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Abstract

We present three robust methods to accurately and automat-
ically recognize tree species from terrestrial laser scanner
data. The recognition is based on the use of quantitative
structure tree models, which are hierarchical geometric primi-
tivemodels accurately approximating the branching structure,
geometry, and volume of the trees. Fifteen robust tree fea-
tures are presented and tested with all different combinations
for tree species classification. The classification methods
presented are k-nearest neighbours, multinomial regression,
and support vector machine based approaches. Three mainly
single-species forest plots of Silver birch, Scots pine and Nor-
way spruce, and two mixed-species forest plots located in
Finland and a total number of trees over 1,200 were used for
demonstration. The results show that by using single-species
forest plots for training and testing, it is possible to find a
feature combination between 5 and 15 features, that results
in an average classification accuracy above 93 % for all the
methods. For the preliminary mixed-species forest plot test-
ing, accuracy was lower but the classification approach pre-
sented potential to generalize to more diverse cases. More-
over, the results show that the post-processing of terrestrial
laser scanning data of multi-hectare forest, from tree extrac-
tion and modelling to species classification, can be done au-
tomatically.

Keywords: tree species recognition, terrestrial laser scanning,
quantitative structure model, tree reconstruction

1 Introduction
Large multi-hectare areas of forests with thousands of trees
can now be measured quickly with terrestrial laser scanning
(TLS) (Calders et al., 2015a). This kind of massive-scale re-
mote sensing of trees requires that most, if not all, post-
processing steps are done automatically. In addition to the
geometric and volumetric data, an important piece of infor-
mation that can be determined from the point clouds is the
tree species. For example, the species have an effect on the
greenhouse gas exchange of a tree (Meier et al., 2016), and
measuring the change in biodiversity is related to the number
of species and their distribution. Thus, automatic and reliable
tree species recognition would be an essential step to make
the massive-scale remote sensing from TLS data practical.

There are a number of published studies that use TLS data
for tree species recognition: Haala et al. (2004) used the
combination of TLS and high-resolution panoramic images to
make a comparison of the bark textures of four trees. Their re-
sults show that the texture is a candidate for classification as
it seems to stay similar in a stem, but differs between stems.
However, the approach was not tested on a larger dataset nor
was it automatic.

Puttonen et al. (2010) used TLS and hyperspectral data to
classify 24 trees of three species with a support vector ma-
chine (SVM). The scanning was done indoors, so point cloud
segmentation into trees was not required. The classification
features included shape parameters computed from the TLS
data and averaged reflectance values of the hyperspectral
data. With a combination of 2 features from each dataset, the
average classification accuracy was over 85 % for all species.
When using only a pair of TLS data features, the accuracy was
over 70 % for only 43 % of the pairs, but the best classification
accuracy was 95.8 %.

Puttonen et al. (2011) combined mobile laser scanning
(MLS) and hyperspectral data to classify 133 trees of 10
species with SVM. Individual trees were manually isolated
from the point cloud. Similarly to (Puttonen et al., 2010), the
classification features consisted of MLS-based shape param-
eters and per channel averaged spectral data. The results
showed that MLS features on their own were able to sepa-
rate coniferous and deciduous trees with 90.5 %, and individ-
ual species with 65.4 % accuracy. For the combination of MLS
and spectra the percentages were 95.8 % and 83.5 %, respec-
tively.
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Vauhkonen et al. (2013) tested hyperspectral LiDAR (HSL)
in laboratory conditions for classifying 18 spruce and pine
trees. The classification accuracies varied between 78 % and
89 %. Different scans of the same trees were used for training
and classification.

Othmani et al. (2013) used the 3D texture of the bark of 230
trees of five species. In their approach a 30 cm long patch is
manually isolated in a stem and its texture analysed using 2D
signal processing techniques and a random forest (RF) clas-
sifier. The overall species recognition was 88 %.

In the most recent study (Lin and Herold, 2016), 40 trees of
4 species were classified by using SVM and explicit tree struc-
ture parameters (ETS). In contrast to the shape parameters
used by, e.g., (Puttonen et al., 2011), ETS parameters describe
the actual shape of the tree stem or crown rather than the dis-
tribution of TLS samples. The authors refer to tree isolation
details in (Holopainen et al., 2013) but fail to state which of
the methods was used, and thus the level of automation is
unknown. At least the separation of stem and branch points
is done interactively. The classification tests were done us-
ing the leave-one-out cross-validation (LOOCV) in two differ-
ent scenarios, maximum and robust, with accuracies 90.0 %
and 77.5 %, respectively. The authors state that the latter sce-
nario is more likely to be suitable for real applications.

The above literature survey shows that the tree species
recognition from TLS data has been the topic of only a few
studies and in most cases it has been combined with other
data sources to achieve sufficient classification accuracies.
Furthermore, the sample sizes have been relatively small, and
no fully automatic solution has been presented yet.

In this paper we propose a proof-of-concept for fully auto-
matic species recognition approach from TLSmeasurements.
Rather than using 3D point cloud data directly for classi-
fication, trees are first reconstructed as quantitative struc-
ture models (QSM) (Raumonen et al., 2013; Calders et al.,
2015b). Notice that the QSM reconstruction is done by us-
ing only the xyz-coordinates of the points and thus no in-
tensity data, spectral information, photographs, or ultra-high
resolution scans are required. The classification features are
computed from the geometric and topological tree properties
stored in the models, which means that we have more than
three dimensions to work with. This enables the use of prop-
erties that have been hard or impossible to determine directly
from the point cloud data. The proposed classification fea-
tures are listed in Sect. 2.5.

