia matrix and the gravitational load vector can be resolved via well-known
Lagrangian conventions by summing the dynamical contributions of each link in the global frame [27].
Resolving these components regarding our test-bed is mostly standard practice, with the exception
that the extension cylinder’s gravitational component must be doubled to consider the mechanical
disadvantage of the telescope mechanism (The mechanism doubles the extension cylinder stroke).
Because the centrifugal and Coriolis forces are in low magnitude, their effects can be omitted.
Conventional exponential friction force models can be primarily exploited (see [28]), but the extension
joint’s friction force is shown to be accurately represented by using the developed unconventional
model (see Appendix B for the test-bed’s cylinder force modelling results).

The inverse torque arm matrix is defined as in:

R−1 =


1/r1 0 0 0

0 1/r2 0 0
0 0 1/r3 0
0 0 0 1/r4

 (17)

Consequently, these positive matrix elements, denoted by r−1
i , are the inverses of the hydraulic

cylinder torque arms. However, r−1
4 is a non-physical multiplier because the fourth joint is prismatic.

3.4. Steady-State Cylinder Pressures Using a Mobile Hydraulic Valve

Finally, moving on to the hydraulic system equations, we introduce simplifications to keep the
system dimensionality at a manageable level for optimisation purposes. To introduce our subsequent
simplifications, firstly, consider the pressure dynamics of the hydraulic cylinders denoted by [29]:

ṗA =
Beff

V0A + xp AA

(
QA − vAA

)
and (18)

ṗB =
Beff

V0B + (Lmax − xp)AB

(
QB + vAB

)
(19)

where Beff is the effective bulk modulus, V0A and V0B are the dead volumes, xp is the piston position, v
is the piston velocity, AA is the piston-side area, AB is the rod-side area and QA and QB are the flow
rates to the cylinder chambers. Actuator indices were omitted for brevity. Solving the steady-state
cylinder velocity from Equations (18) and (19) yields:

vss = QA/AA = −QB/AB (20)

Now, we omit these hydraulic system dynamics and focus on deriving the hydraulic system’s
steady-state pressure equations by utilising Equation (20). Because the flow rates to the hydraulic
cylinders are controlled by using the mobile hydraulic valve’s two vastly different spools, as shown in
Figure 2, we derive the steady-state cylinder pressures in both cases.
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3.4.1. Typical Pressure-Compensated Non-Differential Spool Valve

Firstly, for the asymmetric spool valve shown in Figure 2a, which is another typical
pressure-compensated, hydro-mechanical valve, the turbulent flow equations are given by [29]:

QA =

{
KvPA(I)

√
∆pc, if I ≥ 0 (cylinder extends)

−KvAT(I)
√

pA − pT, if I < 0 (cylinder retracts)
(21)

QB =

{
−KvBT(I)

√
pB − pT, if I ≥ 0 (cyl. ext.)

KvPB(I)
√

∆pc, if I < 0 (cyl. ret.)
(22)

where I is the valve’s control current, ∆pc is the constant pressure drop across the main spool due
to the pressure compensation, pT is the tank pressure and KvPA, KvAT, KvBT and KvPB are the flow
coefficients of the P-A, A-T, B-T and P-B control edges, respectively. The flow coefficients KvPA(I) and
KvBT(I) are monotonically increasing positive functions for a valve current I greater than a positive
dead zone current I(+)

DZ . Otherwise, they have a value of zero. The flow coefficients KvAT(I) and KvPB(I)
are similarly defined as monotonically increasing positive functions for a current I less than a negative
dead zone current I(−)DZ . Here, ideal pressure compensation was assumed, and reversed flow was
neglected to simplify analysis.

Utilising Equations (20)–(22) and the external force (which equals the cylinder force
F = pssA AA − pssB AB) to resolve the steady-state pressures yields [30]:

pssA =



F/AA + AB
AA

pssB, for I > I(+)
DZ

(
KvPB AA

KvAT AB

)2

︸ ︷︷ ︸
Coeff.

∆pc + pT, for I < I(−)DZ

(23)

pssB =


Coeff.︷ ︸︸ ︷(

KvPA AB

KvBT AA

)2

∆pc + pT, for I > I(+)
DZ

−F/AB + AA
AB

pssA, for I < I(−)DZ

(24)

Interestingly, the cylinder back-pressures can be approximated by multiplying the pressure
compensator’s constant pressure drop with a momentarily constant coefficient (labelled).
These equations apply regardless of the load force direction. If the cylinder back-pressure is
non-existent, as in single-acting lift cylinders, then these steady-state pressure approximations can be
easily simplified.

3.4.2. Typical Pressure-Compensated Differential Spool Valve

The second spool type is the pressure-compensated differential spool valve (Figure 2b). Because of
the spool’s differential position, the fluid flows are regenerative from the cylinder chamber B to cylinder
chamber A via the valve’s P port in the cylinder extension case. This differential position reduces Qp,
the required pump flow rate, to QA − |QB|. Hence, the actuator flow rates can be written as:

QA = KvPA(I)
√

∆pc︸ ︷︷ ︸
Qp

+ |KvBP(I)|
√

pB − pA − ∆pc︸ ︷︷ ︸
|QB|

(25)

QB = −KvBP(I)
√

pB − pA − ∆pc (26)
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where I > 0 and KvPA and KvBP are defined as positive functions of current, ∆pc is a constant-pressure
drop over the control edge P-A due to the pressure compensation and the sum of pA and ∆pc equals
the pressure in the valve’s P port, omitting some pressure losses (QB denotes the flow rate over the
control edge B-P). Using Equations (20), (25) and (26), the steady-state cylinder chamber pressures can
be resolved, yielding:

pssB =
F

AA − AB
+

(
K2

vPA A2
B AA

K2
vPB(AA − AB)3

+
AA

AA − AB

)
∆pc (27)

pssA = F/AA + pssB
AB

AA
(28)

Here, the flow coefficients and the external force are again momentarily constant. Pressure losses in
pipes, hoses and filters were omitted. In contrast to the non-differential case, the cylinder back-pressure
pssB depends on the cylinder force. None of these derived steady-state pressures, however, depend
explicitly on the supply pressure because of the pressure compensation.

