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Abstract

This work presents a Computational Fluid Dynamics (CFD) based ap-
proach for determining the global reaction kinetics of high heating rate
biomass devolatilization. Three particle size ranges of woody biomass are
analyzed: small (SF), medium (MF) and large (LF) size fractions. De-
volatilization mass loss is measured for each size fraction in a laminar Drop-
Tube Reactor (DTR) in nitrogen atmosphere, using two nominal reactor
temperatures of 873 K and 1173 K. The Single First Order Reaction (SFOR)
kinetics are determined by coupling an optimization routine with CFD mod-
els of the DTR. The global pre-exponential factors and activation energies
for the SF, MF and LF particles are 5 880 1/s and 42.7 kJ/mol, 48.1 1/s
and 20.2 kJ/mol, and 102 1/s and 24.8 kJ/mol, respectively. The parame-
ters are optimized for the isothermal heat transfer model in CFD programs
and can be used to predict the mass loss of both small thermally thin and
large thermally thick wood particles. The work demonstrates that the CFD
based approach accurately characterizes the very short time scales of the
high heating rate devolatilization process and is therefore suitable for solid
fuel kinetic studies.
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1. Introduction1

High heating rate devolatilization is an integral step in many biomass2

conversion technologies, such as pyrolysis reactors, gasifiers, and different3

combustion technologies. In devolatilization, the heated biomass under-4

goes a rapid degradation process to form gases, condensable vapors (tar),5

and solid char from the initial raw material, which in case of lignocellu-6

losic biomass consist mainly of three biopolymers: hemicellulose, cellulose,7

and lignin. The devolatilization products can be further collected and pro-8

cessed into synthetic gas or pyrolysis oil, or utilized directly in combustion9

to produce heat.10

From an industrial point of view, accurate estimation of the devolatiliza-11

tion kinetics is important in combustion system dimensioning, including the12

burner design and the dimensioning of the furnace. Optimization of the com-13

bustion process, such as minimizing the flue gas emissions (unburned carbon,14

CO and NOx), requires accurate characterization of the fuel particle’s com-15

bustion properties. When the fuel properties are properly characterized, the16

design cost of a new combustion system can be decreased with numerical17

estimations, as fewer expensive full scale experiments have to be conducted.18

Many computational models have been developed to describe biomass19

devolatilization. These models are increasingly used in Computational Fluid20

Dynamics (CFD) modeling, which is an important tool in the design and op-21

timization of biomass conversion technologies. In CFD modeling, the solid22

fuel particles are commonly coupled with the fluid flow solution via source23

terms that are obtained from Lagrangian single particle calculations. The24

volatile release from the particles to the surrounding gas environment is cal-25

culated with a devolatilization model, usually described by global Arrhenius26

kinetics. Some examples of CFD studies involving particle scale biomass de-27

volatilization modeling include [1, 2] for gasification, [3, 4] for fast pyrolysis,28

and [5, 6, 7] for combustion.29

The complex devolatilization reactions are often combined in a single30

global reaction or in multiple parallel global reactions. The more advanced31

multiple reaction models calculate the mass loss of the biomass particles32

based on kinetics of different chemical groups contained in the biomass ma-33

terial, such as the Distributed Activation Energy Model (DAEM) reviewed34

in [8]. On the other hand, many authors have applied a more simplified ap-35

proach and combined the large number of devolatilization reactions under36

a single set of Arrhenius parameters. The advantage of the simple models37

is that they are computationally cheap, meaning they are suitable for large38

scale industrial simulations. These kinds of simplified models include the39
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Single First Order Reaction (SFOR) model and the Two Competing Rates40

Kobayashi model, which are available in most commercial CFD programs41

such as ANSYS Fluent [9]. Kinetics for these models have been derived e.g.42

in [10, 11, 12].43

Most of the kinetic studies for biomass devolatilization have concentrated44

on thermogravimetric analyzes (TGA), where the heating rate of the biomass45

is typically below 2 K/s. However, in industrial applications the heating rate46

is orders of magnitude greater, and it is well known that the biomass de-47

composition characteristics change when the heating rate is increased. In48

high heating rates, typically above 1000 K/s, the amount of volatile gases49

and tar products increases and the solid char fraction significantly decreases,50

compared to the low heating rates [13]. To obtain better information about51

the high heating rate kinetics, alternative experimental devices have been52

employed, such as heated grid apparatuses and drop-tube reactors [14, 15].53

However, the increase in the heating rate typically results in a loss of con-54

trollability, as it becomes very difficult to experimentally characterize the55

short time scales of the particle heat up and devolatilization.56

To overcome this difficulty, a CFD based optimization approach has57

been proposed by Simone et. al. 2009 [15] and Johansen et. al. 2016 [16].58

Both studies highlight that CFD modeling offers a way for accurate char-59

acterization of the temperature-time histories of the fuel particles, which is60

essential for accurate kinetic modeling. In this work, the CFD based ap-61

proach is extended by two main contributions: 1) accuracy of the particle62

temperature-time history characterization is increased by experimental par-63

ticle velocity measurements, and 2) multiple particle size groups are studied64

in order to analyze how the particle size affects the devolatilization kinetics.65

The work aims to add new reference kinetics for high heating rate biomass66

devolatilization, as only limited data is currently available in the literature.67