For the species recognition, we tested three different clas-
sification methods with numerous feature sets to show their
differences and suitability for the application. Namely, we
tested k-nearest neighbours, multinomial regression, and
support vectormachine based approaches. The classification
methods are presented in Sect. 2.4.

It has been shown that QSMs can be automatically com-
puted in massive scale (Raumonen et al., 2015), and when
combined with automated feature computations it makes the
complete classification procedure fully automatic. To demon-
strate the approach, three large, mainly single-species plots
from Finland are used. In addition, two mixed-species forest
plots, also from Finland, are used to demonstrate preliminary
results from more heterogeneous stands. The three species

are the most numerous in Finland and represent both decid-
uous Silver birch (Betula pendula Roth) and coniferous Scots
pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.]
Karsten). Forest plot and scanning setup details are pre-
sented in Sect. 2.1 and 2.2, respectively. We present results
in Sect. 3, and sum up in Sect. 5.

2 Materials and methods

2.1 The forest plots used for the demonstration

We have three large almost single-species forest plots and
two unmanaged mixed-species stands, which have been
scannedwith TLS. One of the single-species plots is a system-
ically planted plot with only Silver birch trees and the other two
are natural coniferous plots with Norway spruce and Scots
pine trees. All three study plots are in Punkaharju, Finland,
where annualmean precipitation is 600mmand effective tem-
perature sum 1300 dd (Merilä et al., 2014).

Silver birch plot

A Silver birch stand used in this study is a field experiment in
Punkaharju, Finland (61°48′N, 29°18′E), established in 1999
to study within-stand differences among genotypes (22 geno-
typesmicropropagated from local trees) (Possen et al., 2014).
Trees were planted on agricultural field with a planting dis-
tance of 2×2m in 1999. In April 2008, 50 % of the trees were
harvested. At the time of the scanning in October 2014, the
stand density was approximately 1000 trees per ha, height of
the trees varied from 18 to 24 m, and diameter at the height of
1.3 m (DBH) was 10–17 cm.

Scots pine plot

The Scots pine dominated study plot in Punkaharju, Finland
(61°46′N, 29°20′E) is conventionally managed forest. The lat-
est thinning took place in 1994, thereafter only dead trees are
removed. At the time of the TLS in October 2014, the stand age
was 95 years, stem number was approximately 500 stems per
ha, the DBH was 18–40 cm, and the height of trees 27–32 m.
The stand grows on sub-xeric site and the average stem vol-
ume growth is 11 m3ha−1yr−1. Scots pine and Norway spruce
dominated study plots belong to the European forest moni-
toring network established under the UN-ECE ICP programme
(Derome et al., 2002; Merilä et al., 2014).

Norway spruce plot

The Norway spruce dominated stand of this study is con-
ventionally managed forest on herb-rich site, where the lat-
est thinning took place in 1994 and since then the site has
been a part of forest monitoring programme. The stand is
located in Punkaharju, Finland and the density was approxi-
mately 400 stems per ha, the DBH was 28–45 cm, and the
height of trees 28–33 m. The average stem volume growth is
8.8 m3ha−1yr−1 (Merilä et al., 2014).
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Mixed-species plots

The two mixed-species plots are located in Sipoo (60°28′N,
25°12′E) and Lapinjärvi (60°39′N, 26°7′E) in Southern Fin-
land. These sites are unmanaged Norway spruce dominated
forests (>70 % of standing volume), where other tree species
were also present. At the time of the scanning in 2014, the
stand density was approximately 1300 trees per ha in Sipoo
and 1000 trees per ha in Lapinjärvi. For further details see
(Rajala et al., 2012).

2.2 Terrestrial laser scanning
The scanning of all forest plots was performed with a RIEGL
VZ-400 scanner and a 0.04 degree resolution. The Silver birch
(leaf-off) and Scots pine plots were scanned completely on
October 21st, 2014. The scanning of the Norway spruce plot
was started on the same day and completed on November
26th, 2014. On both days the weather was cloudy with no rain
and light wind, and the temperatures were −1◦C and +1◦C,
respectively. The approximate scanning times were 1, 3 and 4
(2+2) hours for the Silver birch, Scots pine and Norway spruce
plots, respectively. The Sipoo plot was scanned on November
20th, 2014 and Lapinjärvi plot on November 24th, 2014. On
both days the temperature was close to 0◦C. The number of
scanning points per forest plot was selected during the mea-
surements based on visibility in order to cover most of the
trees in the scans.

Retroreflectors were attached to tree stems to enable co-
registration, which was later performed with the RiScan Pro
software. The number of points in the scans, initially and after
plot restriction and filtering, were the following: 94 and 35mil-
lion for the Silver birch plot, 300 and 58 million for the Scots
pine plot, and 340 and 116 million for the Norway spruce plot.
For Sipoo and Lapinjärvi the filtered point counts were 126 and
105 million, respectively. Stem locations and tree heights for
each of the study plots are presented in Fig. 1, together with
the scanner locations.