4. Problem Formulation

Let us formulate our inherently continuous-time optimal control problem in discrete-time for
numerical solution. By dividing the fixed optimisation time tf, which corresponds to the desired
duration of the end-effector path, into N intervals of length tf/N, our optimal control problem can be
expressed in discrete-time as follows:

min
πu∈πU

N−1

∑
k=0

Ph,k(qk, q̇k, q̈k) + `k(qk, q̇k, q̈k) (29)

subject to:

x̄k+1 = F̄k = x̄k + Ts, Fk(x̄k, ūk) (30)

where πu denotes the control policy and πU denotes the admissible control policies. The hydraulic
power Ph,k, defined at each time stage k ∈ {0, 1, 2, . . . , N − 1}, is the principal cost to be minimised,
and the term `k, which can be replaced by standard inequality constraints, penalises violations of
actuator limits. For the performance cost Ph,k, effective functions which minimise hydraulic energy
consumption are proposed because the conventional cost functions may be sub-optimal.

In the above, the system dynamics have been discretised using the Euler method and Ts as the
integration step corresponding to the interval length tf/N. The state vector x̄k = [c̄4,k v̄4,k]

T, with initial
state x̄0, contains the extension cylinder position and velocity. The extension cylinder acceleration ā4,k
is used as the control ūk. To optimise movements of the extension cylinder at the acceleration level,
we create a double integrator system Fk(x̄k, ūk), denoted with:

Fk(x̄k, ūk) =

[
0 v4,max/c4,max

0 0

]
x̄k +

[
0

a4,max/v4,max

]
ūk (31)

where the maximum extension cylinder position, velocity and acceleration, c4,max, v4,max and a4,max,
respectively, have been applied to normalise the physical units for the cylinder’s position, velocity and
acceleration. These normalised units can be transformed into conventional physical units by employing
scaling equations xk = diag(c4,max, v4,max)x̄k and uk = a4,maxūk. These extension cylinder coordinates
can also be converted into joint coordinates by multiplying the cylinder motion by 1/r4, in view of
Equations (10)–(12). This final transformation is required for the next stage.
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4.1. Using Inverse Kinematics to Resolve the Motion of Non-Redundant Joints

Because our convenient method directly provides only the extension cylinder and joint motions
for the cost functions, the method we propose includes the application of inverse kinematics to resolve
the motions of the non-redundant joints. These motions are included in the vector:

x(r)k =
[
q(r)

k q̇(r)
k q̈(r)

k

]T
(32)

For example, the positions of the base, lift and tilt joints (the non-redundant joints) are
denoted with q(r)

k = [q1,k q2,k q3,k]
T at time stage k. Because the extension joint’s motion is

known, these non-redundant joint positions can be resolved directly by inverting Equations (4)–(6),
which yields [27]:

q(r)
k =

[
arctan(zwd,k/xwd,k) h2 h3

]T
(33)

Here, zwd,k and xwd,k denote the components of the end-effector’s desired position xtd at time
stage k in the direction of the z- and x-axes, respectively, in the global frame. The lengthy inverse
kinematic functions h2 and h3 are omitted for brevity.

At the velocity level, the approach requires that we subtract the contribution of the extension
joint from the desired end-effector velocity ẋtd,k. Then, the joint velocities in q̇(r)

k can be obtained by
inverting Equation (7) as in:

q̇(r)
k =

[
J1(qk) J2(qk) J3(qk)

]−1 (
ẋtd,k − J4(qk)q̇4,k

)
(34)

because the partial Jacobian inverse matrix
[
J1(qk) J2(qk) J3(qk)

]−1 is non-singular. This matrix can
be symbolically computed in advance to possibly decrease the computational complexity.

Similarly, accelerations of the non-redundant joint can be resolved by inverting Equation (8):

q̈(r)
k =

[
J1(qk) J2(qk) J3(qk)

]−1 (
ẍtd,k − J̇(qk, q̇k)q̇k − J4(qk)q̈4

)
(35)

where the right-hand term in the parentheses contains the Cartesian acceleration required from
the non-redundant joints to maintain the desired end-effector acceleration ẍtd,k. The Jacobian time
derivative J̇(q, q̇) can be symbolically computed in advance using Equation (9). We are now in a
position to apply the cylinder coordinate transformations presented to obtain the necessary motions of
the cylinders of the non-redundant joints for the proposed cost functions.

The proposed method optimises the dynamical motions of all the cylinders. However, our method
reduces computational complexity by only computing the necessary extension cylinder motion to
optimise the dynamical motions of all the cylinders. This is possible because the motion of the extension
cylinder in the 4-DOF manipulator determines the motion of the base, lift and tilt cylinders along a
certain end-effector path. We could have also chosen to directly optimise the motion of the lift or tilt
cylinder and use the motion of that cylinder to compute the required optimal dynamical motions of
the base, lift/tilt and extension joints for the cost functions.

4.2. Proposed Cost Function: Power Consumption of Load-Sensing System

We first propose the power consumption the LS system as the principal cost in view of
Equation (29) to be minimised. The cost function of the LS system, at time stage k, can be written as:

Ph,k =
ps,kQp,k

ηk
(36)

where ps,k denotes the pump supply pressure, Qp,k is the pump flow rate and ηk is the total
efficiency of the hydraulic pump and the driving motor, which depends on the operating point, i.e.,
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the displacement, supply pressure and rotational speed of the pump. Thus, the energy consumption
of the LS system can be optimised by minimising the hydraulic output power or by increasing the
driving system’s efficiency. Since pump and motor efficiency data is not usually available, without
loss of generality, we assume the total efficiency is constant.

