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Evaluation of a Heterogeneous Multicore
Architecture by Design and Test of an

OFDM Receiver
Sajjad Nouri, Waqar Hussain, and Jari Nurmi

Abstract—This paper presents an evaluation of a Heterogeneous Multicore Architecture (HMA) by implementing Orthogonal Frequency-
Division Multiplexing (OFDM) receiver blocks as designs for the test of functionality. OFDM receiver consists of computationally intensive
and general-purpose processing tasks that can provide maximum coverage to test and evaluate a massively-parallel as well as a
general-purpose platform like the HMA. The blocks of the receiver are primarily designed by crafting template-based Coarse-Grained
Reconfigurable Array (CGRA) devices and then arranging them in a sequence over a Network-on-Chip (NoC) structure along with a few
RISC cores for complete OFDM processing. The OFDM blocks such as Fast Fourier Transform (FFT) and Time Synchronization are
computationally intensive and require parallel processing. The OFDM receiver also contains tasks such as frequency offset estimation
which require the processing of Taylor series and CORDIC algorithms that are serial in nature. Such a combination of serial and parallel
algorithms can perform a thorough exploration and evaluation of almost all the design features of an HMA. The OFDM implementation
has led to scale CGRAs to different dimensions, instantiate Processing Elements (PEs) as multiple arithmetic resources and to establish
almost all possible ways of PE interconnections. It further explores time-multiplexed patterns for data placement in the CGRA memories.
Nevertheless, the data can also be exchanged among different nodes over NoC structure simultaneously and independently by using
direct memory access devices. In this experimental work, the performance of each CGRA, the collective performance of the whole
platform and the NoC traffic are recorded in terms of the number of clock cycles and several high-level performance metrics. Today’s
HMAs are generally over or under resourced for the applications that they are designed for and thus not an optimal choice for the end
user. Apart from the interesting comparisons to the other state-of-the-art, our experimental setup has provided important insight and
guidelines that the designers can use to implement near-optimal solutions for their target applications.

Index Terms—Reconfigurable, CGRA, Network-on-Chip, Heterogeneous, Accelerator, Multicore, FFT, Time Synchronization, Channel
Estimation, Frequency Offset Estimation, Receiver, OFDM.
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1 INTRODUCTION

As Moore predicted that the number of transistors on a chip
will double every two years, Dennard showed that the power
dissipation density can be kept constant by scaling the voltage
and the dimensions of the transistor ( [1], [2]). It therefore allowed
packing more transistors in the same chip area with ever increasing
toggle rates. This trend did not last longer due to increasing
leakage currents caused by near-threshold operations and thus, the
enormous heat dissipation put an end to Dennardian scaling and
therefore an end to Moore’s law. A solution was found in multicore
scaling as when a team at Massachusetts Institute of Technology
presented RAW microprocessor architecture - one of the first
multicores [3]. However, the recent findings from an experiment
show an end also to multicore scaling. The work concludes that
only 7% of a 300mm2 chip can be operated at full frequency under
a power budget of 80W [1]. It further explains that on a single chip,
all cores cannot be clocked at their maximum operating frequency
as the instantaneous power dissipation can be potentially very
high to cause a thermal melt-down. As a preventive measure, a
large fraction of the chip is switched-off (dark) or operated at a
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very low frequency (dim). Michael B. Taylor has indicated Four
Horsemen as top contenders to deal with this issue, i.e., Shrink,
Dim, Specialized and Deus Ex Machina [4]. Among them, the
Specialized Horseman suggested the use of application-specific
accelerators to combat the problem of Dark-Silicon. In this case,
Coarse-Grained Reconfigurable Arrays (CGRAs) are advocated
since they are operated at a very low frequency and can yield
tremendous performance improvements. They are also reconfig-
urable and programmable with a higher level language. The main
idea of this paper is motivated by the Specialized Horseman since
we have used programmable CGRAs in a Heterogeneous Mul-
ticore Architecture (HMA) and special-purpose accelerators are
designed for performing massively-parallel workloads of critical-
priority applications.

There are a number of heterogeneous platforms that already
exist and have nearly similar design philosophies. These platforms
are generally structured over a Network-on-Chip architecture
while many general-purpose and application-specific cores are in-
tegrated over it. A few examples are NineSilica [5], Platform 2012
[6] and MORPHEUS [8], [9]. However, the demand and efficient
utility of on-chip resources has to be justified. It is observed that
most of the on-chip resources are not utilized over the entire frame
of execution-time [1]. Based on the recommendations published in
this famous article on Dark Silicon [4], we have crafted a hetero-
geneous platform and subjected it to a stringent test for identifying
potential architectural fallacies and pitfalls. The designs for test are
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Orthogonal Frequency Division Multiplexing (OFDM) receiver
blocks which contain some of the most computationally-intensive
tasks, i.e., Fast Fourier Transform (FFT), Correlation, Convolution
and Complex Matrix-Vector Multiplication (MVM). Selecting
OFDM application as a test also provided cases for checking the
competence of the platform’s general-purpose processing capa-
bility for serial algorithms such as Taylor Series and CORDIC
algorithms. Although a single case study would not be enough to
empirically assess an architecture, we try to tackle the assessment
difficulty so that our test application consists of a fine mixture of
parallel and serial tasks in order to provide sufficient switching
activity on almost all the architectural features that can lead to
some meaningful and tangible conclusions. The computationally
intensive tasks are implemented by crafting CGRAs to algorithmic
constraints and the general-purpose tasks are delegated to Reduced
Instruction-Set Computing (RISC) processors. The CGRAs and
the programmable RISC processors cooperate over the NoC for
complete OFDM implementation and testability.

The HMA platform used in this experimental work is de-
signed for maximizing the number of computational resources
to accelerate many specific algorithms of different nature and
is called Heterogeneous Accelerator-Rich Platform (HARP) [10],
[11]. The architecture of HARP consists of nine nodes arranged
in a topology of three rows and three columns. As part of this
design and test regime, our particular HARP instance contains a
few RISC cores which not only act as the controllers of the system
but also distribute the configuration streams and the data to be
processed to all the other cores integrated to the NoC platform.
After configuration and data distribution tasks, the RISC cores
are available for general-purpose processing and they establish
synchronization among all the cores as well as monitor their
performance. All accelerators related to the OFDM receiver blocks
are designed by tailoring the template-based CGRAs efficiently
to the computational requirements of the algorithms as well as
customizing their interconnection. The platform is evaluated as an
OFDM receiver that is primarily a proof-of-concept test so a wide
selection of diverse applications are available to simulate almost
all the components of the platform. The simulation of the test
case shows, that the platform has the architectural characteristic
parameter of almost 12 Mega Operations Per Second (MOPS)/mW
for a 28 nm Altera Stratix-V FPGA device.

This paper is organized as follows. Section 2 presents some of
the existing state-of-the-art platforms related to HARP. Section
3 explains the architecture of HARP and the template-based
CGRAs used for integration, i.e., CREMA [12] and AVATAR [13].
Moreover, the overall functionality of HARP as well as the internal
structure of the NoC nodes are described in detail. In Section 4,
the design and implementation of OFDM receiver blocks by using
template-based CGRAs are presented. Then Section 5 explains
the instantiation and implementation of OFDM receiver baseband
processing on HARP as well as data distribution among different
nodes. Section 6 presents measurement and estimation of several
basic and advanced level performance metrics related to HARP
when prototyped on a FPGA device. In section 7, the OFDM
processing instance of HARP is compared with the other state-
of-the-art platforms performance-wise and from an architectural
point of view. Finally, the last section presents the conclusions.