Another aim is to present a methodology that can be useful in the charac-68

terization of the very short time scales of the high heating rate process. The69

kinetic parameters optimized in this work are aimed for large scale CFD70

simulations, and thus the relatively simple SFOR devolatilization model is71

used together with the isothermal heat transfer model.72

A woody biomass fuel is analyzed in this work. The fuel is ground into73

a typical size range found in pulverized fuel applications. The fuel particles74

are divided into three size groups by vibrational sieving, to represent small,75

medium and large size fractions of the fuel. The devolatilization mass loss76

is measured for each size group in a high heating rate Drop-Tube Reactor77

(DTR) in an inert N2 atmosphere and in two nominal reactor temperatures78

of 873 K and 1173 K. The particle velocity profiles are measured with an79

3



optical method in order to validate the residence times in DTR simulations.80

The kinetic parameters for the SFOR model are optimized by coupling an81

optimization routine with ANSYS Fluent 14.5 CFD program [9], and the82

error between computational results and experimental data is minimized.83

The optimized kinetic parameters are compared with other high heating84

rate results found in the literature, and the effects of particle size on the85

parameters is discussed.86

2. Methodology87

Fig. 1 presents the methodology of the work. The experimental work88

consists of two parts: 1) fuel characterization, and 2) high heating rate89

mass loss studies in the DTR. The fuel characterization provides the par-90

ticle properties for CFD modeling, while the mass loss data is used in the91

kinetic parameter optimization. Experimental data from the DTR is col-92

lected during measurements to be used for boundary conditions, validation93

data, and drag law evaluation in the CFD modeling.94

Experimental Work Kinetic parameter optimization

Experimental Fuel

Characterization

Drop-Tube Reactor

(DTR) Experiments

CFD Models of the DTR

Optimization routine

Find the kinetic parameters (A, E) 

that minimize the error function

Error function

Calculate error between simulation

results and experiments

Boundary conditions

Validation data

Experimental mass loss

results for the fuel

Numerical mass loss

results for the fuel

Pre-exponential factor A

Apparent activation energy E

Iteration

Particle

properties

Error

CFD Modeling

Shape factor for 

particle drag law

Figure 1: Optimization routine for the kinetic parameters.

A separate CFD model of the DTR is constructed for each experimen-95

tal test condition in order to account the external particle conditions as96

accurately as possible in the kinetic parameter optimization. The temper-97

ature and flow fields of the simulations are validated with comparison to98
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experimental data. A great effort is made to accurately characterize the ex-99

ternal temperature and flow conditions, particle size distributions, particle100

residence times, and thermophysical particle properties in the CFD models.101

An optimization routine in MATLAB R2015a [17] is coupled with the102

CFD models of the DTR. The kinetic parameters are optimized to minimize103

the error between the simulation results and the experimental mass loss data.104

The optimization is conducted separately for three particle size groups of105

the biomass fuel in order to analyze the effects of particle size on the kinetic106

parameters. In addition, the aim is to obtain kinetic parameters that can107

describe the devolatilization of the whole size distribution of the fuel in large108

scale CFD simulations.109

3. Experimental Work110

3.1. Fuel Characterization111

The woody biomass is ground and sieved, and three size fractions are112

taken to further analysis:113

1. Small size fraction (SF): sieving size 112-125 µm114

2. Medium size fraction (MF): sieving size 500-600 µm115

3. Large size fraction (LF): sieving size 800-1000 µm.116

Furthermore, the fuel is characterized by the following measurements:117

1. Ultimate and proximate analysis118

2. Volume-equivalent spherical diameter distributions119

3. Particle density measurement120

4. Mass loss measurements in a Drop-Tube Reactor (DTR)121

5. Particle velocity measurements in the DTR122

The experimental work is presented in more detail in the following sections.123

3.1.1. Ultimate and Proximate Analysis124

The ultimate and proximate analysis have been measured in a commer-125

cial research laboratory according to standardized methods. The results are126

presented in Table 1.127
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Table 1: Ultimate and proximate analyzes, wt-% dry basis

Ultimate Analysis Proximate Analysis

C 49.4 Volatile matter 84.1
O (calculated) 43.1 Char (by difference) 15.1
H 6.2 Ash (815°C) 0.8
N <0.1 LHV (MJ/kg) 18.36

Bulk Density (kg/m3) 540

3.1.2. Size Distributions of the Sieved Fractions128

Volume-equivalent spherical diameter distributions are measured for each129

of the three size fractions (SF, MF, LF). The spherical diameters are deter-130

mined with a particle imaging software, using projections of the particles131

for calculating the volume-equivalent spheres. The method is presented in132

more detail in references [18, 19].133

Each size distribution is further discretized into 10 volume fractions, each134

containing 10% of the total volume. A volume-mean diameter is calculated135

for the 10 volume fractions to be further used in the kinetic parameter opti-136

mization. Using this distributed diameter approach, the different behavior137

of particles of different size is better resolved if compared to a single mean138

diameter approach, as discussed in [15, 20, 21]. The size distributions and139

mean diameters are presented in Fig. 2 and Table 2, respectively. As the140

results indicate, the spherical volume-equivalent diameters are considerably141

larger than the sieving dimensions. This is because some large volume par-142

ticles have a large aspect ratio and thus fit through the sieves when they are143

suitably aligned.144

3.1.3. Density Measurement145

The density of the fuel particles is measured with a mercury porosimeter,146

which is based on a mercury intrusion method. From the porosimeter results,147

the particle density has been calculated as a function of pore size in between148

the particles and the particle surface, as presented in Fig. 3. As the figure149

indicates, the porosimeter results are well in line with the bulk density value150

presented in Table 1.151

The goal of the density measurement is to approximate the particle den-152

sity such that the volume-equivalent spherical particles, presented in Table 2,153

contain the same solid mass as the real elongated biomass particles. This154

ensures that the volume-equivalent diameters also represent mass-equivalent155

particles in the numerical modeling. As seen in Fig. 3, at the pore size of156

13 µm a clear shoulder exists in the density curve. This can be identified as a157
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Figure 2: The volume-equivalent spherical size distributions of SF, MF and LF.