The pump flow rate, which is a positive function without energy recuperation, can be
approximated at time stage k by summing the cylinder flow rates as in:

Qp,k =
4

∑
i=1

vi,k
[
AAi H(vi,k)− ABi H(−vi,k)

]
(37)

where vi,k is the velocity of cylinder i and H(vi,k) denotes the piecewise Heaviside step function.
The piston-side area is denoted with AAi and the rod-side area with ABi. For simplicity, the hydraulic
fluid is assumed to be incompressible. The rod-side area is negatively signed to enforce a positive
pump flow rate when the cylinder is retracting and has negative velocity. The Heaviside step function
can be defined using:

H
(
vi,k
)
=


0 if vi,k < 0
1
2 if vi,k = 0

1 if vi,k > 0

(38)

which introduces a discontinuity in the objective function. Because having a differentiable objective
function is desirable, the discontinuous Heaviside step function can be approximated by a differentiable
expression, after some mathematical manipulations:

H
(
vi,k
)
≈ Ĥ

(
vi,k
)
=

1
1 + e−2svi,k

(39)

where s is a real positive number, such as 20,000.
The pump supply pressure, according to the LS system’s operating principle, can be calculated at

steady-state at time stage k by using the maximum driven actuator pressure:

ps,k = max
{

p1,k, p2,k, p3,k, p4,k
}
+ ∆pLS (40)

where p1,k, p2,k, p3,k and p4,k denote the chamber pressures of the base, lift, tilt and extension cylinders,
respectively. The LS pressure margin ∆pLS is roughly 3 MPa in the test-bed.

The chamber pressure pi,k of cylinder i is taken from the rod- or piston-side depending on the
cylinder’s direction of motion. The pressure is zero if the actuator is not driven. Hence, the chamber
pressure pi,k at time stage k can be estimated by using:

pi =
(

pssA,i H(vi − ε) + pssB,i H(−vi − ε)
)

H
(

Fivi
)

(41)

where the use of the minor positive constant ε in the Heaviside step functions assures zero chamber
pressure when the cylinder is not driven and its velocity vi ∈ [−ε, ε]. Time indices were omitted for
clarity. In addition, multiplying by the Heaviside value of the actuator power ensures a non-negative
actuator pressure when the cylinder load is over-running. In this over-running load case, the cylinder
velocity vi and the cylinder pressure force Fi have opposite signs. The steady-state pressure equations
are chosen according to the spool type used either from Equations (23)–(24) or Equations (27)–(28).

A discontinuous maximum function has been used in Equation (40). This function can be
approximated by applying the equation:

max(p1, p2) = 0.5
(

p1 + p2 + |p1 − p2|
)

(42)

thrice; i.e., max{p1,k, p2,k, p3,k, p4,k} can be computed as max(max(max(p1,k, p2,k), p3,k), p4,k).
The absolute function, in turn, can be approximated as the square root of (p1 − p2)

2 + ε. This ε should
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be a minor positive constant, such as 10−6, to improve the accuracy of the approximation. As a result
of these approximations, the LS cost is desirably continuously differentiable, which allows us to more
easily employ a standard optimal control solver for performance comparison. The pump flow rate and
supply pressure modelling results achieved with the test-bed can be found from Appendix C.

4.3. Proposed Cost Function: Power Consumption of Constant-Pressure System

In our second application, we minimise the energy consumption of the CP system. The cost
function of the CP system can be written as:

Ph,k =
psQp,k

ηk
(43)

where ps denotes the constant supply pressure and the pump flow rate Qp,k is given by Equation (37).
Because of the constant pressure, the energy consumption of the CP system can generally be optimised
load-independently without knowledge of manipulator dynamics through minimisation of the pump
flow rate. By minimising the pump flow rate, the total volumes displaced by the hydraulic cylinders
in the solution end up being minimised. Because the piston and piston-rod-side areas obviously
affect the cylinder volumes displaced, minimising the energy consumption of the CP system does
not equal to the actuator velocity norm minimisation, e.g., in [10]. The variation of cylinder areas
among the manipulator’s hydraulic cylinders, including the different piston and rod-side areas
of these conventionally asymmetric cylinders, render the pump flow rate minimisation a highly
tractable objective.

4.4. Actuator Limits

Because of the inherent physical limitations of the manipulator’s cylinders, the cylinders’ motions
are limited. For this reason, we have introduced a mechanism through the optimal control problem’s
term `k(qk, q̇k, q̈k) to impose actuator constraints at the position, velocity and acceleration levels by
issuing a significant penalty compared to the magnitude of the principal cost if the limits are violated.

Since the position limits depend on the cylinder stroke, they can be expressed effectively either in
the joint or actuator space. In contrast, however, the velocity limits should be expressed in the actuator
space because these limits cannot be expressed optimally from the perspective of the hydraulic system
in the joint space. Based on the influential dimensions of the hydraulic pump and cylinders and the
cylinders’ non-constant torque arms these velocity limits are constant only in the actuator space to
ensure that the total fluid flow rates for the actuator do not exceed the pump’s maximum flow output.
Assuming fluid incompressibility in these computations is the most convenient approach. Notice that
by assuming constant velocity limits, the joint velocity limits vary if the torque arm is non-constant(
see Equation (11)

)
. Only if a particular cylinder’s torque arm is constant can the corresponding

velocity limit be expressed optimally in the joint space. Hence, in the test-bed case, only the velocity
limits for base and extension cylinders can be expressed in either space.