2 RELATED WORK

The main motivation behind designing HARP is to provide a
platform to accelerate many specific algorithms finely tailored
in hardware while the issues related to Dark Silicon can be
investigated. In addition to HARP, many other state-of-the-art
platforms have been presented with almost similar features which
are explained in the following.

NineSilica [5] is a general-purpose homogeneous Multi-
Processor System-on-Chip (MPSoC) platform composed of a 3×3
mesh of homogeneous cores connected over a NoC. A RISC
processor was chosen as a computational engine in the integration
with the nodes. Many Software-Defined Radio (SDR) applications
have been designed and implemented on the NineSilica platform
such as FFT and Correlations. Based on the performed experimen-
tal work, NineSilica requires 10.3 µs for executing 64-point FFT
on a 40 nm FPGA device.

In [14], an architectured FPGA approach is presented as an
integration of various general-purpose microprocessors (µP). The
main idea was designing a programmable parallel processing plat-
form on a FPGA. Some additional accelerators called Processing
Units (PU) can also be linked with the microprocessors according
to the user specifications while all the PUs can be either the
same or different Single Instruction Multiple Data (SIMD) cores.
Two separate networks (low and high latency) are provided for
exchanging data and messages among the µPs and PUs. The
overall system is synthesized over a 90 nm FPGA delivering a
performance of 19.2 Giga Operations Per Second (GOPS).

ADRES (Architecture for Dynamically Reconfigurable Em-
bedded System) is a reconfigurable array of 8×8 elements as
a CGRA tightly integrated with a Very Long Instruction Word
(VLIW) processor [15]. Each of the processing elements employed
in ADRES contains Functional Units (FUs) and Register Files
(RFs) connected in a mesh topology. There are also routing
resources composed of wires, buses and networks. The connection
among FUs is made by a multi-port global Data Register File
(DRF) with the data bus width of 32 bits. High data level
parallelism is provided by using the ability of FUs to support
SIMD processing. The RFs are used for storing intermediate data
where the number of words is equal to 16 and 64 in local an global
RF, respectively. The ADRES specific instances can be generated
using an XML-based architecture specification language. ADRES
is implemented using 90 nm CMOS technology and shows a
performance of 4 MOPS/mW [16].

Platform 2012 is an area- and power-efficient multi-core
computing accelerator which is defined as locally synchronous
and globally asynchronous processor clusters [6]. Each of four
clusters is comprised of 16 general-purpose RISC processors with
independent instruction streams. Clusters are communicating with
each other using a high-performance fully-asynchronous NoC. For
synchronization and power management, a specialized hardware
as a multi-channel DMA engine is employed in P2012. There
is also a heterogeneous extended version of P2012 which is
presented in [7] and is called He-P2012. The platform delivers
40 MOPS/mW performance using a 28 nm CMOS technology.

MORPHEUS ( [8], [9]) is a complex and dynamically recon-
figurable SoC which is the most recently published heterogeneous
multiple accelerator platform. It is composed of three different
types of reconfigurable devices classified according to the level
of granularity: fine-grained, middle-grained and coarse-grained.
FlexEOS as an embedded FPGA is well suited for fine-grained
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algorithms. FlexEOS is composed of 4K Multi-Function logic
Cells (MFC) based on SRAM 1-bit Lookup-Tables (LUT) which
is a re-programmable FPGA fabric and can be programmed by
using standard description languages such as VHDL and Verilog.
DREAM [17] is a middle-grain reconfigurable Digital Signal
Processor (DSP) core composed of a 32-bit RISC core processor
and PiCoGA-III reconfigurable datapath (matrix of reconfigurable
logic cells). It promises to deliver a 0.2 GOPS/mW performance
using a 90nm CMOS technology. The coarse-grained one is XPP-
III which is integrated with the datapath of a VLIW processor. Its
main purpose is providing highly parallel processing performance
for streaming applications. All the aforementioned devices along
with the system modules (Heterogeneous Reconfigurable Engines
(HREs), memory units and I/O peripherals) communicate with
each other over a NoC. The overall MORPHEUS chip is synthe-
sized on a 90 nm CMOS technology providing 0.02 GOPS/mW
performance with an average dynamic power of 700 mW.

Compared to all above mentioned state-of-the-art platforms,
the design of HARP presents more processing resources and
integrated accelerators which results to high computational power.

3 PLATFORM ARCHITECTURE

The experimental platform is HARP template that generally allows
to instantiate nine NoC nodes at maximum. The central node is
usually integrated with a RISC core called COFFEE [19]. It is
essential to allow programmability and constant supervision of the
platform while it can also be used for general-purpose processing.
CREMA- and AVATAR-generated accelerators can be integrated
with other nodes in order to accelerate computationally intensive
tasks. In the following sections, the architecture of template-based
CGRAs used to build HARP as well as the general program flow
are explained in detail.

3.1 Coarse-Grained Reconfigurable Arrays
CREMA and AVATAR have almost the same architectural fea-
tures, shown in Fig. 1. The only difference is related to their sizes
which are adjusted based on the proposed applications. CREMA is
equipped with R rows × 8 columns of PEs, where R is application
dependent, and two 32-bit local memories each of size 16 columns
× 256 rows. AVATAR is a scaled-up version of CREMA which is
composed of R rows × 16 columns of PEs as well as 32 columns
× 512 rows for each local memory. The data can be interleaved
between local memories and the PEs by using the I/O buffers
which are made of sixteen 16 × 1 multiplexers and sixteen 32-bit
registers for CREMA and twice the size for AVATAR, accordingly.
During an operation, the data to be processed over the PE array is
loaded and stored sequentially into the local memories by utilizing
the Direct Memory Access (DMA) device [20].

Each PE can receive two operands at its inputs and contains
a 32-bit Arithmetic and Logic Unit (ALU) in order to perform
both integer and floating-point operations in IEEE-754 format.
The components of PE core can be separated into two main parts:
Functional Units (FU) and configuration control blocks. A PE is
composed of a LUT, adder, multiplier, shifter, immediate register
and floating-point logic which will be selectivity instantiated
at design-time according to the processing requirements of an
application. As it can be seen from Fig. 1, each PE in a CGRA
has interconnections with neighboring PEs in a point-to-point
fashion with multiple routing possibilities, i.e., local, interleaved
and global. Local interconnections are only with the nearest
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Fig. 1. The architecture of scalable template-based CGRA used for
integration over NoC.

neighboring PEs while the global interconnections are used among
the PEs that are relatively farther from each other.

For each particular application, the suitable and most efficient
placement and routing have to be performed based on its algebraic
expressions. At any clock cycle, the pattern of interconnections
among all PEs and the set of operations to be performed by each
PE in the CGRA is called context. The contexts are designed by
using custom graphical user-interface tool at the system design-
time and can be enabled at run-time for an execution step. The
contexts can be switched at different instances of execution time
based on the application scenario. Each PE has its own configu-
ration memory where the configuration words are stored during
the system startup time. The configuration words are sequentially
injected into the PE arrays by the DMA device using a pipelined
infrastructure [21]. Each configuration word is composed of an
address and operation field which are used to determine the
task of each PE and its destination address, respectively. The
control flow of CREMA- and AVATAR-generated accelerators
is generally programmable in C language while COFFEE RISC
core performs the control operation by writing control words to
the control registers of the CGRA accelerators. The contexts can
be changed based on the configuration data in the CGRA. Thus,
reconfiguration is performed when there is a need to replace an
already existing configuration stream. The execution flow can be
listed as follows:

1) The configuration data is loaded in the CGRA with the
help of a DMA device at the system start-up time.