Table 2: Discretized size distributions of SF, MF and LF.

Cumulative Volume-mean
Volume Range (%) Diameter (µm)

SF MF LF

0-10 93.1 397.8 444.8
10-20 120.4 547.0 649.3
20-30 135.5 633.1 771.0
30-40 147.3 684.0 871.5
40-50 157.3 728.4 962.4
50-60 167.6 766.3 1021.3
60-70 178.1 806.5 1087.3
70-80 191.9 848.6 1139.6
80-90 210.8 879.8 1234.5
90-100 241.0 969.1 1358.2

threshold pore size, where the mercury has filled the external space between158

the fuel particles and starts to fill the pores in the particle surface. The159

density corresponding to this pore size is defined as the envelope particle160

density (900 kg/m3). However, the pictures of the particle imaging software161

were analyzed and it was noticed that some external volume has been in-162

cluded in the spherical diameters due to insufficient camera resolution. A163
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slightly higher pore diameter of 36 µm is therefore chosen as a threshold164

value for the particle density (700 kg/m3). This value is presumed to better165

describe the mass-equivalent spherical particles, but a more precise method166

should be developed in the future.167
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Figure 3: Density evaluation from the mercury porosimeter data. Different definitions for
the particle density are displayed.

3.2. Drop-Tube Reactor (DTR) Experiments168

The DTR is electrically heated and it has maximum and minimum drop169

distances of 67.5 cm and 5.5 cm, respectively. It has a liquid nitrogen170

cooled collection vessel, where the dropped particle samples are collected171

and quickly cooled in order to stop any chemical reactions. There are two172

windows at the sides of the reactor to allow visual access inside the reactor.173

The test device is used in two types of measurements. First, the particle174

velocities are measured in the 873 K nominal reactor temperature with a sys-175

tem consisting of a high speed CCD camera, a light pulsation device, and an176

image analysis program. The velocity measurement is based on producing177

two particle shadows in the CCD camera pictures with the light pulsation178

device. The particle velocities are then calculated using the distance be-179

tween the two shadows and the time delay of the light pulses. Full details of180

the system can be found in references [18, 19]. The results from the particle181

velocity measurements are presented in Section 5.1.182

In the second experiments, the mass loss of the three size fractions is183

measured as a function of drop distance in N2 atmosphere using two nomi-184

nal reactor temperatures of 873 K and 1173 K. The samples are oven-dried185
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before the experiments. The mass loss measurements are based on the as-186

sumption that all particles can be collected in the collection vessel. Thus,187

the mass loss is calculated by weighing the fuel samples before and after188

they are dropped through the reactor. The ability to collect all particles189

has been validated with cold reactor tests. In addition, it has been observed190

through the measurement window and from the particle impact points on191

the collection vessel, that the particles fall effectively close to the centerline192

of the reactor and do not spread on the reactor walls. This further indicates193

that the particles are effectively collected. A full description of the test de-194

vice, as well as of the mass loss measurement procedure can be found in195

references [18, 19].196

The experimental mass loss data for each size fraction is presented in197

Table 3. At least two mass loss samples were collected from each drop dis-198

tance and the standard deviation is included in Table 3. At the lower reactor199

temperature there is a slightly higher standard deviation in the first three200

experimental data points of the SF size fraction. In general, however, the201

experimental results are very consistent. A rather high number of experi-202

mental data points is used in the optimization, which is expected to reduce203

the error caused by individual data points.204

4. Numerical Modeling205

4.1. CFD Models of the DTR206

A CFD model of the DTR is constructed for each experimental drop207

distance reported in Table 3. Separate CFD models are made in order to208

account the different wall temperature profiles of each drop distance, and209

thus to accurately describe the external flow and temperature conditions for210

the particles. A schematic figure of the computational domain is presented211

in Fig. 4. The modeling is conducted with 3-dimensional reactor models,212

and the meshes contain approximately 600 000 hexahedral cells. The grid213

independence has been examined with one of the CFD models and presented214

in reference [22].215

The walls of the particle feeding probe are modeled as constant tem-216

perature boundaries, justified by the water cooling inside the probe. The217

connector pipes of the measurement windows are simplified as constant tem-218

perature boundaries. The glass windows are modeled with a conductive and219

radiative boundary condition, being semi-transparent for radiation. The re-220

actor wall temperature is based on measurements and is specific for each221

drop distance. An example profile for the reactor temperature of 873 K and222

drop distance of 19.5 cm is presented in Fig. 4.223
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Table 3: Experimental mass loss data including corrected sample standard deviation. The
number of samples in shown in parenthesis.