Lastly, we choose constant acceleration limits for the cylinders for simplicity. Consequently,
the joint acceleration limits vary

(
see Equation (12)

)
. Selecting the proper acceleration limit magnitudes

are important from at least two perspectives: firstly, to limit the occurrence of higher accelerations that
might lower the manipulator wear life and secondly, to assure higher controller tracking performance.
The actuator limits used in the experiments can be found in Table 3.

Table 3. Actuator/joint limits of the test-bed manipulator.

i Joint Pos. Cyl. Vel. [m/s] Cyl. Acc. [m2/s]

1 [−π, π] rad [−0.10, 0.10] [−0.4, 0.4]
2 [−0.425, 1.097] rad [−0.15, 0.15] [−0.4, 0.4]
3 [−2.75,−0.25] rad [−0.15, 0.15] [−0.4, 0.4]
4 [0, 2× 1.85] m [−0.40, 0.40] [−0.4, 0.4]
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5. Dynamic Programming Solution

The complex optimal control problem of the hydraulic manipulator is solved to global optimality
using the discrete-time DP algorithm (see Algorithm 1 [31–33]). The main advantage of the
algorithm is that it can produce this solution considerably more effectively than a brute-force
method, whose computational cost grows exponentially with the time stages N. However, the main
disadvantage of the algorithm is that its computational cost grows exponentially with the states and
controls due to the curse of dimensionality. Hence, our low-dimensional optimal control problem that
we have reduced to the bare essentials makes this global DP algorithm applicable. Recall that we have
reduced our optimal control problem size to only two states and one control.

The effectiveness of the DP algorithm over the brute-force method results from the principle of
optimality, which states that “an optimal policy has the property that whatever the initial state and
initial decision (control) are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision” [31]. The Bellman equation, which characterises this
principle of optimality, can be written at time stage k, in view of our objective Equation (29), as:

J?k
(
x̄k
)
= min

ūk∈U

{
Ph,k
(
qk, q̇k, q̈k

)
+ `k

(
qk, q̇k, q̈k

)
+ J?k+1

(
F̄k(x̄k, ūk)

)}
(44)

where the sum Ph,k + `k represents the running cost and the vector F̄k represents the system dynamics(
see Equations (30)–(31)

)
. The minimum cost-to-go J?k is the minimum sum of the running costs from

stage k ∈ {0, 1, . . . , N − 1} to the final stage at k = N − 1. This optimal cost-to-go J?k
(
x̄k
)

is defined
for each state vector combination such that x̄k ∈ XXX = {X1 × X2} and minimised over all possible

controls at stage k such that ūk ∈ U. Here, Xi = {x
(1)
i , x(2)i , . . . , x

(Nxi )

i } and U = {u(1), u(2), . . . , u(Nu)}
denote the discrete-state and control sets, respectively. The variables Nxi and Nu, in turn, determine
the density of the state and control grids, respectively. Sufficiently dense grids are defined to reach
the global optimum. These grid sizes, and suitable time-discretisation, can be found through trial and
error, taking note that the computational and memory requirements of the algorithm scale linearly
with the density of the grids.

The algorithm’s implementation shown in Algorithm 1 entails two consecutive phases:
a backwards phase followed by a forward simulation. During the computationally heavier backwards
phase, the optimal controls are resolved at each position in the state grid while the algorithm iterates
backwards in time. In greater detail, at any given time stage k, the system is simulated (line 5),
subsequent computations are performed to evaluate the cost function (lines 6–8), the minimum
cost-to-go J?k (x̄k+1) computed at the previous iteration is interpolated because the system dynamics
have likely transformed into a state unspecified in the grid (line 9) and the cost-to-go Jk

(
x̄k, ūk

)
is evaluated for all the states and controls by utilising the minimum cost-to-go J?k+1(x̄k+1) (line 10).
From the cost-to-go evaluated at each control, the minimum cost-to-go J?k

(
x̄k
)

is then stored for the next
iteration (line 12) together with the optimal control u?

k
(
x̄k
)
, which minimised the cost-to-go (line 13).

The backwards phase iterates in this manner until it reaches the initial time stage. At this point, with our
system of two states and one control, the algorithm has produced a two-dimensional state grid at each
time stage, and the optimal controls have been stored at each position in the state grid. The algorithm
then simulates in the forward direction from the initial time stage and state by following the grid of the
optimal controls produced in the backwards phase. Interpolation of the optimal control is used during
the forward simulation because is it is unlikely that the optimal controls were evaluated at the optimal
states. When the simulation has been completed, the algorithm has produced the optimal control
sequence and state trajectories as outputs. In addition to producing the global solution, this algorithm
has the significant advantage that different initial configurations of the manipulator can be considered
with just a forward simulation. This advantage is in contrast to most other optimisation algorithms
where new optimisations from scratch are required.
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Algorithm 1 Discrete-time dynamic programming algorithm
1. Backward phase with interpolation

Require: Sets XXX and U
1: Initialisation: set final cost-to-go J?N

(
x̄N
)

for all x̄N ∈ XXX
2: for k = N − 1 to 0 do
3: for all x̄k ∈ XXX do
4: for all ūk ∈ U do
5: x̄k+1 = F̄k(x̄k, ūk), see Equations (30) and (31).
6: Determine q4,k, q̇4,k and q̈4,k using Equations (10)–(12).
7: Complete qk, q̇k and q̈k using Equations (33)–(35).
8: Compute base, lift and tilt cyl. coordinates using Equations (10)–(12).
9: Interpolate J?k+1(x̄k+1)

10: Jk
(
x̄k, ūk

)
= Ph,k(qk, q̇k, q̈k) + `k(qk, q̇k, q̈k) + J?k+1(x̄k+1)

11: end for
12: J?k

(
x̄k
)
= minūk∈U Jk

(
x̄k, ūk

)
13: u?

k
(
x̄k
)
= argminūk∈U Jk

(
x̄k, ūk

)
14: end for
15: end for

2. Forward simulation with interpolation

Require: u?
k (x̄k) for all k ∈ {0, 1, . . . , N − 1} and x̄k ∈ XXX

1: Initialisation: set x̄0
2: for k = 0 to N − 1 do
3: Interpolate u?

k (x̄k)
4: x̄k+1 = F̄k

(
x̄k, u?

k (x̄k)
)

5: end for
6: Determine q4,k, q̇4,k and q̈4,k using Equations (10)–(12).
7: Complete qk, q̇k and q̈k using Equations (33)–(35).