2) The data to be processed is loaded into the local memories



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2016 4

N0 N1 N2

N3 N4 N5

N6 N7 N8

RISC

D
M
A

CGRA
Template

RISC

D
M
A

CGRA
Template

RISC

D
M
A

CGRA
Template

RISC

D
M
A

CGRA
Template

RISC

D
M
A

CGRA
Template

RISC

D
M
A

CGRA
Template

RISC

D
M
A

CGRA
Template

RISC

D
M
A

CGRA
Template

RISC

Fig. 2. Heterogeneous Accelerator-Rich Platform (HARP) Template.

of the CGRA.
3) Enabling a context to configure the functionality of the

PEs as well as routing between them.
4) The data is processed over the PE array.
5) The CGRA is reconfigured by changing the context as

required.
6) A new set of data can be loaded for processing and the

processing continued from Step 3.

These phases can be iterated until the algorithm completes its
execution and then the results will be transferred from the local
memory of the CGRA to the RISC processor or the local memory
of another CGRA for further processing. It has to be noted that
steps 4 and 5 can not be interleaved and should be performed in
order.

3.2 Heterogeneous Accelerator-Rich Platform
The HARP platform is written in parametrized VHDL. It is
constructed over a NoC of nine nodes arranged in a 3×3 mesh
topology. As it is shown in Fig. 2, the central node is integrated
with COFFEE RISC core while the rest of the nodes contain a
template-base CGRA, a data memory and a DMA device with
supervisor and slave interface. Furthermore, some other nodes
can also be integrated with COFFEE and act as supervisor nodes
based on the application requirements. Since HARP is a template-
based architecture, the user can integrate a CGRA of a specific
dimension to any of the existing nodes or even leave the node as a
data routing resource.

A detailed view of master and slave nodes of HARP is shown
in Fig. 3. As it is depicted, each node of NoC has one master
and two slave interfaces. The master interface is responsible for
writing to the network, performing the data transfer within the
node and is therefore integrated with the RISC core. However,
the master interfaces of other nodes are connected to the master
side of the DMA device while their slave interfaces are integrated
to the local memory and slave part of the DMA device. The
supervisor node containing a RISC processor is responsible for
transferring data among its own data memory and the other slave
nodes data memory. The RISC core(s) establish synchronization
for data transfer between two different nodes. For this purpose, a
shared space is allocated in the data memory of RISC core(s) for
setting and resetting ’read’ and ’write’ flags. The shared space can
be written by the other nodes as well.

RISC │ DMA Master From NoC

Master Interface Init iator

Slave Interface - 1 Slave Interface - 2 Target

Request Switch Arbiter Response Switch

Instruction Memory │ 
DMA Slave

Data
Memory

To NoC

Fig. 3. An overview of the Supervisor and Slave nodes of HARP.

During the system start-up time, the supervisor node of the
NoC (N4) starts the data transfer by sending the configuration
stream and the data to be processed from its data memory to the
data memories of the slave nodes. Both data and configuration
stream are transferred over the NoC in the form of packet transmis-
sion. The packet is composed of two parts: the routing information
in the header and the data and configuration words in the rest of
the packet. The packet is received first at the initiator and then
forwarded to the request switch of the destination node. A node
can be contacted by using the initiator module while the node’s
arbiter resides between the request and response switch in order
to establish connections among different modules. The targeted
slave device then gets selected by the request switch based on the
address field of the routed packet, which can point to the data
memory of the respective node or the DMA slave. The data can
also be written to the NoC through the target module. In the case of
RISC core which requires to read/write data from/to the instruction
or data memory, a node’s master should contact the request switch
in order to get connected to one of its local slave devices. Once
the transport route is specified, the configuration stream as well as
data to be processed can be loaded into the local memory banks of
the template-based CGRA by using the DMA devices in the slave
nodes. It has to be considered that the next control word might be
sent to the DMA device once the previous data transfer task has
been completed after several cycles. Within this period, the RISC
core may perform the same operations for the other nodes as well.
As it is mentioned above, synchronization has to be established
between supervisor and slave nodes by using an allocated shared
memory space. The size of the shared memory space depends on
the number of slave nodes. The synchronization is established in
such a way that the RISC core writes ’1’ in the shared memory
location corresponding to the destination node. The packet is then
sent to the destination node by the RISC core that also requests the
DMA slave to start the data transfer. As the next step, the DMA
master starts fetching the stream from the node’s data memory
and distributes it to the configuration memories or one of the local
data memories of CGRA. As soon as the DMA completes the
data transfer, an acknowledgment will be sent by DMA’s master
and RISC core writes ’0’ over the NoC which results to reset
the shared memory location corresponding to the data memory of
the supervisor node. During this process, the RISC core should
not send any new packet and activation control word to the same
node’s DMA. Thus, the sequence of data transfers can be retained.

Once the configuration stream and the data to be processed are
loaded into the local memories of slave nodes and also when the
internal data transfer of the template-based CGRAs is performed
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completely by the DMA device, the control words can be sent
to the CGRAs by the RISC core for cycle-accurate processing.
The slave nodes containing a CGRA can work in parallel and
independent of each other. However, some data dependencies in
the program flow might happen which requires exchanging data
between CGRA nodes. In other words, the stored results in one
of the local memories of CGRA can be transferred to the other
slave nodes for further processing. Furthermore, the same process
of synchronization has to be performed by the RISC core as
it allocates the location of shared memory corresponding to the
receiver node and then targets the DMA device of the transmitter
node. In the next section, the whole mechanism of HARP as well
as sharing computational resources of the CGRA are explained
in detail. It can be seen that various execution and data transfer
programming schemes can be applied to the platform by the users
according to the requirements of the specific application.

4 DESIGN OF IEEE 802.11A/G RECEIVER
BLOCKS

In this experimental work, OFDM receiver baseband processing
is designed onto the HARP platform, based on IEEE 802.11a/g
specifications. OFDM is a promising technique for achieving
higher data rates while it includes some advantages such as
resilience to Inter-Symbol Interference (ISI) and to frequency
selective fading caused by the multipath propagation [22]. The
simplified physical layer of the IEEE 802.11a/g receiver and the
components implemented by CGRA or processor are depicted in
Fig. 4. Once the entire OFDM symbol is transmitted across the
channel and Analog to Digital Conversion (ADC) is implemented,
the receiver is responsible for performing Time Synchroniza-
tion, Frequency Offset Estimation, FFT, Channel Estimation and
Symbols Demapping. The received packet is composed of short
and long training symbols which are called preamble, signal
field which contains one OFDM symbol and data field with
variable number of OFDM symbols. In general, the preamble is
composed of predefined samples which are known to the receiver
and used for synchronization purposes. According to the IEEE
802.11a/g standard specifications, the first seven segments of short
training symbols can be utilized for packet detection while the
last three parts are used for coarse frequency offset estimation.
Each segment contains 16 subcarriers based on specific repetition.
The long training symbols contain 64 identical samples of long
OFDM symbols which are also used for channel estimation and
fine frequency offset estimation. In the following subsections, the
design and implementation of application-specific accelerators for
the aforementioned OFDM receiver blocks using template-based
CGRA is presented in detail. In this paper, all designed CGRAs are
scaled up or down in order to have near optimal implementation
(employing most of the PEs) of application mapping in terms of

c(n) z(n)

× Σ 
-D

y(n)

Z

arg max |z(n)|

Correlation Square 
Modulus

Fig. 5. Signal flow structure of the delay and correlation algorithm for
Time Synchronization.

performance, resource utilization, power dissipation and execution
time.