2.3 Tree extraction and quantitative structure
models

The individual trees were automatically extracted from the
point clouds, but only in a suitable region close to the scan-
ners. The extraction method was similar to the one presented
in (Raumonen et al., 2015). In the extraction process the point
cloud is first filtered for noisy measurements and isolated
points that should not contribute to the reconstruction pro-
cess, and the local ground level is estimated. The filtered
point cloud is then partitioned into small subsets or surface
patches about 10–20 cm in diameter. These patches are the
smallest parts used for tree segmentation. The principal com-
ponents of the patches are then used to locate the stems
based on simple heuristics about the stems being vertical.
Next the located stems are taken as initial sets for the trees
and the stems are expanded using surface growing (using
the neighbour relation of the patches). There will be sepa-
rate components that cannot be reached from any tree by sur-
face growing and these components are then connected to
the closest point in the closest expanded tree. At this point

most of the trees are uniquely separated except in some cases
where the initially expanded stems are connected. The final
separation is then achievedwith the segmentation of the point
cloud into stems and branches. The segmentation follows
the procedure presented in (Calders et al., 2015b; Raumonen
et al., 2015).

The tree extraction process is prone to some minor errors,
and occasional larger errors when some trees are very close
to each other and their crowns are occupying the same space.
However, the errors in the separation occur mostly in the top
parts of the tree crowns, where there is also typically low point
cloud coverage due to the extreme angle of the scanner and
occlusion. The separation errors most often manifest as a
set of branches of a tree incorrectly being contributed as a
part of one of its neighbouring tree. An example of this can
be seen in Fig. 2. Due to the possibility of such errors, the
species classification features were selected to be insensitive
in this regard. The features utilize parts of the trees that are
expected to be reconstructed most accurately, e.g., branches
that originate from the stem. Furthermore, the crown radius,
a property that is key to many of the features, is estimated
from the volume distribution of the cylinders, rather than their
absolute positions, making the estimate more robust should
the crown contain parts of the neighbouring trees.

As a result of the tree extraction, the point cloud is parti-
tioned into subsets that represent single trees. These subset
point clouds are used for the reconstruction of QSMs of the in-
dividual trees one-by-one. For each tree, the QSM reconstruc-
tion process creates another partition of the tree point cloud
into small patches, and then segments them into the stem and
branches. This new partition utilizes the first segmentation
from the tree extraction step to determine a finer and variable-
size partition of the tree point clouds. The size of the patches
in the partition is determined based on the branching structure
and branch size estimates. Next the patches are segmented
into the stem and individual branches similarly as earlier. Af-
ter the segmentation a cylindrical QSM is reconstructed by
fitting cylinders into the segments.

All the QSMs were reconstructed with the same input pa-
rameters: the minimum and maximum patch diameters were
3 cmand 12 cmand the relative cylinder length (length/radius)
was 5. The parameter values were selected based on previous
studieswith QSMs to have reasonablemodels with short com-
putation time (few minutes per tree). Thus the QSMs used in
this study were not optimized to be the best possible ones.
The optimization of the QSMs could be based on, e.g., me-
dian point-to-model distances, as shown in (Hackenberg et al.,
2015), but that would require even tens of models per tree and
thus equivalent increase in computation time. However, one
could try a compromise between these two opposites: A rea-
sonable assumption is that the trees and the quality of the
measurement data (resolution, noise level, occlusion, etc.)
are similar inside the plot. Therefore at first few trees could
be selected for parameter optimization and then use the opti-
mum parameters for all trees.
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Figure 1: Forest plot tree location and height map (crosses) and scanner positions (circles). The height colour scale is the same
for all plots.
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Figure 2: Example error in tree extraction in on of the Scots Pines. Parts of the crown of a neighbouring tree have been con-
tributed to the tree in error.

2.4 Classification methods
In this section we outline classificationmethods that are used
to classify trees into tree species based on selected features,
that are defined in Sect. 2.5. GivenM features andK species
labels, a training set TEACH is a set of pairs (x, species),
where x ∈ RM is a list of feature values and species ∈
SPECIES = {species1, species2, . . . , speciesK}. Either by
using the training data, or a model derived from it, the clas-
sification methods are able to assign the elements of a test
set TEST = {xi} ⊂ RM into one of theK species classes in
SPECIES. All the presented methods are also able to present
probabilities pij for an element xi ∈ TEST to belong to a
class speciesj ∈ SPECIES. Thus, a classification method
produces a result set of pairs (xi,pi), where xi ∈ TEST,
pi = (pi,1, . . . , pi,K), pij ∈ [0, 1] and j ∈ SPECIES. The
resulting assigned class for a test element xi is defined as
the class j with the maximum probability pij .

2.4.1 k-nearest neighbours

The k-nearest neighbours algorithm finds the k elements from
the training set TEACH that are the closest to a test pointxi ∈
TEST. The class probability pij of the elementxi is defined as
the relative number of elements with class j belonging to the
subset of k nearest neighbours. Various distance measures
can be used when finding the closest elements.

On the implementation level, the knnsearch function bun-
dled inMATLABwas used for this classification method. Num-
ber of neighbours parameter k and the distancemeasure were
optimized during computations.

2.4.2 Multinomial regression

For classification based on multinomial regression the
mnrfit and mnrval commands part of the Statistics andMa-
chine Learning Toolbox in MATLAB were used. In a multino-
mial logistic regression model the probability pij of a sample
xi ∈ TEST having class speciesj ∈ SPECIES can be com-

puted as (Agresti, 1990, p. 313):

pij =
exp

(
xT
ibk
)

K∑
k=1

exp
(
xT
ibk
) . (1)

For a selected baseline class (e.g. j = K) the coefficientsbj
are set to zero, and for the rest of the classes the coefficients
are optimized in an iterative fitting process with the TEACH
data set. The predicted outcome class is defined to be the
one with the highest probability.