A demonstratively simple example of the DP algorithm has been presented, e.g., by Nurmi and
Mattila [21]. The utilised general Matlab-coded DP algorithm can be found from Sundstrom and
Guzzella [32]. Different DP algorithm varieties have been compared by van Berkel et al. [34] and
Böhme and Frank [33], and a convergence proof of discrete-time DP has been presented by Shin and
McKay [35].

6. Experimental Results

Before diving head-first into the experimental results from the real hydraulic manipulator
introduced in Section 2, we describe the testing methodology. Firstly, the optimal control solutions
compared consist of:

(1) the proposed LS cost (36), which is minimised by using the DP algorithm and named DP (LS)
according to the naming convention “method (minimised cost)”;

(2) the proposed LS cost, which is minimised by using the DIDO algorithm [22] and named
DIDO (LS);

(3) the proposed CP cost (43), which is minimised according to DP (CP);
(4) the proposed CP cost, which is minimised according to DIDO (CP);
(5) a positive actuator energy cost, which is solved according to DP (A. En.) and which minimises

Ph,k = ∑4
i=1 Fi,kvi,k for positive work, Fi,kvi,k > 0, and

(6) an extension cylinder use cost, which is solved according to DP (ext.) and which minimises Ph,k = v2
4,k.

Secondly, the instantaneously optimal solutions included in the comparison are

(7) the joint-limited pseudo-inverse solution by Flacco et al. [20] named P-inv. (j.), which minimises
q̇Tq̇, and
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(8) an actuator-limited pseudo-inverse solution named P-inv. (a.), which was derived by combining
the solutions of Beiner and Mattila [10] and Flacco et al. [20] to minimise vTv.

The DP solution (A. En.) is formulated with positive actuator work only to obtain the best
attainable performance in the test-bed, which did not have the possibility of recovering energy.
The solution for minimising use of the extension cylinder is included in the comparison to evaluate
whether the solution lowers energy consumption, presumably, by reducing the lift and tilt cylinder
forces required.

The DP algorithm was parametrised by dividing the state and control grid into 356 × 101 × 151
(Nx1 × Nx2 × Nu) discrete values. With this grid size and by using a time discretisation of 0.05 s,
we could nearly max out the 8 GB of RAM available. In the evaluation, the performance of the
DP algorithm is compared to a “bootstrapped” DIDO solver by employing the proposed problem
formulation. This DIDO algorithm is a commercial, pseudospectral and Matlab-based optimal control
solver that has been extensively used in the solution for aerospace optimal control problems.

The energy consumption of the LS and CP systems was computed as the performance
indices to be compared by measuring the pump supply pressure and the flow rate along three
kinds of end-effector paths. The end-effector was controlled without payload along these paths.
Firstly, we present the energy consumption in the horizontal and vertical point-to-point paths where
the end-effector moves from point A to point B without a payload in a straight line (see Figure 9a).
Jazar’s quintic rest-to-rest polynomial algorithm [36] was used to generate the Cartesian motion profile
between these points. The horizontal path was driven in 10 s, requiring a maximum end-effector
velocity of 0.60 m/s along the xw-axis. The vertical path was driven in 6 s, and it required a higher
maximum end-effector velocity of 0.95 m/s along the yw-axis. Secondly, we consider half of the
log-loading cycle where the end-effector starts from the load space (or trailer) of the forwarder at point
A and moves the empty log grapple back to the logs on the ground at point B (see Figure 9b). A cubic
spline was used to generate the desired end-effector path via points in this case

(
see e.g., Biagiotti and

Melchiorri [37]
)
. This path was driven in 15 s, and the maximum end-effector velocity was 0.75 m/s in

the xwywzw-space.
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Figure 9. Test paths: (a) Horizontal and vertical paths; and (b) return half of log-loading cycle.

The paths were driven three times using each redundancy resolution from (1) through (8), and the
results were averaged. Two initial configurations of the manipulator at the beginning of each path were
also considered: firstly, based on the smallest feasible extension cylinder length and subsequently based
on the middle point between the smallest and largest feasible extension cylinder lengths. The supply
pressure of the CP system was set to 20 MPa in the experiments, and the motion controller used is
discussed in Appendix A.
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6.1. Horizontal Path

The experimentally obtained energy consumption of the LS system of each redundancy resolution
has been sorted by magnitude in Figure 10a. These results demonstrate that the pseudo-inverses clearly
have a sub-optimal performance by yielding 25% greater energy consumption than the best proposed
hydraulic-energy optimal solution. The DIDO and DP solutions produce comparable results. In this
path, minimising the energy consumption of the actuators is also similar to minimising the energy
consumption of the LS system. Another important observation is the adequate performance of the
CP solution, considering that it is based on a simple model. In addition, because the extension joint
use minimising cost yields a poor solution, minimising the use of the extension joint appears to be
impractical for our goal of minimising the hydraulic energy consumption.
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Figure 10. Horizontal path: (a) Experimental constant-pressure and load-sensing system energy
consumptions (smallest feasible extension cylinder length at the initial configuration); (b) load-sensing
system: energy-optimal DP (LS) joint trajectories ( ) and controller tracking performance ( ).
Sub-optimal P-inv. (j.) joint trajectories ( ) and controller tracking performance (�); and (c)
Constant-pressure system: energy-optimal DIDO (CP) joint trajectories ( ) and controller tracking
performance ( ). Sub-optimal P-inv. (a.) joint trajectories ( ) and controller tracking performance (�).
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As can be seen in Figure 10a, the CP system results are comparable to the LS results, but the main
difference is the greater energy consumption. The pseudo-inverses, again, have an inferior performance
from the perspective of the energy consumption of the CP system, and they require approximately
30% greater energy use than do the hydraulic energy-optimal methods in this case. Inferiority of the
pseudo-inverses reinforces the notion that minimising the velocities of the actuators does not minimise
the energy consumption of the CP system. In addition, the best solutions here consume the same
amount of CP energy as do the pseudo-inverses in the LS case with the same path.