Mass Loss Mass Loss
Drop Distance (cm) in 873 K (wt-%, db) in 1173 K (wt-%, db)

Small Fraction (SF)

5.0 - 28.3±3.2 (3)
7.5 - 63.8±1.5 (2)
9.5 - 84.7±2.8 (3)
11.5 21.6±8.2 (5) -
13.5 - 94.1±1.4 (3)
15.5 32.9±11.5 (4) -
17.5 56.3±6.4 (3) 95.0±0.7 (3)
19.5 63.2±2.5 (3) -
25.5 71.2±1.7 (3) -

Medium Fraction (MF)

17.5 - 2.7±0.7 (2)
32.5 - 22.1±3.5 (2)
35.5 3.7±1.6 (3) -
47.5 12.1±2.0 (3) 49.6±4.0 (2)
57.5 16.4±1.8 (3) -
67.5 25.5±3.9 (3) 65.7±2.0 (2)

Large Fraction (LF)

17.5 - 0.4±0.7 (3)
32.5 - 14.4±3.9 (3)
35.5 0.8±0.06 (3) -
47.5 5.7±1.1 (3) 25.5±0.5 (2)
57.5 8.1±1.3 (3) -
67.5 15.3±1.7 (3) 43.2±6.1 (2)

The primary and secondary gas inlets are modeled with a mass-flow inlet224

condition. Laminar flow equations are used, justified by the low Reynolds225

numbers used in the experiments. Thus, no turbulence closure model is re-226

quired. The gravity is included in the modeling and the outlet boundary is227

kept in atmospheric pressure. The radiation is modeled with the Discrete Or-228

dinates (DO) model and the nitrogen atmosphere is assumed non-absorbing229

for the radiation. The specific heat capacity, thermal conductivity, and vis-230

cosity of nitrogen are calculated with the temperature dependent polynomial231

functions available in Fluent database. Steady state equations are used.232
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Figure 4: Cross section of the computational domain. A reactor model and wall temper-
ature profile is constructed for each separate drop distance. The temperature at the end
of reactor wall decreases, because no heating elements exist at the final 2.5 cm.

The temperature field of the simulations is validated with additional233

thermocouple simulations. The thermocouple, used for measuring the reac-234

tor centerline temperature, did not have a radiation cover and the measure-235

ments could not be directly compared with the simulated gas temperature.236

Thus, conjugate heat transfer simulations including the thermocouple in-237

side the reactor were conducted. The thermocouple head temperature from238

the simulations was then compared with the measurements, as presented239

in Fig. 5. The validation simulations are presented in more detail in refer-240

ence [22].241

The velocity field of the simulations is validated by comparing the gas242

velocity at the reactor centerline with the experimental velocity data of243

the smallest particle size group (SF). Fig. 5 presents the results from this244

analysis. The figure indicates that the gas and the particle velocity profiles245

have remarkably similar shapes and the slip velocity remains approximately246

constant throughout the centerline profile. Based on these observations, the247

CFD model is considered accurate and used further in the optimization of248

the kinetic parameters.249

4.2. Particle Modeling250

The fuel particle movement inside the DTR is modeled in the Lagrangian251

reference frame with the Discrete Phase Model (DPM) in Ansys Fluent252
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Figure 5: Validation results for the CFD model of the DTR.

14.5. The particle velocity and position in the fluid flow are solved by253

integrating the force balance on the particles, which includes the gravity254

and the drag force between the particles and the surrounding gas. The255

particle trajectory calculations are coupled with the heat transfer model,256

which takes into account the convective and radiative heat transfer on the257

particles. During heat up, the particles lose their mass according to the258

SFOR devolatilization model.259

The particle modeling is conducted with one-way coupling, i.e. the flow260

and temperature fields inside the reactor are kept constant during the par-261

ticle calculations. This is justified by the low particle feeding rate, as the262

particles and volatile gases presumably have an insignificant effect on the263

steady state conditions inside the reactor. The equations and particle prop-264

erties relevant for this work are presented in the following sections. Detailed265

information on the Lagrangian particle modeling can be found from various266

sources, see for example the ANSYS Fluent theory guide [23].267
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4.2.1. Drag Law268

The drag force per unit particle mass is solved from the following equa-269

tion270

~fD =
18µ

ρpd2p

CDRep
24

(~u− ~up), (1)

where µ (kgm−1s−1) is the dynamic viscosity of the fluid, dp (m) the spher-271

ical particle diameter, CD (-) the drag coefficient, Rep = ρdp | ~up − ~u| /µ272

the particle Reynolds number, ~up (ms−1) the particle velocity vector, and273

~u (ms−1) the surrounding gas velocity. In this work, the non-spherical drag274

law of Haider and Levenspiel [24] is used for the drag coefficient because275

of the elongated shape of the biomass particles. The drag coefficient CD is276

obtained from277

CD =
24

Rep

(
1 + b1Re

b2
p

)
+

b3Rep
b4 +Rep

, (2)

where b1, b2, b3, b4 (-) are functions of the shape factor φ (-), which is defined278

as279

φ =
Ap

Aact
, (3)

where Ap (m2) is the surface area of the spherical volume-equivalent parti-280

cle and Aact (m2) is the actual surface area of the particle. In this work, a281

suitable shape factor is determined such that the particle velocities in CFD282

simulations correspond with the experimental measurements. At the same283

time, the ability of the non-spherical drag law to describe the biomass parti-284

cles’ velocities is evaluated. The suitable shape factor and the corresponding285