2.4.3 Support vector machine

Support vector machine classification finds a hyperplane that
maximizes the margin between the samples of two different
classes. In a two-class case the optimization problem can be
formulated as a minimization problem as follows:

min
w,ξ,b

1

2
K (w,w) + C

l∑
i=1

ξi, (2)

subject to

yi (K (w,xi)− b) ≥ 1− ξi (3)
ξi ≥ 0, (4)

where w is the normal vector of the hyperplane and b the
plane’s location parameter, and C is the penalty parameter.
In a two-class case the class indicator yi of the sample xi is
1 if the sample has the class i and −1 otherwise. Further-
more, ξi are the slack parameters for a soft margin to allow
the overlap of classes. TheK(·, ·) function is called the ker-
nel function which defines the shape of the class boundary.
By using the linear kernel function

K (a,b) = aTb, a,b ∈ RM (5)
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the boundaries are hyperplanes. Other kernel functions used
in this study are polynomial and radial basis function (RBF),
respectively:

K (a,b) =
(
γaTb

)d (6)

K (a,b) = e−γ‖a−b‖
2

, (7)

where γ and d are kernel parameters. The use of these addi-
tional kernel functions allows the decision boundaries to be
non-flat. Support vector machine based classification with
a linear, polynomial, and RBF kernel functions are noted as
SVMlin, SVMpol, and SVMrbf, respectively. ForK > 2 species
classes the classifier can be implemented in K − 1 steps,
where on the kth step the two possible classes are speciesk
and SPECIES \ speciesk. The libsvm package (Chang and
Lin, 2011) for MATLAB was used for the computations. Grid
search was used for finding the optimal values for the penalty
parameter C and the kernel parameters γ and d.

2.5 Tree features
All the classification methods presented in Sect. 2.4 are
based on feature data. In this study each feature is a scalar
value computed for a single tree (QSM). The features are de-
rived from the geometric and topological properties stored in
the reconstructed QSMs. The features were designed to be
scale-independent by scaling absolute lengths with, e.g., the
tree height or DBH. By using such features the classification
should perform well with both young and old trees. Table 1
lists the features that were used in this study. Apart from Fea-
tures 1, 11 and 14, the features are unitless. Additionally, the
Classification features -animation shows how the features are
defined and computed. In the animation a single Scots pine
model is used to illustrate the features one-by-one (See Sup-
plementary Data).

Stem branches (SB) are first-order branches that originate
from the stem. The branching angle was computed as the
angle between the axes of the first cylinder in the branch and
its parent cylinder. The branching cluster size, Feature 2, was
approximated by inspecting the start points of the SBs. An
inspection height interval with a width of 40 cm was centred
at the height of each SB. The number of SBs inside the interval
was recorded and the brancheswere flagged as used. Only the
SBs without the used flag were computed, thus allowing any
branch to be part of only one branching cluster; i.e., height
interval. At the end, the cluster sizes were averaged for every
tree.

DBH was computed by fitting a cylinder at the standard
height to the stem point cloud during the reconstruction pro-
cess and stored in the tree model. The SB radius, Feature 3,
was defined to be the average ratio between the radii of the
SBs and their respective parent cylinders. Only ten SBs with
the largest radius at their base were selected for this feature
to get a better separation between species.

Using the topological information stored in a cylinder
model the set of crown cylinders was found, using the follow-
ing algorithm, that is designed to exclude dead branches at
the bottom of the stem:

1. Initialize the crown set as cylinders that have a branching

order higher than three. If the initial set is empty, themin-
imum order is lowered until the set becomes non-empty.

2. As long as the crown set extends, append the parent
cylinders of the crown set that are not part of the stem.

3. Append to the crown set cylinders that are not part of
the stem but whose start point is higher than the lowest
starting point of crown cylinders connected to the stem.

4. As long as the crown set extends, append the child cylin-
ders of the crown set.

The initial crown height is defined as the relative starting
height of the lowest SB in the crown. The crown height is
the difference between the lowest and highest crown cylin-
ders normalized by the tree height. To analyse how evenly the
crown bottom is distributed, the crown set is divided into eight
angular bins around the stem, and the minimum vertical point
is computed. The crown evenness feature is the ratio between
the highest and lowest of these values.

Features 9 and 12 require an estimate of either the tree or
the crown radius. Rather than computing the radius estimate
directly from the positions of the cylinders furthest from the
stem, we use a radial volume distribution for robustness. To
estimate the tree radius at different heights, a tree is divided
into three vertical bins, and the centre point of each bin is de-
fined as the average of mean points of stem cylinders in the
bin. If the bin does not contain stem cylinders the centre of
the previous bin is used. The tree radius estimate in a vertical
bin is defined as the radius of a cylinder whose axis is verti-
cal and goes through the bin centre point, and which contains
90 % of the volume of the cylinders in that bin. The crown di-
ameter is estimated as two times the maximum vertical bin
radius.

For Feature 13 the branch cylinder volume distribution is
considered in the vertical direction. A good vertical limit 55 %
of the total tree height was found by testing numerous alter-
natives. For Feature 15 only the bottom third is considered
as it is expected to contain most of the dead/shed branches,
which are defined as branches without child branches.

To see the value range and the level of separation between
species for the proposed features Fig. 3 visualizes the dis-
tribution of each feature per species. The Species separa-
tion -animation also shows the distribution of feature values
per species, together with an example model of each species
and the respective feature values of these models (See Sup-
plementary Data). Furthermore, Fig. 4 visualizes the two-
dimensional feature space of Features 1 (stem branch an-
gle) and 13 (volume below 55 % of height). Three individual
QSMs are also shown and their mapped values in the selected
feature space highlighted. The values in both figures were
computed using the full population of 358 Silver birch, 457
Scots pine, and 276Norway spruce trees from the three single-
species forest plots.