Two of the redundancy resolutions’ joint trajectories and controller performances have been
illustrated in Figure 10b,c. The DP joint references, as shown there, were always low-pass filtered
(cutoff frequency 5 Hz) to smooth out the trajectories’ slightly jagged edges. This filtering caused no
apparent error in the desired end-effector path. The results with the second initial configuration can be
found in Appendix D (see Figure A4).

6.2. Vertical Path

Continuing with the results of the vertical path, we firstly compare the sorted LS
energy-consumption presented in Figure 11a. As previously, the energy-optimised solutions for the
hydraulic manipulators are superior compared to the pseudo-inverses, which require almost twice the
energy consumption. However, the DP energy-optimised solutions for hydraulic manipulators have
not reached a global optimum because the DIDO method clearly fares better in this case. The DIDO
solutions themselves are practically the same. This path also demonstrates that minimising the energy
consumption of the actuators does not always minimise the energy consumption of the LS system.
The proposed solutions minimising the CP cost, again, have an adequate performance.

The energy-consumptions rates of the CP system presented in Figure 11a are similar, but the
energy-consumption rates are approximately double compared to the LS case. The pseudo-inverses,
most evidently, have an inferior performance compared to the proposed solutions, which, in contrast,
require the lowest energy consumption.
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Figure 11. Vertical path: (a) Experimental constant-pressure and load-sensing system energy
consumptions (smallest feasible extension cylinder length at the initial configuration); (b) load-sensing
system: energy-optimal DIDO (CP) joint trajectories ( ) and controller tracking performance ( ).
Sub-optimal DP (A. En.) joint trajectories ( ) and controller tracking performance (�); and (c)
constant-pressure system: energy-optimal DIDO (LS) joint trajectories ( ) and controller tracking
performance ( ). Sub-optimal P-inv. (a.) joint trajectories ( ) and controller tracking performance (�).

A few optimal and sub-optimal joint trajectories and controller performances are illustrated in
Figure 11b,c. Compared to the previous path, the controller tracking performances are slightly worse
because the end-effector moves faster. The energy consumption with the second initial configuration
is presented in Figure A5 in Appendix D. These energy consumption rates demonstrate that the
initial manipulator configuration has a significant impact on the energy consumption. Figure A5 also
shows that the algorithms, or DP (CP) specifically in this case, can sometimes yield an average result.
We suspect that this result is related to a combination of the DP algorithm’s grid size, closed-loop
dynamics and modelling errors.

6.3. Half-Cycle

Finally, we have the “half-cycle” energy consumption. The energy-consumption rates of
the LS system presented in Figure 12a demonstrate that the redundancy resolutions’ perform
fairly similarly in this case. The minimisation of the actuator energy is also optimal in this case.
The joint-limited pseudo-inverse, surprisingly, produces an energy-consumption rate comparable
to the consumption obtained using hydraulic energy-optimised redundancy resolutions. Because
the simulations (not presented in this paper) predicted a greater difference between these solutions,
the smaller difference originates from modelling errors and the behaviour of the closed-loop control.
The energy-consumption rates for the CP system presented in Figure 12a differ from the LS results in
that the pseudo-inverses are inferior.

Selected optimal and sub-optimal joint trajectories and controller performances from the half-cycle
are illustrated in Figure 12b,c. Furthermore, the controller performances of each test case were evaluated
according to the ISO 9283 standard, which contains a standardised general method for computing the
maximum end-effector path tracking error (see Table 4). The controller performances are superior when
the CP hydraulic system is used, particularly over the half-cycle path. This is not surprising because
the LS system’s actuator flow dynamics are slower due to the non-constant pressure level. The tracking
errors, in general, are sufficiently insignificant and consistent for evaluating the proposed solution.
Again, the result with the second initial configuration can be found in Appendix D (Figure A6).
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Figure 12. Half-cycle: (a) Experimental constant-pressure and load-sensing system energy consumptions
(smallest feasible extension cylinder length at the initial configuration); (b) load-sensing system:
energy-optimal DP (LS) joint trajectories ( ) and controller tracking performance ( ). Sub-optimal
P-inv. (a.) joint trajectories ( ) and controller tracking performance (�); and (c) constant-pressure
system: energy-optimal DP (CP) joint trajectories ( ) and controller tracking performance ( ).
Sub-optimal P-inv. (j.) joint trajectories ( ) and controller tracking performance (�).