particle velocity profiles are presented in Section 5.1.286

4.2.2. Heat Transfer287

The particle temperature-time histories are solved from the heat balance288

equation:289

mpcp
dTp
dt

= hAp(T∞ − Tp) + εpApσ(Θ4
R − T 4

p ), (4)

where mp (kg) is the particle mass, cp (Jkg−1K−1) the specific heat capacity,290

h (Wm−2K−1) the convective heat transfer coefficient, Ap (m2) the particle291

surface area, T∞ (K) the surrounding gas temperature, Tp (K) the particle292

temperature, εp (-) the particle surface emissivity (0.9 in this work as Fluent293

default), σ the Stefan-Boltzmann constant, ΘR = (G/4σ)1/4 (K) the radi-294

ation temperature, and G (Wm−2) the incident radiation from the reactor295
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walls on the particle surface (obtained from the numerical radiation solution296

in the CFD model). The convective heat transfer coefficient h is calculated297

from the correlation of Ranz and Marshall [25]. The heat of the pyrolysis298

reactions is not included in Eq. 4, as in a high heating rate device it is neg-299

ligible compared to the heat transport from the particle surroundings. In300

order to solve the particle temperature Tp, Eq. 4 is integrated over discrete301

time-steps and solved in conjunction with the Lagrangian particle trajectory302

calculations.303

A value of cp = 1500 Jkg−1K−1 is used for the specific heat capacity of304

the dry wood particles. It is emphasized that the cp is strongly coupled with305

the optimized kinetic parameters, because the specific heat capacity deter-306

mines the particle temperature which in turn determines the rate constant307

of the devolatilization model. Whenever the kinetic parameters obtained in308

this work are used in CFD simulations, it is recommended that the same cp309

is used for the wood particles. Based on optimization tests, multiple specific310

heat capacity values can produce identically good fit to the experimental311

data. The different kinetic parameters only function with the specific heat312

capacity they have been optimized with.313

It is important to note here that the particles are considered isothermal,314

meaning that the heat travels infinitely fast inside the particles resulting315

in a uniform temperature throughout the volume. In a high heating rate316

device, such as the DTR of this work, the internal heat transfer resistance317

may become significant even for sufficiently small particles. In this work,318

all particles are modeled as isothermal spheres, which is a major simpli-319

fication. In reality, the studied biomass particles are of multiple different320

shapes and the large particles belong evidently in the thermally thick parti-321

cle size regime. However, as discussed in [26] the combination of isothermal322

approach and global reactivity parameters can predict realistic devolatiliza-323

tion times, because the kinetic parameters can compensate the error made324

by the assumptions. The global reactivity parameters can be viewed as325

parameters that absorb the effects of complex chemical reactions, but also326

compensate the effects of internal heat transfer resistance. This approach is327

applied for two main reasons, firstly compatibility with the commercial CFD328

programs and the isothermal particle models is maintained, and secondly the329

computational demand is not increased because no additional internal heat330

transfer calculations are required. These factors are of high importance in331

large scale industrial CFD simulations.332
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4.2.3. Mass Loss in Devolatilization333

The initial particles consist of fixed mass fractions of volatiles, char and334

ash. The devolatilization reactions are combined in one global reaction:335

particle (s)
k−→ volatiles (g). (5)

After the predetermined mass fraction of volatiles has escaped from the par-336

ticles, only char and ash remain. In full scale CFD modeling, the composi-337

tion of the volatiles in Eq. 5 can be further defined by the modeler and the338

subsequent chemical reactions described by an appropriate reaction scheme.339

In this work, no further modeling for the volatiles is required because of340

the one-way coupling between the particles and the surrounding gas phase.341

The mass loss rate of volatiles to the surrounding gas atmosphere is calcu-342

lated with the Single First Order Reaction (SFOR) model. It assumes that343

the devolatilization rate is first-order dependent on the amount of volatiles344

remaining in the particle:345

−dmp

dt
= k[mp − (1− fv,0)mp,0], (6)

where k (s−1) is the global rate constant of the devolatilization reactions,346

fv,0 (-) the initial mass fraction of volatiles in the particle, and mp,0 (kg)347

the initial particle mass. The rate constant k is calculated via Arrhenius348

equation:349

k = Ae−(E/RuTp), (7)

where A (s−1) is the pre-exponential factor, E (Jmol−1) the apparent acti-350

vation energy, and Ru (Jmol−1K−1) the universal gas constant. The aim of351

the kinetic parameter optimization is to define A, E and fv,0, so that the352

error between the simulation results and the experimental mass loss data is353

minimized.354

As the particle loses its mass, the particle diameter changes according to355

a swelling coefficient Csw, see [23] for further details. A value of Csw = 0.9356

is used based on the observations made in [19]. This means that the particle357

diameter is 90% of the initial diameter when the devolatilization terminates.358

4.3. Optimization of the Kinetic Parameters359

The kinetic parameters, A and E in Eq. 7, are optimized separately360

for each size fraction (SF, MF, LF) with an unconstrained nonlinear op-361

timization routine. The algorithm is based on the simplex search method362

of Lagarias et al. [27], which searches the minimum for a function without363
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numerical or analytic gradients. In this work, the MATLAB optimization al-364

gorithm is coupled directly to the ANSYS Fluent 14.5 software using Fluent365

as a Server connection. The optimization algorithm is designed to minimize366

an error function, which calculates the error between the simulation results367

and the experimental mass loss data through a sum of squared residuals:368

error =

j∑
i=1

(Xexp,i −Xsim,i)
2, (8)

where j is the number of drop distances for the size group, Xexp,i is the369

experimental mass loss for drop distance i, and Xsim,i is the calculated370

mass loss for drop distance i (the drop distances are presented in Table 3).371

The optimization is conducted simultaneously for both nominal reactor tem-372

peratures in order to obtain kinetic parameters that function in the whole373

temperature interval being studied.374

The numerical mass loss Xsim,i is obtained from the CFD models by in-375

jecting the ten discrete particle diameters (see Table 2) through the reactor.376