3 Results
In this section we first use the three single-species Punka-
harju plots for three different purposes: First we optimise the
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Figure 3: Box plots of classification features for each tree species: Silver birch (B), Scots pine (P) and Norway spruce (S). The
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Table 1: List of included tree classification features. Possible units are given in brackets.

ID Feature name Description

St
em

br
an

ch

1 Stem branch angle Median of the branching angles of the 1st order branches in degrees. 0 is upwards
and 180 downwards. [◦]

2 Stem branch cluster size Average number of 1st order branches inside a 40 cm height interval for 1st order
branches. Each branch can only belong to one interval.

3 Stem branch radius Mean ratio between the 10 largest 1st order branches measured at the base and
the stem radius at respective height.

4 Stem branch length Average length of 1st order branches normalized by DBH.
5 Stem branch distance Average distance between 1st order branches computed using a moving average

with a window width 1 m. If window is empty average distance in window is set as
half of window width.

Cr
ow

n

6 Crown start height Height of first stem branch in tree crown relative to tree height.
7 Crown height Vertical distance between the highest and lowest crown cylinder relative to tree

height.
8 Crown evenness Crown cylinders divided into 8 angular bins. Ratio between extreme minimum

heights in bins.
9 Crown diameter / height Ratio between crown diameter and height.

Tr
ee

10 DBH / height ratio Ratio between DBH and total tree height.
11 DBH / tree volume Ratio between DBH and total tree volume. [m−2]
12 DBH / minimum tree radius Ratio between DBH and the minimum of the vertical bin radius estimates.
13 Volume below 55 % of height Relative cylinder volume below 55 % of tree height.
14 Cylinder length / tree volume Ratio between total length of all cylinders and total tree volume. [m−2]
15 Shedding ratio The number of branches without children divided by the number of all branches in

the bottom third.
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Table 2: Limits and results for SVM kernel parameters γ∗ and
d, and the penalty parameter C∗ grid search.

C∗ γ∗ d

Minimum -5 -15 2
Maximum 15 3 5
Increment 1 1 1
Optimums
linear -2 - -
polynomial -5 2 2
RBF 1 -3 -

parameters of the classification methods, then we determine
the optimal feature sets, and finally we study the effect of the
size of the training data set. In Sect. 3.4 we test the classifica-
tion performance of the optimal parameters and feature sets
on mixed-species forest plots, both by using only the single-
species plots as training data, and by supplementing the train-
ing data with samples from the mixed-species plots.

3.1 Optimal parameters
The parameters of the k-NN method were optimized by
using 50 samples of each species and 10-fold cross-
validation. The value of k was varied from 2 to 20
and the distance measure in the following parameter
set: euclidean, seuclidean, cityblock, chebychev,
minkowski, mahalanobis, cosine, correlation, and
spearman.

The highest classification accuracy was achieved with k =
4 and the standardized Euclidean distance (seuclidean).
This combination of parameters was used in all following
tests, and is noted as 4-NN.

In order to find the optimal SVM kernel and penalty param-
eters, a grid search was performed for all of the kernel types.
The following convenience parameters were defined for the
grid search:

C∗ = log2 C (8)
γ∗ = log2 γ. (9)

The grid search was performed on the same 50 samples of
each tree species, and was carried out using 5-fold cross-
validation provided by the libsvm package. The grid limits
and results for the search are presented in Table 2. The pa-
rameters that yielded the highest classification accuracy were
fixed for further classification tests for each kernel type.

3.2 Optimal feature sets
To find the optimal classification features, the included fea-
ture count was varied from 1 to 15. For each feature count all
the possible feature combinations were tested using a 10-fold
cross-validation. The remaining trees of each species after
the parameter optimization were divided into ten subsets of
equal size. Each subset was then classified by using the re-
maining nine subsets of each species as training data. The 10-
fold cross validation was selected to show the classification

performance in close to optimal conditions, where the amount
of the training data far exceeds the amount of the test data.
The maximum classification accuracies for each method and
feature count are listed in Table 3.

When using just one feature, the maximum classification
accuracy, 85.3 %, was achieved with the 4-NN method and
Feature 5: Stem branch distance. This combination was able
to separate Silver birches and Norway spruce trees from each
other but mixed birches with Scots pines, as 12.4 % of birches
were misidentified as pines and 15.1 % vice versa.

When the feature count was two, the 4-NN and SVMlin clas-
sificationmethods gave themaximum accuracy with Features
5 and 12. The values of these features are visualized in Fig. 5
to show the high level of species separation. For the remain-
ing three methods, the best combination was Features 11 and
15. The maximum total accuracy, 92.0 %, was received with
the 4-NN method. With this configuration the standard devia-
tion over the folds was 1.4 pp. and the biggest confusion was
again between birches and pines.

For feature counts higher than two there is no clear differ-
ence between the methods as the standard deviation of the
classification accuracies over the methods remain between
1.23 and 2.89 percentage points. With feature counts from 6
to 15 all the methods result in accuracies above 93.0 %.

The highest accuracy, 96.9 %, was obtained with the 4-NN
method and 10 features. The resulting relative and absolute
confusion tables are presented in Table 4. The results show
that out of 1010 trees only 31 were misclassified when using
this setup.