4.1 Time Synchronization
Time Synchronization is the first block of OFDM receiver after
analog to digital conversion. This task is required for detecting the
precise moment of arrival of received OFDM symbols as well as
finding the right position of FFT window. One of the methods for
performing Time Synchronization is Cyclic Prefix (CP) correlation
based method [23]. The CP refers to the copy of the end part of
OFDM symbol as a prefixing of a symbol in order to cope with ISI
and enable the OFDM signal to operate reliably. As it is shown
in Fig. 5 based on CP correlation method, the received signal
yn is correlated with its delayed version. In general, correlation
is required in different applications to determine the similarity
between two signals. The length of delay z−D is equal to 16
which is the length of CP based on IEEE 802.11a/g standard
specifications. The correlation algorithm will produce outputs cn
and zn expressed in Eq. 1 and Eq. 2, respectively. Here the ∗ stands
for the complex conjugate.

cn = yny
∗
n−D (1)

zn =
L−1∑
i=0

ci+n (2)

At this step, the above equations must be mapped over the
PE array of AVATAR. The reason behind choosing AVATAR is
to achieve higher processing speed and reduce the execution time.
AVATAR is also further scaled up to 5×16 PE array for this specific
design. In order to perform placement and routing in more efficient
way, Eq. 1 can be simplified as Eq. 3 where R and I stand for Real
and Imaginary parts of the received signal, respectively.

cn = ((yn(R) × yn−D(R))+ (yn(I ) × yn−D(I )))︸                                           ︷︷                                           ︸
Real

+ ((yn(I ) × yn−D(R))− (yn(R) × yn−D(I )))︸                                           ︷︷                                           ︸
Imaginary

(3)

The mapping of an 80-point correlation algorithm on AVATAR
based on Eq. 3 is performed in two consecutive contexts depicted
in Fig. 6. The first context which is not shown here is loading
immediate values to the PEs for shift operation after each multi-
plication. It is required in order to prevent any overflows caused
by multiplication. It has to be mentioned that some PEs can be
switched off by disabling the specific parts of I/O buffers. As the
first step, the received OFDM data symbols are loaded into the
first local memory of AVATAR. Two different tasks are performed
by the second context. The first one is related to the multiplication
among the received data symbols and the complex conjugation of
its delayed version (the first row of PEs) which is mapped over
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Fig. 6. Second & Third Contexts for the Calculation of the Correlations c©IEEE 2015 [24]. cn and yn stand for the original received signal and the
complex conjugate of the delayed version of the signal, respectively.

the PE array based on Eq. 3 (addition and subtraction can also
be observed from the second row of PEs based on the mentioned
equation). The data indicated by the indexes from 0 to 79 belong
to 80-point correlation. 80 correlations are required in order to

implement time synchronization for 80 data symbols. The second
task is distributing the data to the other columns of local memory
in order to maximize the parallel usage of resources (columns 6, 10
& 14 of the second context). The second context can only be used
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for performing the first correlation as well as data distribution.
Then the stored results in the second local memory will be used
by changing the direction of data flow to the first local memory
for executing four correlations in parallel. As it can be observed
from the last row of PEs (third context) in Fig. 6, a sum-of-
products of the results of complex multiplication is performed for
calculating the final result of each correlation based on Eq. 2. The
summation operation is performed by using feedback operation
while the number of iterations is equal to the number of existing
data symbols. Furthermore, the data symbols have to be delayed
after each correlation by one cycle which can be performed by
using Unregistered-Feed Through (URF) feature of the PE. In
the third context, four URFs are used for shifting the delayed
version of data symbols by four positions during each iteration.
It allows accomplishment of the next step by transmitting the
shifted version of data to the second local memory. Thus each four
correlations and data shifting are implemented in parallel using the
third context until all 80 correlations complete their execution.

The next step after completion of all the 80 correlations is
seeking the maximum value which can be performed by the RISC
processor (N3). This largest value is corresponding to the index of
the time offset specifying the edge of the first FFT window and
can be calculated by using Eq. 4. It should be mentioned that since
the results of correlations are complex, the Square Modulus (SM)
is required to calculate the magnitude of complex numbers.

τ̂s = argmax
n
| zn |

= argmax
n
| zn(R) × zn(R) + zn(I ) × zn(I ) |

(4)

Here τ̂s stands for the largest value among the 80 results of the
performed correlations (zn) where R and I represent the Real
and Imaginary parts. Once the computation of square modulus is
completed, the largest value can be found by performing search
algorithms in the RISC core. At the end, the index of time
offset should be transmitted to the Master node (N4) for further
processing.

4.2 Frequency Offset Estimation

Despite all the advantages of OFDM, it suffers from sensitiv-
ity to Carrier Frequency Offset (CFO) because of the device
impairments [22]. Therefore, the received baseband signal will
be centered at f∆ (stands for the frequency offset) after down-
conversion at the receiver side instead of zero. CFO may cause ISI
and also rotation of demodulated symbols in the constellation. One
of the methods for estimating the CFO is using special training
symbols which are added in the transmitter [22]. As it is mentioned
above, the last three segments of the short training symbols can be
used for this purpose. Let us assume that xn and rn are transmitted
and received signal, respectively. Then, the down-conversion of
the received signal rn can be expressed in Eq. 5.

rn = xne j2π f∆nTs (5)

CFO can be estimated by using delay and correlation method
applied on the received data symbols and its delayed version which
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Fig. 7. Context for the multiplication between a signal and its complex
conjugation c©IEEE 2015 [24].

can be expressed as

z =
L−1∑
n=0

rnr∗n+D

=

L−1∑
n=0
(((rn(R) × rn+D(R))+ (rn(I ) × rn+D(I )))︸                                         ︷︷                                         ︸

Real

+ ((rn(I ) × rn+D(R))− (rn(R) × rn+D(I )))︸                                         ︷︷                                         ︸
Imaginary

)

(6)

where the value of delay D can be calculated by multiplying the
period of short training symbols and frequency space (0.8 µs ×
20.0 MHz). R and I also stand for the real and imaginary part
of the signal, respectively. The short training symbols utilized for
frequency offset estimation are composed of 48 predefined data
symbols added prior to transmitting the signal through the channel.
Accordingly, 48 complex multiplications are required which are
designed as a context shown in Fig. 7. Here r and rD stand for the
last 48 received short training symbols and its delayed version,
respectively. Once the complex multiplication is performed, the
frequency offset can be achieved using the following equation

f̂∆ = −
1

2πDTs
∠z, (7)

where Ts is the sampling period and ∠ takes the angle of z. In
order to find the phase angle of a complex number, the following
equation can be expressed.

θ̂ = atan( y
x
) (8)

The required division between the imaginary part y and the real
part x can be performed in processor software by using CORDIC
algorithm [25] which is one the most popular algorithms due
to the simplicity of its hardware implementation. It has to be
mentioned that the algorithms with complex algebraic equations
and high number of iterations such as CORDIC are not efficient
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to be mapped on CGRA in terms of execution time. Moreover,
the designed CGRA is simple and not capable to do complex
algebraic and trigonometry related operations. Therefore, they
can be performed by means of processor software with shorter
execution time at the cost of more energy and power. Once the
result of division is calculated for all 48 complex numbers, the
phase angle can be computed in processor software by expanding
Taylor series for the arctangent ratio based on Eq. 9.

arctan x =
N∑
n=0

−1n

2n+1
x2n+1 (9)

The value of N depends on the required accuracy, it is equal to 4
in this specific case. The last step of this block is frequency offset
correction which can be performed by multiplying the estimated
frequency offset and the received signal based on Eq. 10.

rn ′ = rn × e−j2π f∆
n
N (10)

Here, rn ′ is the corrected signal, n is the sample index and N is the
number of samples in a symbol. In order to calculate the exponent
of − j2π f∆ n

N function required for frequency offset correction,
the algorithm of Taylor series should be applied according to the
following equation.

ex =
∞∑
n=0

xn

n! (11)

Considering the complex numbers for the received data sym-
bols, the above equation should be modified as

ez = ex(cos(y)+ isin(y)) (12)

where z is composed of the real x and imaginary y parts. Thus,
cos and sin functions can also be expanded by using Taylor series
which are depicted in Eq. 13.

cos y =

∞∑
n=0

(−1)n
(2n)! y

2n , sin y =

∞∑
n=0

(−1)n
(2n+1)! y

2n+1 (13)

Once all of the aforementioned steps have been performed in
processor software, the data can be transferred again to the local
memory of CGRA in order to perform the complex multiplication
related to Eq. 10. It can be implemented by using almost the same
context as shown in Fig. 7.