For each drop distance i, the mass loss is obtained through a mass-weighted377

average:378

Xsim,i =
10∑
k=1

fkxk, (9)

where fk = 0.10 is the mass fraction of each discrete diameter k, and xk is379

the mass loss of diameter k at the reactor outlet. Each particle is injected380

into the reactor from the center point of the feeding probe inlet, as the381

injection position had no significant contribution to the particle mass loss.382

The particle properties described in the previous sections are preset into383

the CFD models, thus only variables the optimization algorithm has to384

change are the kinetic parameters A and E, and the fixed volatile yields fv,0385

for the two nominal reactor temperatures. The volatile yields are optimized386

only for the smallest size group SF, because this is the only fraction having387

experimental data from the final parts of the conversion curves (see Table 3).388

The same volatile yields are used for the MF and LF size groups, because389

the optimization algorithm had difficulties in optimizing the volatile yields390

due to lack of experimental data from the final conversion levels.391

5. Results and Discussion392

5.1. Particle Velocity Profiles393

The shape factor φ in the non-spherical drag law of Haider and Leven-394

spiel [24] determines the drag coefficient in Eq. 2 and significantly affects the395
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particle velocities and the resulting residence times in CFD modeling. The396

shape factor was carefully determined based on the velocity measurements397

before the optimization routine was conducted.398

Fig. 6 presents the CFD calculated velocity profiles for each size fraction,399

along with their measured velocities, at the nominal reactor temperature of400

873 K. In this lower reactor temperature, the kinetic parameters did not have401

a significant effect on the particle velocity profiles, which enabled the de-402

termination of the shape factor before the final parameters were optimized.403

The profiles in Fig. 6, however, are calculated with the final optimized pa-404

rameters. The most suitable shape factor was concluded to be φ = 0.25 for405

all size fractions, which is a very reasonable value to represent the ratio of406

the volume-equivalent spheres’ area to the real surface area of the biomass407

particles.408
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Figure 6: CFD calculated velocity profiles for each size fraction, along with their measured
velocities, at the nominal reactor temperature of 873 K. Graphs a), b) and c) display the
profiles used in the kinetic parameter optimization. Graph c) demonstrates how the
spherical drag law is not suitable for these biomass particles.

The small particle SF data was most extensive, and thus it was used as a409

main data set to determine the shape factor. As seen in Fig. 6, the calculated410

SF velocity profiles go very accurately through the experimental measure-411

ments when the nonspherical drag law is used (graph c). Furthermore, the412

scatter of the discrete diameters is well within the measured standard de-413

viations. The non-spherical drag law describes the particle velocities with414

detailed accuracy and it was concluded to be a suitable model for the small415
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biomass particles. As the graph d) indicates, the spherical drag law could416

not describe the experimental SF velocities.417

As seen in the graphs a) and b) of Fig. 6, the MF and LF particles have418

slightly worse correlation with the experimental data, compared to the SF419

particles. This is mostly explained by the limited data, as time constraints420

did not allow for more comprehensive measurements. More data should be421

collected in the future studies in order to improve shape factor determination422

for the larger size fractions. Considering the experimental uncertainties, the423

shape factor φ = 0.25 was considered the most suitable also for the MF and424

LF size fractions. As with the SF particles, the spherical drag law could not425

describe the experimental MF/LF velocities.426

5.2. Optimization Results427

The optimized kinetic parameters for the three size fractions are pre-428

sented in Table 4. For the smallest size fraction (SF), the volatile yield fv,0429

(db) was kept as a variable during optimization. The same volatile yields430

were used for the MF and LF particles, as with these particles no exper-431

imental data was obtained from the final conversion levels (see Table 3)432

because of insufficient DTR length. In reality, the volatile yields of MF and433

LF fractions may be slightly lower compared to the small particles, because434

the larger size may result in higher char formation. Asadullah et al. [28]435

have studied the effect of particle size on a woody biomass char yield in436

similar high heating rate conditions (>1000 K/s, 1173 K reactor temper-437

ature) and obtained char yields of approximately 4% and 5% for average438

diameters of 300 µm and 800 µm, respectively. Based on their study, the439

difference between the MF/LF and SF volatile yields is expected to be small.440

For completeness, however, the DTR should be modified such that the final441

volatile yields could be measured also for the larger biomass particles. The442

SF volatile yield in the lower reactor temperature should be validated with443

an additional measurement point from a higher drop distance.444

When the kinetic parameters in Table 4 are compared, it is noticed that445

the MF and LF particles have significantly smaller pre-exponential factors446

A and activation energies E compared to the SF parameters. The MF and447

LF parameters, however, are very similar which is reasonable as both size448

groups belong evidently in the thermally thick particle size regime and have449

partly overlapping size distributions. The MF and LF parameters are opti-450

mized based on their own separate mass loss and particle size distribution451

measurements, thus the highly similar reactivity parameters demonstrate452

the consistency of the presented methodology.453

18



Table 4: Optimized kinetic parameters for the three size fractions, as well as the common
particle properties to be used with the kinetics.