For further testing, top feature sets were selected using the
following two criteria: 1) sets whose average classification
accuracy over the methods was above 95 %; 2) sets whose
minimumclassification accuracy over themethodswas above
94 %. 120 combinations fulfilled the first condition, and 16
combinations the second. Out of these combinations, ten ful-
filled both and these combinations are listed in Table 5.

Fig. 6 shows the frequency at which each feature is part of
the 126 top feature sets. Out of the 15 features, four (1, 10, 13,
14) are part of all the top feature sets. Next the top feature
sets are used for testing the effect of training data size.

The independence level of the classification features was
tested by studying the covariance of the features over the to-
tal population of 1010 trees. The correlation between Features
6 and 7 is over 99 % because none of the included species
have crowns that extend below the lowest connecting stem
branch. Furthermore, Features 4 and 11 have a correlation
over 80 %. The connection here is not that obvious as Feature
4 measures stem branch length and Feature 11 total volume
of the tree. The correlation is expected to drop for both fea-
ture pairs when additional species with varying geometry are
included. For the purpose of this study the high correlation
between these pairs did not affect the classification accura-
cies, as is evident from the similar results with feature com-
binations containing and not containing the highly correlated
feature pairs, e.g., in Table 5.
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Table 3: Classification accuracy p in percentages and standard deviation σ for cross-validation in percentage points for best
feature combinations with increasing feature count. The highest accuracy for each count is highlighted, and the total maximum
value is underlined.

4-NN MNR SVMlin SVMpol SVMrbf

Feat. count p σ p σ p σ p σ p σ

1 85.3 3.0 76.7 3.0 80.7 3.0 84.6 3.0 81.1 3.0
2 92.0 1.4 89.8 2.8 88.8 1.4 90.6 2.8 90.1 2.8
3 94.6 1.3 91.5 2.8 91.2 2.6 92.7 2.4 92.3 1.9
4 95.4 1.3 92.5 2.1 92.7 2.1 94.7 2.0 93.8 2.0
5 96.1 2.2 93.0 2.6 93.6 1.7 95.4 1.7 94.9 1.7
6 96.2 1.5 93.6 2.0 93.6 1.7 95.8 2.9 95.1 1.7
7 96.8 1.9 93.8 1.2 93.8 1.8 96.2 1.8 95.5 2.0
8 96.6 1.8 94.2 2.6 94.1 2.1 96.4 1.8 95.5 1.8
9 96.8 1.6 94.2 2.7 94.4 2.4 96.4 2.4 95.8 2.2

10 96.9 2.1 94.3 2.1 94.5 2.2 96.7 1.9 95.8 1.8
11 96.6 1.5 94.4 2.3 94.6 1.9 96.8 1.9 95.9 1.5
12 96.7 1.2 94.5 1.8 94.3 2.2 96.7 2.0 95.9 1.8
13 96.5 1.8 94.4 2.1 94.2 2.8 96.3 2.2 95.9 2.1
14 96.4 1.6 94.6 2.2 94.4 1.7 96.1 1.6 95.8 1.7
15 96.1 1.8 93.9 1.8 94.1 1.8 95.5 1.8 95.7 1.8
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Figure 5: Data separation with the feature pair that produced the maximum classification accuracy with the 4-NN and SVMlin
methods.

Table 4: Relative and absolute confusion tables for 4-NN method and 10 features with highest classification accuracy.

Predicted
B P S B P S

Correct
Silver birch 98.2 1.5 0.3 324 5 1
Scots pine 3.0 96.3 0.7 13 414 3
Norway spruce 1.6 2.0 96.4 4 5 241

Relative Absolute
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Table 5: Top feature sets that fulfilled both conditionswith their classification accuracy permethod and averaged in percentages.
The maximum accuracy over the listed feature sets is highlighted for each method.

# Feature set 4-NN MNR SVMlin SVMpol SVMrbf Average
1 1, 2, 3, 5, 7,10,11,13,14,15 96.2 94.1 94.2 96.1 95.5 95.2
2 1, 2, 3, 5, 8,10,11,12,13,14 96.2 94.3 94.5 96.2 95.4 95.3
3 1, 2, 3, 6, 8,10,11,13,14,15 96.1 94.3 94.3 95.2 95.5 95.1
4 1, 2, 3, 7, 8,10,11,13,14,15 96.0 94.3 94.3 95.2 95.4 95.0
5 1, 2, 3, 5, 6, 8,10,11,12,13,14 96.4 94.1 94.1 96.0 95.3 95.2
6 1, 2, 3, 5, 6, 7, 8,10,11,13,14,15 95.8 94.2 94.1 95.8 95.8 95.1
7 1, 2, 3, 5, 6, 7, 8, 9,10,11,13,14,15 96.1 94.4 94.1 95.8 95.9 95.3
8 1, 2, 3, 5, 6, 7, 9,10,11,12,13,14,15 96.0 94.3 94.2 95.5 95.7 95.1
9 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,13,14,15 96.2 94.2 94.4 95.6 95.8 95.2

10 1, 2, 3, 5, 6, 7, 8, 9,10,11,12,13,14,15 96.2 94.6 94.1 95.3 95.7 95.2
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Figure 6: Number of times a feature was part of the 126 top feature sets.

3.3 Effect of the size of training data set
In order to test how each of the proposed classification meth-
ods performs in real applications, the effect of the amount of
training data was studied. The number of trees per species
in the training data set was varied from 4 to 150, while the
same number for the testing data remained constant at 50.
The tree samples were selected randomly from the complete
tree population, but the training and testing sets remained dis-
joint. Sampling was repeated 10 times for each training data
size. The optimal parameters from Sect. 3.1 were used in the
test, as well as, the top feature sets from Table 5.