4.3 Fast Fourier Transform
Subsequent to the correction of the received signal in terms of the
frequency offset, the data symbols have to be converted from time
domain to frequency domain which is called demodulation. It can
be performed by using FFT as a special case of Discrete Fourier
Transform (DFT). Compared to the other blocks in the receiver
side, FFT is among the most time consuming and computation-
ally intensive ones. Mathematically, the DFT of a finite length
sequence x(n) can be defined as

X(k) =
N−1∑
n=0

x(n)Wnk
N (14)

where the finite sequence of N complex numbers is con-
verted into an equivalent-length N-periodic sequence of complex
numbers and Wnk

N = exp(− j2π nk
N ) is a twiddle factor. DFT can

be efficiently processed using FFT of radix-2m structures [26],
where m ∈ Z+ and its structural unit is called a butterfly. Based
on the IEEE 802.11a/g specifications, demodulation is performed

Transmitted Pilots Received Pilots
Channel response

Interpolating FilterEstimated channel 

Response

Data Carrier

Fig. 8. Channel Estimation based on Pilot-Assisted Linear Interpolation.

by a 64-point FFT within 3.2 µs. In this case study, the CGRA
accelerator for processing 64-point FFT has been implemented in
radix-4 scheme using AVATAR-template and is explained in detail
in [13].

4.4 Channel Estimation
Transmitted data symbols may get distorted after passing through
the wireless channel and prior to reaching the receiver antenna
due to the various impairments. Channel estimation is the task of
estimating channel frequency response which has to be performed
subsequent to recovering data symbols in the demodulator block.
One of the methods for executing the channel estimation is pilot-
assisted linear interpolation algorithm (depicted in Fig. 8) by using
the pilots which are added in the transmitter side and known for
the receiver.

Let’s assume the Yn is the received data symbols, it can be
expressed as

Yn = XnHn +Nn (15)

where n, Hn and Nn stand for the number of subcarriers, channel
impulse response and additive noise, respectively. As the first
step, the Hn has to be estimated and then, Yn should be corrected
according to Xn [27]. Based on the IEEE 802.11a/g specifications,
there are four pilots inserted between data subcarriers while the
place as well as their values are known for the receiver. The
channel impulse response can be calculated using the following
equation

H̃k = M−1PRx (16)

where k, PRx and H̃k are representing the number of pilots, the
received noise-impaired pilots and the channel impulse response
of the received pilots, respectively. M also stands for a diagonal
matrix formed from transmitted pilots which is expressed as Eq.
17.

M =


M1,1 0 · · · 0

0 M2,2 · · · 0
...

...
. . .

...
0 0 0 Mk,k


(17)

The complex multiplication between Received Pilots (RP) and
the Inverse of Transmitted Pilots (ITP) can be mapped on AVATAR
as a second context of channel estimation shown in Fig. 9. The first
context is related to loading immediate values for shift operations.
As it can be observed, only four columns of PEs are instantiated
for this purpose. Once the channel response H̃k of the received
pilots is computed and stored in the second local memory, the
frequency response of the adjacent subcarriers requires to be
estimated by means of Linear Interpolation, since in order to
perform the channel equalization, the receiver requires to have
the frequency response of all the subcarriers. Linear Interpolation



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2016 9

RP3

Real

ITP3

Real

ITP3

Imag

RP3

Imag

RP1

Real

ITP1

Real

ITP1

Imag

RP1

Imag

RP0

Real

ITP0

Real

ITP0

Imag

RP0

Imag

× × ×

- +

>> >>

Hk3

Real

Hk3

Imag
Hk2

Real

Hk2

Imag

Hk0

Real

Hk0

Imag

×

Lo
ca

l M
em

or
y 

2
Lo

ca
l M

em
or

y 
1

>> >>

…
4

 X
 1

6
 r

P
Es

…

…

Fig. 9. Second Context for the Channel Estimation.

is a method for approximating the value at each position between
two adjacent known values which can be expressed for this case
study based on the Eq. 18.

Ĥn =

Np−1∑
i=1

Ns∑
j=1

H̃k (i) +︸︷︷︸
3

((H̃k(i+1) −︸︷︷︸
1

H̃k(i)) ×︸︷︷︸
2

j −1
Ns︸︷︷︸
µ

)

(18)
Here, the channel frequency response for four received pilots H̃k

will get expanded by using the step size µ in order to estimate the
channel frequency response for other subcarriers located around
pilots H̃n. The number of pilots and samples are also represented
by Np and Ns , respectively. The above equation can also be
mapped on AVATAR as a third context shown in Fig. 10. First
of all, both real and imaginary parts of the pilots have to be
loaded into the first local memory along with the step size
which has 16 different fixed values calculated by using RISC
processor software. Eq. 18 requires three steps to be computed
completely which are instantiated by dashed border circles in
Fig. 10. Subsequent to the completion of linear interpolation, the
calculated channel frequency response of all subcarriers should be
stored in the second local memory for further processing.

As the next step of channel estimation block, channel equal-
ization is required to be performed which is the task of refining
the received noisy data symbols Yn as close as possible to Xn. For
this purpose, the received data symbols should be divided by the
computed channel frequency response as expressed in Eq. 19.

Ŷn =
Yn
Ĥn

(19)

The division operation can be performed by using an iteration
algorithm called Newton-Raphson method [28]. Originally, this
method can be used for seeking the root of an equation. As an
example, the first approximation of the root of a given function
f(x) can be obtained by using the following equation

xn+1 = xn +
f (xn)
f ′(xn)

, (20)

where n is the number of iteration, and xn is the initial
guess of the root and f

′(xn) is derivative of a function f (xn).
Newton-Raphson method can also be modified to be used for
other purposes such as division operation based on the following
equation.

xn+1 = xn .(2−Dxn) (21)

Let us assume that the result of 1
D is going to be found by using

a function f(x) which has a zero value at x = 1
D . The function can

be written as f (x) = 1
x −D and expressed as Eq. 21 where D and

xn stand for the denominator and initial guess, respectively. In this
case study, the denominator would be a complex number since it
is affected by the noisy channel. Thus, it has to be simplified in
order to map on the template-based CGRA based on the following
equation.

x+ iy
a+ ib

× a− ib
a− ib

=
(x+ iy)× (a− ib)

a2 + b2 (22)

Here x+ iy is representing received data symbols from FFT block
and a + ib and a − ib stand for estimated channel response and
its complex conjugate, respectively. As it can be seen from the
left part of Fig. 10, the first step of Newton-Raphson method
related to the computation of 1

a2+b2 can be mapped on AVATAR
where D is equivalent to (a2 + b2) based on (21) and a and b
stand for the real and imaginary values, respectively. The first two
rows of PEs are specified for computing the square values of the
real and imaginary parts of the channel frequency response as
well as performing the addition among the achieved square value
results. As it is depicted in Fig. 10, the initial guess should be
loaded into the local memory of the third context subsequent to
the computation of linear interpolation along with every column
due to line readability of local memories in CGRAs which makes
them simpler and faster. The right part of the fourth context is just
used for transferring the results of linear interpolation for further
processing over a fifth context.