SF MF LF
(112-125 µm) (500-600 µm) (800-1000 µm)

A (1/s) 5 880 48.1 102
E (J/mol) 42 720 20 212 24 784
fv,0(873 K) (%) 76.1 SF value SF value
fv,0(1173 K) (%) 94.2 SF value SF value

Common particle properties

Density (kg/m3) 700
Specific heat capacity (kJ/kgK) 1500
Shape factor for drag law (-) 0.25

Fig. 7 compares the experimental and CFD mass loss results from the454

studied drop distances. For each data point, the particles have distinct455

temperature-time histories depending on the feeding probe position and re-456

actor wall temperature profile, which is the reason why the conversion curves457

are not presented as single lines. The mean absolute error between the cal-458

culated and experimental results is below 2.5 percentage units for all particle459

size fractions. It can be concluded that the optimized parameters are able460

to describe the experimental data with a good accuracy in both temper-461

ature levels. The results indicate that the SFOR model can successfully462

describe the mass loss of the biomass particles, despite of the high number463

of reactions it incorporates in the single kinetic parameters.464

5.3. Comparison of the Kinetic Parameters465

Fig. 8 presents the mass loss, the particle temperature, and the particle466

heating rate as a function of residence time for the mass-mean particles of467

the three size fractions. The figure is constructed by simulating the parti-468

cle trajectories in an extended model of the DTR in order to produce the469

complete conversion curves of the larger particles. Fig. 8 demonstrates that470

the smallest particles heat up and devolatilize significantly faster than the471

medium and large particles, which is reasonable as the MF and LF particles472

have 87 and 197 times the mass of the SF particle, respectively. With all473

particle sizes, the time required for complete devolatilization is comparable474

to the time required to heat up the particles up to the reactor temperature.475

As an example, with the SF particle in the 1173 K nominal reactor tem-476

perature, a significant mass loss starts at around 500 K, the devolatilization477

terminates at 1060 K, and the highest mass loss rate occurs at 900 K particle478
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Figure 7: CFD simulation results obtained with the optimized kinetic parameters and
compared with the experimental mass loss data introduced in Table 3.

temperature. Thus, the devolatilization occurs in a wide temperature range479

and most of the mass loss has already occurred before the particles reach480

the nominal reactor temperature.481

The optimized kinetic parameters of the LF and MF fractions are very482

similar, as was concluded from Table 4. However, Fig. 8 indicates that the483

two parameters result in different mass loss behavior at the final parts of the484

conversion curves (above 60% conversion). At high particle temperatures,485

the MF kinetics predict a slightly slower reaction rate compared to the LF486

kinetics. This deviation is most probably caused by the lack of experimental487

data from the final conversion levels, combined with the experimental errors488

in the mass loss data used in the optimization. The similar conversion489

curves indicate that the devolatilization of MF and LF particles is possibly490

described by the same global kinetics. The similar global reactivity can be491

explained by a similar internal heat transfer resistance, as in case of this492

fuel the increase in particle size mainly results in more elongated particles493

rather than more thick ones.494

The three reactivity parameters are further compared in the Arrhenius495

plot of Fig. 9 (left). The Arrhenius plot shows that the SF kinetics deviate496

significantly from the MF and LF kinetics, while the latter two are very497

close to each other. The obtained kinetics can be clearly divided into two498

categories, where the small particles are described by the SF kinetics and499
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the results in the reactor temperatures of 1173 K and 873 K, respectively.

the medium and large particles by either MF or LF kinetics. A logical ex-500

planation for the different kinetics is the internal heat transfer resistance of501

the larger particles. The MF and LF particles are modeled with the isother-502

mal assumption which neglects the internal heat transfer resistance, and it503

is rationalized that the MF/LF kinetics have compensated the error that is504

made by this assumption. Johansen et al. [26] have derived heat transport505

corrected SFOR kinetics for isothermally modeled thermally thick biomass506

particles based on a theoretical analysis. They obtained a similar result,507

that the absolute gradient in the Arrhenius plot decreases as a function of508
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increasing particle size. It is interesting to note that this work observes the509

same phenomena in reactivity parameters optimized based on experimental510

data. From the current results, it is not clear if the difference between the511

SF and MF/LF kinetics is purely caused by the internal heat transfer effects512

or do the kinetics also change because the larger particles experience a lower513

heating rate than the small ones. This effect could be studied with a sepa-514

rate optimization where the internal heat transfer calculations are included515

for the large particles.516
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Figure 9: Left: Arrhenius plot for the kinetic parameters of SF, MF, and LF. Right: Mass
loss history of the mass mean diameter of LF (954 µm) calculated with the three different
kinetics in the nominal reactor temperature of 1173 K.