Table 6 shows the total classification accuracy of each
method as a function of the amount of training data. The ac-
curacy of a method is averaged over the random repeats and
the feature combinations. Furthermore, Fig. 7 shows the aver-
age, minimum and maximum classification accuracies for the
same data.

The 4-NNmethod has the highest average classification ac-
curacy and the lowest standard deviation with all training data
sizes. With data sizes above or equal to 30, the average classi-
fication accuracy remains above 93 %, and theminimumaccu-
racy above 88 %. The MNR and SVMlin methods also perform
well with an average accuracy above 91 % with 50 samples
or more. The standard deviation is a little greater than with
the 4-NN method but the minimum classification accuracies
still remain above 82 %, and with a high number of samples
(≥ 100) even comes near 87 %.

The SVMpol and SVMrbf methods have relatively hight stan-
dard deviation with all sample sizes but still below 4 pp. The
average accuracy on the SVMpol method is very good, but
some of top feature sets give poor results dropping the mini-
mum performance quite low, even with a high number of train-
ing samples. Similarly, the SVMrbf method has a relatively low
minimumperformance, but unlikewith the SVMpol method, the
effect seems to diminish with the increasing number of sam-
ples. For operational use the 4-NN, MNR and SVMlin methods
seem to provide the most consistent results.

While performing the accuracy testing described above, the
correlation between tree properties, the measurement setup,
and the probability of an incorrect classification was stud-
ied. As the tree sets were randomly sampled, the number
of picks per tree was stored, as was the number of incorrect
classifications. The probability of incorrect classification was
computed as the ratio between the two numbers. The results
showed that there was no correlation between the probability
to be incorrectly classified and the minimum distance to the
laser scanner position. Furthermore, there was no correlation
between the probability and estimated tree radius, tree height,
and average distance to the laser scanner position.

3.4 Performance on amixed species forest plots
Above we used only single-species plots for training and test-
ing. Arguably one can ask how well these results generalise
to mixed-species forest, which may allow more variability for
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Table 6: Average classification accuracy and standard deviation as a function of training data size per species. The average in
percentages and the std in percentage points are computed over the 126 top feature sets and the 10 repeats with random data.

4-NN MNR SVMlin SVMpol SVMrbf

Sample size p σ p σ p σ p σ p σ

4 87.8 7.4 55.1 17.1 60.4 25.0 68.7 19.1 43.5 24.1
10 92.1 2.4 88.0 4.6 87.6 4.0 88.2 3.3 71.6 11.6
20 92.9 1.4 89.1 2.8 90.1 2.2 89.6 2.4 82.5 3.7
30 93.0 1.4 90.2 2.6 90.1 2.2 89.7 2.4 85.9 2.9
40 93.3 1.4 90.9 2.4 91.1 2.2 90.7 2.8 86.8 3.0
50 93.7 1.5 91.1 2.1 91.5 2.1 91.0 3.0 87.2 3.6
60 94.2 1.5 91.5 1.9 91.7 1.9 91.4 2.8 88.1 3.4
70 94.1 1.5 91.5 1.6 91.7 2.0 91.2 3.4 88.3 2.9
80 94.1 1.4 91.7 1.6 91.7 1.9 91.9 3.6 88.6 2.9
90 94.0 1.1 91.4 1.7 91.4 1.7 92.0 3.4 89.2 3.3

100 94.5 1.3 91.3 1.6 91.6 2.0 92.4 3.1 89.8 2.9
110 94.6 1.2 91.6 1.4 91.8 1.8 92.7 3.2 89.4 2.8
120 94.6 1.3 91.7 1.5 91.7 2.0 92.8 3.4 89.6 2.7
130 94.5 1.2 91.8 1.6 92.0 1.8 93.2 2.8 89.9 2.9
140 94.7 1.3 91.9 1.7 92.0 1.9 93.2 3.2 89.7 2.8
150 94.6 1.2 91.9 1.7 92.1 1.8 93.3 3.4 90.4 2.2

4 10 30 50 70 90 110 130 150
0

20

40

60

80

100

Training data size per species

Ac
cu

ra
cy

[%
]

4-NN MNR SVMlin SVMpol SVMrbf

Figure 7: Average, minimum and maximum classification accuracy with changing training data size per species.
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tree structures. We only have limited data for this kind of test-
ing, and therefore, we did not use it in the above analysis.
To show preliminary results we used two mixed-species plots
located in Sipoo and Lapinjärvi. The forests are dominated
by Norway spruce trees, but also contains Silver birches and
Scots pines among other species. However, as up-to-date tree
maps were not available, we manually classified the trees by
inspecting point clouds of individual trees and by referencing
field-measured tree maps from 2009. We identified 22 Silver
birches, 13 Scots pines and 214 Norway spruce trees which
were then used for testing.

Training data was sampled randomly from the Punkaharju
plots, 100 trees per species. Classification accuracy was
tested with all the classification methods with the optimal pa-
rameter values and the best feature combinations determined
for the three Punkaharju plots listed in Sect. 3.2. Additionally,
training data sampling was repeated 100 times. An additional
test was performed where 100 of the Norway spruce trees
from the mixed-species plots were used for training and the
remaining 114 were tested, while other parameters remained
the same. The other two species did not have enough sam-
ples to split them into training and testing sets. Table 7 lists
the average and maximum classification results for each of
the methods per tree species as well as a total accuracy for
both training data sources.