As the next step shown in Fig. 11, the constant 2 is loaded
into the local memory of the fifth context along with the results
of the first part of Newton-Raphson method. The left part of the
fifth context is composed of the preprocessing of data by using
latency, the required shift operations, subtractions and multipli-
cations which are used for performing Eq. 21 completely. At
the right side of the fifth context, the demodulated data symbols
are multiplied by the complex conjugation of estimated channel
frequency response in order to execute the channel equalization.
Then during the last context of channel estimation block, the
results obtained from Newton-Raphson method are multiplied by
the results of calculated complex multiplication. Within this stage,
the shift operation is required for preventing data overflow as well
as producing the final product. Here Resi stands for the equalized
received data symbols which are ready for the extracting data bits
from them within the symbols demapping block which can be
implemented by using the RISC processor software.

5 IMPLEMENTATION OF BASEBAND PROCESSING
ON HARP
The instantiation and implementation of OFDM receiver baseband
processing on HARP is for the proof-of-concept, to demonstrate
its design and technical capabilities as well as the functionality.
All designed accelerators can be mapped on HARP in a way that
both master and slave nodes can exchange data with each other.
Table 1 shows the size of each template-based CGRA mapped on
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Fig. 10. Third & Fourth Contexts for the Calculation of Linear Interpolation and Newton-Raphson Method.

HARP used for generating application-specific accelerators for the
receiver blocks. After mapping the kernels on the designed CGRA
accelerators and integration over HARP, the overall architecture
processing OFDM can be depicted as shown in Fig. 12. In the
proposed platform, the distributed control for transferring the
data as well as execution can be written by the designer in
software which has to be compiled for the three instantiated RISC
processors.

The order of exchanging the results and data symbols among
the master and slave nodes is specified with the numbers and
dashed arrows. The RISC cores are responsible for transferring
the configuration stream and data to be processed to CGRAs in
a way that node N3 RISC is responsible for N0 and N6 CGRAs
while N4 RISC is responsible for N1 and N7 CGRAs and N5 RISC
is responsible for N2 and N8 CGRAs. Subsequent to the system
start-up and transfer of the configuration stream by the three RISC
cores, the received data symbols are loaded and then transported

to the N0 for performing Time Synchronization block. The Clock
Cycles (CC) required for data transfer from data memory of a node
to the data memory of another node and to CGRA’s local memory
as well as processing at different stages are shown in Table 1. As it
can be seen, 1982 CC are required for total data transfer from N3
RISC to N0 CGRA specified in Fig. 12 by dashed arrow number
1. Correlation can be performed in 1120 CC. Once the correlation
algorithm is performed by N0, the results will get back to N3 for
computing the index of the time offset which requires 7590 CC
for transferring the data from CGRA to data memory. Calculating
the SM and finding the index of time offset can also be executed
in 2345 CC by using RISC processor software. At the end of the
first stage, the calculated time offset is transmitted in 47 CC to N4
for further processing shown with dashed arrow number 2.

Then the short training symbols have to be loaded to the local
data memory of N1 for executing complex multiplication. Loading
the data from data memory of N4 to the data memory of N1 and
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Fig. 11. Fifth & Sixth Contexts for the Calculation of Newton-Raphson Method and Channel Equalization.
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Fig. 12. Abridged general view of IEEE 802.11a/g receiver on HARP
platform. In this figure, the red colored numbers specify the order in
which the nodes should be executed. The black and white colored nodes
are the supervisor and slave nodes, respectively.

then to the CGRA takes 4664 CC depicted with dashed arrow
number 3. Furthermore, complex multiplication can be executed in
just 44 CC by using the designed template-based CGRA. As it was
mentioned earlier, some parts of the frequency offset estimation
block should be performed by using RISC processor software
which requires data exchanging between N1 and N4 twice. Thus,
the results of complex multiplication have to be returned to the
data memory of N4 for performing some parts of frequency
offset estimation by the N4 RISC processor. In total, the required
execution time for performing frequency offset estimation can be
divided into 12634 and 74 clock cycles (40 CC plus 30 CC related
to Eq. 10) to be executed by the N4 RISC core and the template-
based CGRA mapped on N1, respectively.

Subsequent to the completion of Eq. 10, utilizing the designed
context located at N1, the corrected data symbols in terms of the
added carrier frequency offset can be transported from the local
memory of the N1 to the data memory of N2 (shown with dashed
arrow number 4) and then to the local data memory of CGRA
by the DMA device in 570 CC and 504 CC, respectively. N2
then computes a 64-point, radix-4 FFT on the results from N1 in
328 CC.

Once the FFT is performed completely, the DMA of N2
transfers the results from the local memory of CGRA to the data
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Fig. 13. Digital Waveforms related to the Configuration Streams (Red Lines), Data Transfers (Blue Lines) among the Data Memories of the CGRA-
Nodes and the implementation of the receiver blocks (Green and Gray Lines related to the tasks performed by CGRAs or RISC processors,
respectively). The signals ’wren’, ’addr’ and ’tmr cnt out’ stand for write-enable, address ports of the Data Memory and the counter for enumerating
the number of clock cycles, respectively. The numbers inside the digital waveforms of N3, N4 and N5 are also mentioned in Table I.

memory of N5 (shown with dashed arrow number 5) which acts
as a supervisor node for exchanging the data between N2 and N8
in 529 CC. Then the data symbols should be transported to the

local data memory of N8 (depicted with dashed arrow number
6) for executing the channel estimation which takes 1038 CC in
total. Subsequent to the completion of channel estimation by N8
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TABLE 1
Clock cycles required for data transfer and processing at different

stages. In the table, D. Mem, Trans and Exe. stand for Data memory,
Transfer and Execution, respectively. Clock cycles with * sign represent

data transfer from CGRA to Node’s data memory.

Node-to D. Mem to D. Mem Trans. Exe.
-Node D. Mem to CGRA Total Total
N3-N0

(Correlation) 1072 910 1982 1120
N0-N3
(SM) - 7590* - 2345

N3-N4 47 - - -
12634

N4-N1 1961 2703 4664 (+74)
N1-N2 - 570* + 504 1074 328
N2-N5 - 529* - -
N5-N8 637 401 1038 250
N8-N4 - 397* - 2253

in 250 CC, the final results have to be transferred back to the data
memory of N4 (dashed arrows 7 & 8) for performing symbols
demapping as a last stage which is to be performed by RISC
processor software.

In order to speed up the execution time of the overall platform
as well as to demonstrate the simultaneous execution by the nodes
of HARP, the configuration streams of all slave nodes are loaded
in parallel. However, due to the data dependency between different
blocks of the receiver, each node has to wait until the other one
completes its execution. In the current instance of the platform,
the nodes N6 and N7 are not instantiated with any CGRA as
they are not required by our particular test-case. Although a
CGRA can be reconfigured to perform more than one task, it will
make the critical path longer and therefore reducing the operating
frequency. Moreover, the target platform for testing was highly
dense FPGA device and we preferred to increase resources and
not to compromise the speed.