The graph on the right side of Fig. 9 compares the mass loss history of517

the LF mass mean diameter calculated with the three different kinetics in the518

1173 K nominal reactor temperature. The graph further demonstrates the519

similarity of the MF and LF kinetics. It also demonstrates how significant520

the difference between the SF and MF/LF kinetics is, as the former highly521

underestimate the time required for full devolatilization. Considering large522

scale CFD simulations, it is clear that the SF kinetics cannot be used for the523

large thermally thick fuel particles. Because of the compensation effect of524

the MF/LF kinetics, it is expected that the devolatilization time of the large525

particles can be realistically predicted with the separately optimized kinetics,526

without need for modifications to the basic isothermal heat transfer model527

and increase in the computational time. It is expected that the MF/LF528
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kinetics can aid in the prediction of unburned fuel in fly ash in large scale529

CFD simulations.530

5.4. Comparison to Other Studies531

The pre-exponential factors A and the activation energies E obtained for532

the size fractions are in general much smaller than the values obtained from533

low heating rate TGA analysis, where the heating rate is typically below534

2 K/s. The low heating rate activation energies for woody biomass are com-535

monly in the range between 60-240 kJ/mol, as collected from various studies536

by Gronli in [29]. In high heating rate studies for various biomass materials,537

the reported heating rates are typically of the order of 1000 K/s, and the538

activation energies lie in the range between 21-74 kJ/mol [11, 14, 15, 16]. A539

low activation energy is a consistent result in high heating rate studies, but540

to the authors’ knowledge no comprehensive explanation has been provided.541

It is possible that different decomposition reactions may become dominant542

when the heating rate of the material is increased. Johansen et al. [16] have543

demonstrated that the low heating rate kinetics are poorly suited for CFD544

simulation of a high heating rate device.545
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Fig. 10 compares the low and high heating rate kinetics for various546

biomass materials. As shown in the figure, the SF, MF and LF kinetics547
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are scattered at the high heating rate region, thus the results are well in line548

with the previous studies. The kinetics add to the limited high heating rate549

data available for woody biomass, and can possibly help to understand the550

relation between heating rate and devolatilization kinetics.551

It is expected that in large scale CFD simulations where a rapid fuel552

heat up occurs, the kinetic parameters obtained in this work can provide553

more realistic mass loss results compared to the traditional low heating554

rate TGA kinetics. However, it is not fully clear how the obtained kinetics555

function at even higher heating rates, such as in pulverized fuel combustion.556

Furthermore, there is a lack of a comprehensive study which would show the557

effect of the kinetic parameters on the overall solution of a large scale CFD558

simulation, for example on the predicted flame characteristics or unburned559

fuel at the combustion chamber outlet. This kind of study would point out560

the significance of accurate kinetic parameter determination.561

6. Conclusions and Future Work562

The accurate temperature-time histories of devolatilizing fuel particles563

are essential in high heating rate kinetic modeling because of the exponential564

dependency between the reaction rate and the particle temperature. This565

work presents an optimization approach for determining the high heating566

rate biomass devolatilization kinetics. The presented approach combines567

experimental Drop-Tube Reactor (DTR) measurements and numerical CFD568

modeling. The work demonstrates that the CFD based approach accurately569

characterizes the external particle conditions and particle residence times,570

which together determine the temperature-time histories of the fuel particles.571

It is shown that the non-spherical drag law of Haider and Levenspiel [24]572

is a suitable model for elongated biomass particles, whereas the spherical573

drag law is incapable of producing the experimental velocity profiles. A574

value of φ = 0.25 for the shape factor of the non-spherical drag law is found575

suitable for the studied biomass particles. It is expected that the experi-576

mentally validated shape factor can provide accuracy in particle trajectory577

calculations in large scale CFD simulations. The suitability of the drag law578

should be validated for turbulent flow conditions in future studies.579

The optimization approach is used for determining the Single First Order580

Reaction (SFOR) kinetics for woody biomass. The particles are simplified581

as isothermal spheres in order to maintain compatibility with the single582

particle models available in the commercial CFD programs. The optimiza-583

tion is conducted separately for three particle size groups: small, medium584

and large fractions. The optimized kinetic parameters are ASF = 5880 1/s585
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and ESF = 42720 J/mol, AMF = 48.1 1/s and EMF = 20212 J/mol, and586

ALF = 102 1/s and ELF = 24784 J/mol. It is recommended that the same587

specific heat capacity that was used in the optimization (cp = 1500 J/kgK)588

is used together with these parameters. In future studies, the presented589

approach can be applied with more sophisticated devolatilization and heat590

transfer models to better study the physical and chemical phenomena of the591

devolatilization process.592

The kinetics of the medium and large particles result in almost iden-593

tical mass loss profiles, while the small particle kinetics predict a signifi-594

cantly faster devolatilization. It is proposed that the MF/LF kinetics have595

compensated the internal heat transfer resistance which is neglected in the596

isothermal simplification, and this possibly explains the difference between597

the SF and MF/LF kinetics. Because of the compensation effect, it is ex-598

pected that the MF/LF kinetics can predict the conversion profiles of the599

large particles without need for modifications to the default isothermal heat600

transfer model. The SF kinetics can be used separately for the small parti-601

cles and either of the MF/LF kinetics for the large wood particles in large602

scale CFD simulations, enabling more accurate results for the whole size603

distribution of the fuel.604

The optimized kinetics are compared with various biomass kinetics ob-605

tained from low and high heating rate studies. The results are in accordance606

with the other high heating rate results, as a significantly lower activation607

energy is obtained when compared to the low heating rate TGA based kinet-608

ics. The increase in the heating rate evidently lowers the global activation609

energy of the devolatilization reactions, but the mechanism which causes610

this effect is not clear and is a recommended subject for the future research.611
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