As a conclusion of the evaluation, the pseudo-inverses, in particular, and actuator energy solutions,
in some cases, were inferior compared to the proposed hydraulic energy-optimised redundancy
resolutions. These inferior solutions should be used with caution when minimising hydraulic energy
consumption. The DIDO solutions were, for the most part, comparable to the DP solutions. The CP
optimal solutions, in turn, were often comparable to the LS optimal solutions. The vertical and
horizontal paths demonstrated the greatest energy savings, but energy savings were also attainable in
the half-cycle when energy-optimised redundancy resolution was used. A solution containing both
halves of the log-loading cycle could be obtained from a combination of a minimum-time solution for
the log-loading part and the energy-optimal solution proposed for this return part. The results were
obtained with the assumption of constant pumping efficiency. In the conditions of the experiments, in
which the pump flow rate was typically less than 25% of the maximum flow rate of the pump, it might
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have been advantageous to incorporate the variations in pumping efficiency in the optimisation
to improve the results. However, the satisfactory results of our paper suggest that it might not be
worthwhile to consider the efficiency map of the pump in the optimisation.

Table 4. Maximum end-effector path tracking errors in each redundancy resolution computed according
to ISO 9283 standard [38].

Path Solution Track. Err. (m)

Load-Sensing System Constant-Pressure System

Horizontal

DP (CP) 0.088 0.070
DP (LS) 0.076 0.073

DP (A. En.) 0.064 0.064
DP (ext.) 0.146 0.140
P-inv. (a.) 0.127 0.069
P-inv. (j.) 0.057 0.052

DIDO (CP) 0.064 0.041
DIDO (LS) 0.063 0.049

Vertical

DP (CP) 0.098 0.091
DP (LS) 0.093 0.087

DP (A. En.) 0.076 0.085
DP (ext.) 0.085 0.086
P-inv. (a.) 0.108 0.095
P-inv. (j.) 0.098 0.101

DIDO (CP) 0.077 0.080
DIDO (LS) 0.079 0.081

Half-cycle

DP (CP) 0.346 0.129
DP (LS) 0.265 0.117

DP (A. En.) 0.232 0.111
DP (ext.) 0.210 0.155
P-inv. (a.) 0.200 0.219
P-inv. (j.) 0.343 0.207

DIDO (CP) 0.277 0.148
DIDO (LS) 0.245 0.179

7. Conclusions and Future Work

This paper addressed the open problem of global energy-optimal redundancy resolution of 4-DOF
hydraulic manipulators in robotic control applications, in which the highly repetitive manipulator
movements are automated to improve work productivity and operator workload circumstances.
To ensure the hydraulic energy-optimality of the redundancy resolution, the solution was formulated
at the hydraulic system level by proposing effective cost functions for the commonly used LS and CP
hydraulic systems. Furthermore, actuator constraints at the position, velocity and acceleration levels
were imposed in the solution. To reduce the computational complexity and problem dimensionality,
firstly, only the motion of the redundant extension cylinder was directly optimised. Secondly,
hydraulic system properties were incorporated through steady-state equations in the proposed cost
functions. The non-redundant actuator motions were resolved via non-singular inverse kinematics
to obtain the full manipulator motion state for the cost functions. The global DP algorithm was
applicable to our optimal control problem formulation due to the conveniently reduced problem
dimensionality. A pseudocode implementation of the DP algorithm used in the optimal control
problem solution was presented to discuss the properties of the algorithm and to showcase its
relatively simple implementation. Field experiments that were performed on a 4-DOF forestry
manipulator demonstrated the significant advantage of the new global optimal control problem
solution. Around 15–30% greater hydraulic energy consumption was observed with the conventional
solutions in the LS and CP systems. These experiments also showed that the CP system’s cost function
for basic energy consumption, most often, also led to minimised energy consumption by the LS
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system. Overall, these experimental results demonstrate energy-optimal redundancy resolution at the
hydraulic system level in the prospective automated robotic applications. The existing practices in
redundancy resolution of hydraulic manipulators are, therefore, significantly expanded. Experimental
evaluation of the solution performance with an end-effector load was left for future work to limit the
study’s scope.
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DP Dynamic programming
ISO International Organization for Standardization
LS Load-sensing

Appendix A. Motion Controller

A motion controller for each of the hydraulic cylinders was designed to evaluate the proposed
redundancy resolution. This meant using the mobile hydraulic valve and the joint encoders of the
test-bed in the motion control. This mobile hydraulic valve had a low bandwidth (less than 10 Hz),
significant dead-zone (around 53%) and a time-delay greater than 0.15 s. In addition, the time-delay
varied because of the hydraulic system dynamics. Therefore, only an adequate position tracking
accuracy for the purposes of the evaluation, also considering the basic instrumentation used,
was expected.

We designed the motion controller based on a standard feed-forward and dead-zone compensation
strategy, where the valve control is inferred from an inverted table. This table compensates for
the valve’s dead-zone nonlinearity by matching a valve control signal to a given cylinder velocity
(see Figure A1). By omitting the sub-indices denoting the actuator, we can write

I = DZI(vd) (A1)

where vd is the desired cylinder velocity and DZI denotes the compensating feed-forward function.
This dead-zone compensation is crucial because an uncompensated dead-zone would significantly
increase the control error [39]. Since the feed-forward is a static representation of the dynamical system,
the controller input is augmented by a P-controller, i.e.,

I = DZI(vd + Kpe) (A2)

to add robustness to disturbances. Here, Kp is the P-gain and e is the cylinder position error. Employing
this type of controller is standard practice, and it has been found to be surprisingly effective when
used in conjunction with a mobile hydraulic valve [30,40]. This effectiveness arises from the dead-zone
compensation and from the fact that the pressure-compensated mobile hydraulic valve inherently
attenuates the effects of load disturbances on the actuator flows. Thus, a representative cylinder velocity
and valve current table can be found regardless of the payload magnitude. Most often, however,
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the mobile hydraulic valves are equipped with force-feedback spools. For this reason, a combination
of the feed-forward and closed-loop control is practically necessary.
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Figure A1. Determination of the feed-forward function: the measured lift velocities versus the
valve control are illustrated on the left, the inverted feed-forward function DZI is illustrated on
the right. The data point pairs can be matched by using a constant valve input to determine
the steady-state cylinder velocity. The cylinder velocities in between the measured points can be
interpolated using splines.