The number of clock cycles required for implementing each
block by CGRA in addition to the data transfer between the data
memories is shown in Table 1. Three kinds of data transfers
can be observed from the table. The first one is related to the
data transfer from the data memory of RISC cores to the data
memory of the CGRAs. The second one is about the data transfer
from the data memory of CGRA to the local memory banks.
The third one is data transfer within a slave node by using a
DMA device. The total execution time for time synchronization,
frequency offset estimation, FFT and channel estimation blocks
are equal to 3809, 12708, 420 and 250 clock cycles, respectively.
The symbols demapping can be performed by RISC processor
software in 2253 clock cycles. Furthermore, the percentage of the
time for the useful computation of the nodes N0, N1, N2 and
N8 which consist of CGRAs without considering the time for
transferring the data or configuration streams is equal to 3.61%,
0.22%, 1.05% and 0.8%, respectively.

The time frame in which the NoC bandwidth is utilized for
transferring the configuration stream and data between the data
memories of the CGRAs can be observed from Fig. 13. The
configuration transfer is shown in red, data exchange between
CGRAs in blue and execution is shown in neon colored boxes. The
reference measurements are in terms of COFFEE RISC core clock
cycles. The operating frequency at which the RISC cores and the
entire platform is simulated is 200.0 MHz. Since there are three

RISC cores on the platform as can be observed from Fig. 12, each
RISC core has its own counter for general-purpose measurements
and in the waveform shown with signal name tmr_cnt_out.

The waveforms in Fig. 13 show a very detailed view of the
implementation and functioning of OFDM kernels in a fixed time
frame. Apparently, the frame shows a large space without any
signal activity and Frequency Offset Estimation Processing as
the largest time consuming block (Worst-Case). Considering this
situation, the configuration and data transfer frequency can be
scaled down with reference to the worst-case without compro-
mising system throughput. This would save instantaneous power
dissipation as the frequency of memory accesses will reduce - a
major factor to overall power consumption by the system. In cases,
where there are several kernels running on different components of
the system, self-aware computing can play a key role in identifying
the worst-case and mitigating the operating frequencies of the
all the system components so that the computational workload is
uniformly balanced [29]. The power dissipation of current version
of HARP can be mitigated by using self-aware computing to
dynamically control the voltage and operating frequency of each
core with an adaptive feedback control system, as presented in
[30]. Efforts will be made to replace the dark part of the chip
with reconfigurable accelerators which can be clocked at relatively
lower frequency, therefore reducing the on-chip power dissipation
density.

The waveform also shows a very computationally intensive
task, i.e., FFT being computed in a very small fraction of time
relatively. A designer may want to employ a large number of
computational resources to demanding algorithm like FFT and
eventually find it over-performing relatively in the whole design
space. In this particular case of implementation, a large CGRA
like AVATAR containing 5×16 PEs and processing FFT appears
to be an expensive choice.

Designed CGRAs for performing OFDM receiver are crafted
based on the algebraic equations in the most optimum way since
most of the PEs are employed in each context. Optimal mapping of
an application is important at design-time in order to improve the
performance, area utilization, power and development time which
requires scaling up or down a CGRA. Besides the mapping of the
applications on the CGRAs, near optimal solution require some
proceedings such as maintaining self-aware Dynamic Voltage and
Frequency Scaling (DVFS), reconfiguration, scalability in compu-
tational resources, modularity and regularity in the architecture.

6 MEASUREMENTS AND ESTIMATIONS

The overall platform is synthesized for a Stratix-V
(5SGXEA4H1F35C1) FPGA device for prototyping purposes.
The operating conditions are selected for 0◦C and 85◦C as low
and high junction temperature, respectively and 23 mm heat sink
with 200 LFPM airflow as a preset cooling solution. The achieved
operating frequencies after placement and routing are equal to
182.32 MHz and 170.3 MHz at 0◦C and 85◦C, respectively for
slow timing model (900 mV). The fast timing model (900 mV)
shows 258.73 MHz at 0◦C and 235.85 MHz at 85◦C. The overall
platform works on a single clock source.

Node-by-node breakdown of resource utilization summary for
the proposed platform is depicted in Table 2 in terms of the number
of Adaptive Logic Modules (ALMs), Registers, Memory Bits and
DSP elements. Around 62% of the resources are consumed by the
design. Furthermore, the total number of 18-bit DSPs resources
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TABLE 2
Node-by-node Breakdown of Resource Utilization Summary for

Stratix-V (5SGXEA4H1F35C1) FPGA device.

(32-bit
Memory Multipliers)

Node ALMs Registers Bits DSPs
N0 22,616 9,471 2,633,472 (20) 40
N1 8,171 7,985 2,365,736 (16) 32
N2 22,809 11,583 2,635,136 (28) 56
N3 5,436 5,648 3,145,728 (6) 12
N4 5,505 5,716 3,145,728 (6) 12
N5 5,442 5,650 3,145,728 (6) 12
N8 25,908 16,399 2,633,144 (33) 66

NoC 2,842 4,371 - -
98,729 66,823 19,704,672 (115) 230

Total 62% 11% 51% 90%

utilized is 230 (90%) which depends on the number of 32-bit
multipliers instantiated. Each 32-bit multiplier instantiated in a PE
requires two 18-bit DSP elements to be synthesized on the FPGA.
The breakdown of the number of 32-bit multipliers used for each
block of the receiver and a RISC on an NoC node is also given on
Table 2.

The platform’s power dissipation is estimated based on post
placement and routing (post P&R) information using PowerPlay
Power Analyzer Tool of Quartus II 15.0 at an ambient temperature
of 25◦C and at an operating frequency of 200.0 MHz. The
overall estimation process yielded ’HIGH’ level of confidence.
The power estimates were achieved by simulating the gate-level
netlist of the platform and then generating the Value Change
Dump (VCD) file by using ModelSim software. The VCD file
contains signal transition activity information during the execution
of OFDM receiver [31]. The dynamic power is because of the
signal switching activity of the design for the entire run-time
duration while the static power, the power of the whole FPGA
chip, is required to keep the device in the ON state. The tool
estimated 1243.84 mW, 2623.72 mW and 27.37 mW as static,
dynamic and I/O power dissipation, respectively. Therefore, a total
power dissipation of the FPGA with the OFDM platform was
3894.93 mW. Node-by-node breakdown of dynamic power and
energy consumption of the system is shown in Table 3. It can
be observed from the table that the dynamic power dissipation
increases as the size of CGRA increases and vice-versa. In this
case study, AVATAR integrated in N0, N2 and N8 requires almost
1.5X-2X dynamic power consumption compared to the CREMA
used in N1. Although the static power will be increased for just
a few mW by scaling up the CGRA, it appears to be almost
the same for all CGRAs since the large portion of the FPGA
chip remains unused, thus adding a large offset to all the static
power estimations. The static power is essentially characteristic to
a particular FPGA chip. The energy consumption for each node
is also calculated as a product of power dissipation and execution
time.

The current instance of the platform is composed of 240 PEs.
By considering the operating frequency of 200 MHz and total
power dissipation of 3894.93 mW, this instance of HARP delivers
a performance of 48 Giga Operations Per Second (GOPS) and
0.012 GOPS/mW for Altera Stratix-V chip in 28 nm. A few
instances of HARP when instantiated with CGRAs of varying
sizes and different number of cores also yielded 0.012 GOPS/mW

of performance ( [10], [11]). We can consider this as an archi-
tectural constant for the HARP template on Stratix-V FPGA and
establish comparisons with other platforms shown in Table 4. It
is the scalability and regularity in HARP architecture that ensures
application-independent figure of merit. Regarding the utilization
rate of PEs, in order to implement the whole OFDM receiver,
2914 operations have been performed by 240 instantiated PEs in
9.845 µs which results to 295.98 MOPS. Therefore, the utilization
rate of PEs would be equal to 0.61% (295.98 MOPS / 48 GOPS).
This makes the platform an excellent candidate for alleviating
Dark Silicon issues.