Another useful control practice we used was limiting controller activation to avoid unnecessary
energy consumption and the signalling of the pump pressure reference through the LS pilot line
the of mobile hydraulic valve. We implemented this strategy so that if the absolute value of the
cylinder velocity tracking error was less than a minor positive constant εv, the mobile hydraulic valve
would not be controlled (tracking mode). However, if the absolute value of the cylinder position
error was greater than a minor positive constant εp, the controller would activate (regulation mode).
Thus, if a minor cylinder velocity were desired, for example due to a numerical imprecision of the
optimisation, the cylinder would not be forced to move. This controller is simpler than the nonlinear
model-based controllers, for example, by Bu and Yao [41] and Koivumäki and Mattila [42].

Appendix B. Cylinder Forces

The supply pressure computations are based on accurate cylinder force models. The cylinder
forces, as given by Equation (16), were identified by using a least squares algorithm. However,
because the base cylinder was not subjected to a gravitational force on the level ground of our test
area, we approximated the base cylinder force as a constant and focused on the other force models.
The modelling errors of the cylinder forces are acceptable, as can be verified from Figure A2a–c.

To achieve the modelling accuracy, we paid attention to the modelling of the friction force
of the extension function, which had a high-magnitude compared to the gravitational component.
Moreover, the friction force exhibited steps because of the long and slightly flexible telescoping link;
see Nielsen [43]. Thus, an unconventional friction force model

Ff4 = tanh(Kq̇4)Fc4total

= tanh(Kq̇4)
(

Fc4 + Hf1Fc4(q4 − qf1) + Hf2Fc4(qf2 − qf1)

+ Hf3Fc4(q4 − qf3) + Hf4Fc4(qf4 − qf3)
) (A3)
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was fitted to the data. Here, the tanh function, with a constant K of 2000, was used to assure smooth
transient over the zero velocity, Fc4 is the Coulomb friction force and Fc4total is the total friction force
(see Figure A2d). The Heaviside step functions

Hf1 = H(q4 − qf1) + H(qf2 − q4)− 1,

Hf2 = H(q4 − qf2),

Hf3 = H(q4 − qf3) + H(qf4 − q4)− 1 and

Hf4 = H(q4 − qf4)

(A4)

were chosen to obtain the behaviour with the steps and plateaus occurring at the positions qf1, qf2, qf3
and qf4.
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Figure A2. Cylinder forces Fi (kN) as a function of time (s): (a) Lift cylinder force F2; (b) tilt cylinder
force F3; and (c) extension cylinder force F4. The designed extension friction force Fc4total, where the
Heaviside functions create the steps, is shown in (d).

Appendix C. Pump Flow Rate and Supply Pressure

The key pump flow rate and supply pressure modelling results and parametrisation of the test-bed
are presented in the following. The pump flow rate model, as given by Equation (37), was parametrised
with the cylinder dimensions, as given in Table 1. However,

(1) the rod-side area AB2 of the lift cylinder was set to zero since the cylinder’s rod-side chamber
was connected to the tank and

(2) the piston-side area AA4 of the extension cylinder was set to AA4 − AB4 because the fluid flow
rate circulated from the metre-out to the metre-in side.

Moreover, a simple empirical polynomial model, which adjusted “tilt cylinder area” as a function
of cylinder velocity when the cylinder load was over-running, was used for the anti-cavitation of the
tilt cylinder.
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After improving modelling accuracy by taking these measures, the modelled pump fluid flow rate
matches the measured flow rate dynamics well (see the uppermost sub-plot of Figure A3). The minor
modelling errors are caused by the assumption of the incompressible fluid and the steady-state errors
produced by the empirical anti-cavitation model of the tilt cylinder when this model affects the
predictions, for example, at 21 and 78 s. However, the modelling errors at these time instants would be
significant without the use of the anti-cavitation model.
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Figure A3. Pump flow rate Qp (dm3/min), cylinder velocities vi (m/s) and pump supply pressure ps

(MPa) as a function of time (s).

The supply pressure model of the pump, as given by Equations (40)–(41), was parametrised using

(1) 0.005 m/s for the constant ε of Equation (41) in the model verification, but ε = 0.002 m/s for the
optimisation;

(2) a zero tank pressure pT;
(3) constant flow coefficients and
(4) pressure-compensated flow rate of the extension cylinder. Although the flow rate of the extension

cylinder was not pressure-compensated by a dedicated valve like in the other cylinders, we
could use the steady-state pressure model derived for the pressure-compensated differential case
because the LS pump operated like a dedicated pressure compensator for the extension cylinder’s
high-pressure level.

As can be seen in the lowermost sub-plot of Figure A3, the modelled supply pressure tracks the
measured pressure reasonably well (compared to the results presented in [44]). The observed modelling
errors are caused mainly by the omitted pressure dynamics, but certain discrepancies originate from
the residual oscillation of the input cylinder velocities around the zero velocity, which the model
mistakes for a driven velocity, despite the value of ε = 0.005 m/s. Since modelling errors originating
from this residual oscillation do not affect the optimisation, we used the smaller value for the ε in the
optimisation.

Appendix D. Energy Consumption Using the Second Initial Configuration of the Manipulator

The following are experimental energy consumptions from the real test-bed using the second
initial configuration of the manipulator at the beginning of each path. This configuration was computed
based on the middle point between the smallest and largest feasible extension cylinder lengths.
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Figure A4. Horizontal path energy consumption replicated using middle feasible extension cylinder
length at the beginning of the path.
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Figure A5. Vertical path energy consumption replicated using middle feasible extension cylinder
length at the beginning of the path.
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Figure A6. Half-cycle energy consumption replicated using middle feasible extension cylinder length
at the beginning of the path.
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