7 EVALUATION AND COMPARISONS

Since each platform has been synthesized for a specific technol-
ogy, cross-technology comparisons have to be conducted with
acceptable accuracy by scaling the process sizes as well as
analyzing the performance gaps. It should be mentioned that a
direct comparison between two different technologies is difficult
and the following results are only indicative. In Stratix devices,
scaling from 40 nm and 90 nm to 28 nm will increase the synthesis
frequency by 20% and 40%, respectively [32]. Regarding the
performance gap between FPGAs and ASICs, a 90 nm ASIC
implementation shows a speed-up of 4X on average compared
to a 90 nm FPGA implementation while requiring 14.0X lower
dynamic power [33]. However, the factor of 14 for the total power
dissipation can be decreased to almost 2 considering the worst-
case scenario if the static power is almost equal to the dynamic
power dissipation [33]. In order to estimate the performance from
90 nm ASIC to 28 nm FPGA, the platform’s value should be
multiplied by a scaling factor of 60%.

As it can be observed, the homogeneous MPSoC called
NineSilica [5], requires 10.3 µs in order to execute 64-point
radix-4 FFT while the same task can be computed in HARP in
2.1 µs which shows 3.9X speed-up after performance scaling.
Regarding the resource utilization, each of NineSilica and HARP
requires 71,679 ALUTs on Stratix-IV device and 102,637 ALMs
on Stratix-V device, respectively. Since each ALM on Stratix-
V device is equivalent to two ALUTs on Stratix-IV device,
HARP shows the cost of 2X logic resources against homogeneous
MPSoC.

Another homogeneous MPSoC synthesized on a 90 nm FPGA
device [14] delivers a performance of 19.2 GOPS. Subsequent to
scaling the performance from 90 nm FPGA to the 28 nm FPGA by
a factor of 40%, the value is increased to 26.88 GOPS. Compared
to the scaled platform’s value, HARP platform shows a gain of
1.78X.

The platform P2012 [6] has been synthesized using 28 nm
CMOS technology. Considering the equality between the static
and dynamic power as the worst case, the scaled performance of
P2012 on a 28 nm FPGA is estimated to be 0.005 GOPS/mW
where HARP shows a performance gain of 2.4X.

Each of ADRES [15] and MORPHEUS [8] platforms present
the performance of 0.004 GOPS/mW and 0.02 GOPS/mW at 90
nm CMOS which can be scaled to a 90 nm FPGA as shown in
Table 4. After scaling to a 90 nm FPGA and multiplying by a
60% speed-up, the HARP’s performance shows a gain of 15X
and 3X in comparison to the scaled performance of ADRES and
MORPHEUS, respectively.

Regarding the throughput of our OFDM implementation by
using HARP platform and based on 200 MHz clock frequency,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, SEPTEMBER 2016 15

TABLE 3
Dynamic power and energy estimation of each CGRA node and the NoC.

Accelerator Dynamic Active Dynamic
Node Type Power (mW) Time (µs) Energy (µJ)
N0 Time Synchronization 414.35 7.32 3.03
N1 Frequency Offset Estimation 272.23 0.37 0.1
N2 FFT 526.07 1.64 0.86
N3 General Purpose 114.47 16.15
N4 Processing, 113.82 141.17 16.06
N5 Synchronization, Control 114.52 16.16
N8 Channel Estimation 448.01 1.25 0.56

NoC - 10.10 - -
Integration - - -

Logic - 609.07 -
Total - 2623.72 - 53.16

TABLE 4
Performance comparisons based on GOPS and GOPS/mW with HARP implementation at 200.0 MHz on 28 nm FPGA. SU fTfs, SD aTfs and Ps

stand for Speed-Up for FPGA to FPGA scaling, Speed-Down for ASIC to FPGA scaling and Power scaling, respectively.

Platform Performance Platform’s HARP’s
Technology Metric Value (PV) Scaled PV Value Gain

NineSilica [5] FFT Execution Exe. Time - Exe. Time × 20% SU fTfs
FPGA 40 nm Time (µs) 10.3 = 10.3 - 10.3 × 0.2 = 8.24 2.1 3.9×

[14] PV×40% SU fTfs
FPGA 90 nm GOPS 19.2 = 19.2×1.4= 26.88 48 1.78×

P2012 [6] PV×SD aTfs×Ps
CMOS 28 nm GOPS/mW 0.04 = 0.04×1/4×1/2= 0.005 0.012 2.4×
ADRES [15] (PV×SD aTfs×Ps)×60% SU fTfs
CMOS 90 nm GOPS/mW 0.004 = (0.004×1/4×1/2)×1.6= 0.0008 0.012 15×

MORPHEUS [8] (PV×SD aTfs×Ps)×60% SU fTfs
CMOS 90 nm GOPS/mW 0.02 = (0.02×1/4×1/2)×1.6= 0.004 0.012 3×

the achieved value is equal to 17 Mbit/s which comes from the
number of data bits extracted at the output of the receiver (192 data
bits) and the execution time of Symbols Demapping block. The
required throughput (data rate) in IEEE 802.11a/g for 16-QAM
modulation is 48 Mbit/s, including the coding bits. Therefore, as
a result of having rather low clock frequency in the employed
FPGA device used for synthesizing the HARP platform, we have
not met the required throughput. However, by changing the device
to one with at least 3.0X higher clock frequency, we can meet the
required throughput set by the standard. It should be noted that the
minimum clock frequency required for us to meet the throughput
defined by the standard is not high and can be found even in
commercial off-the-shelf low cost components.

8 CONCLUSION

In this paper, Orthogonal Frequency-Division Multiplexing
(OFDM) receiver blocks are implemented as designs for test to
completely verify the functional and architectural characteristics
of a heterogeneous multicore platform like HARP. The signal
processing required by OFDM receiver contains computationally-
intensive tasks of both parallel and serial nature, hence are
potentially competent candidates to explore almost all the design
features of HARP. The designed receiver over HARP is prototyped
for a Field Programmable Gate Array (FPGA) device at an
operating frequency of 200.0 MHz and at the room temperature
of 25◦C. HARP delivers a performance of 48 GOPS and 0.012
GOPS/mW which considered as its architectural constant due to

the scalability and regularity in HARP architecture that ensures
application-independent figure of merit. It shows a speed-up of
3.9X for 64-point radix-4 FFT at the cost of 2X additional resource
utilization in comparison to NineSilica which is a general-purpose
homogeneous Multi-Processor System-on-Chip (MPSoC). HARP
performs at 48 GOPS which showing a gain of 1.78X in com-
parison to the scaled performance of the MPSoC designed with a
Multiple-Instruction Multiple-Data approach. Furthermore, HARP
when compared against the scaled performance levels of P2012,
ADRES and MORPHEUS in terms of GOPS/mW, shows a per-
formance gain of 2.4X, 15X and 3X, respectively. The simulation
and synthesis results and also comparisons against other state-
of-the-art platforms demonstrate the benefits of maximizing the
number of reconfigurable processing resources on a platform as
the integrated CGRAs can be scaled to very large dimensions. The
exploration has provided important insights into the architecture
and based on those, we recommend that, (1) in a heterogeneous
multicore architecture like HARP, mitigate the signal transition
activity over the entire platform with reference to the worst-case
performing core for power conservation. In this context, self-aware
computing models can be helpful, which will most likely result
in the investigation of Dark Silicon. (2) At design time, allocate
computational resources such that a core does not over or under
perform relative to the overall execution time frame as in case of
Fast Fourier Transform processing in this experimental work. (3)
Metrics like Operations per Watt (OPS/W) are architectural con-
stants and do not change by scaling the computational resources
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of a platform.
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