When using training data from only the single-species plots
the average classification accuracy is between 50 % and 55 %
and themaximum around 70 %. The best result, 76.3 %, is pro-
duced with MNR method. When including Norway spruce tree
samples from themixed-species plot in the training data, all of
the average andmaximum total accuracies improve. The total
average accuracies are still between 50 %and 70 %, but for the
Norway spruce trees, that have sufficient samples from both
types of forests, the average classification accuracy is over
80 % and the maximum over 90 % for some of the methods.
For the other two species, which don’t have training data from
the mixed-species forests, the average and maximum accura-
cies either stay the same or decrease.

Fig. 8 illustrates values for two of the classification fea-
tures for the trees from both the single-species and mixed-
species forest plots. As the number of samples for two of
the species is so low it is hard to make definite conclusions,
but at least for the two visualized dimensions the species
separation seems lower. Especially, mixed-species plot Sil-
ver birches overlap with single-species plot Scots pines and
mixed-species plot pines overlap with both mixed and single-
species plot Norway spruce trees.

4 Discussion
The feature combination test with the three Punkaharju single-
species plots showed that, with comprehensive training data,
it is possible to find a feature combination for each of the
classification methods such that the average classification
accuracy is over 93 %. However, when the size of the training
data set was more limited, as it would likely be in real applica-
tions, the differences in the classification methods started to
show. The fact that with only 30 samples per species, themin-
imum accuracy for the SVMlin method was above 83 %, shows

promise for real applications; Sufficient training data can be
obtained from the same forest through manual classification.
Alternatively, if applicable training data are already available,
a complete forest can be classified in a fully automatic pro-
cedure, where the classification of a single tree takes only a
fraction of a second after the QSM has been computed.

A preliminary mixed-species plot classification test was
performed on a limited dataset. When the training data only
included samples from single-species forests and neither the
classificationmethod parameters or the feature combinations
were optimized, the classification accuracies remained low.
However, by including samples of Norway spruce trees from
both the mixed and single-species plots in the training data
the classification accuracy improved significantly, especially
for the Norway spruce species. The result suggests that ac-
curate species classification is possible also inmixed-species
forests when adequate training data are available. However, it
is clear that further testing is needed to determine the classi-
fication performance in a mixed-species forest, when suitable
data become available.

Even though the tree separation was not perfect as even
coarse errors did occur, all of the classification methods were
able to classify trees with an accuracy over 94 %, with some
feature combinations in the cross-validation test. This shows
that the selected features are robust in terms of the tree sep-
aration, and that the classification methods are suitable and
robust for this classification problem. Furthermore, three of
the methods, 4-NN, MNR and SVMlin, performed very well and
gave consistent results when studying the effect of the size
of the training data set, which shows that QSMs contain suf-
ficient species-specific characteristics for classification.

Three species were considered in this study, but the com-
putation of the proposed tree features and the use of the clas-
sification methods should generalize well to a larger number
of species. In the future, the tests should be repeated with a
larger number of species from varying types of forests to see,
whether the accuracy also generalizes. It is well known that
the top parts of tall trees are poorly covered in TLS measure-
ments, especially in dense environments. Naturally, QSMs in-
herit this shortcoming, and thus if the differences between
two tree species are mainly focused on the top parts of the
trees, the proposed classification method might fail to sepa-
rate them. A further study could also include testing for the
effect of leaves on the classification accuracy. From previous
studies we know that the presence of leaves will decrease the
quality of the QSM, but the effect on species classification still
remains unknown.

The QSMs used in this paper were not optimized, but a rea-
sonable set of input parameters was used for all trees. A
further study on the effects of the input parameters on the
classification should be carried out. One would expect that
more accurate QSMs will improve the classification accuracy.
The QSMs used in this study consisted of circular cylinders,
but similar models can be computed with other, more com-
plicated elements as well (Åkerblom et al., 2015). The use of
more complex shapes might give access to even more tree
features, such as cross-section shapes, but can decrease the
reconstruction accuracy and stability. In any case, the pre-
sented results show even the relatively simple circular cylin-
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Table 7: Average and maximum classification accuracies for each classification method for the mixed species forest plot in
percentages. First half shows results with single-species plot training data and the second half with a combination of single
and mixed-species plot training data. The highest maximum total classification accuracies for both types of training data have
been highlighted in green, and the maximum accuracies for the Norway spruce trees have been highlighted in black.

Average Maximum
Training data Method Total Birch Pine Spruce Total Birch Pine Spruce

Single

4-NN 48.9 18.7 39.8 52.6 61.0 36.4 61.5 67.3
MNR 54.6 41.5 58.9 55.7 76.3 72.7 92.3 80.4
SVMlin 52.9 29.5 42.9 55.9 64.7 50.0 61.5 71.5
SVMpol 55.8 19.0 50.0 59.9 73.1 36.4 84.6 79.9
SVMrbf 55.1 24.5 43.1 59.0 67.5 40.9 84.6 73.4

Single
+

Mixed

4-NN 52.7 18.3 33.2 61.6 67.1 36.4 53.8 79.8
MNR 70.3 39.2 34.1 80.4 81.2 68.2 53.8 93.0
SVMlin 66.3 29.2 28.5 77.8 74.5 50.0 38.5 88.6
SVMpol 68.8 18.9 33.2 82.5 75.2 27.3 46.2 92.1
SVMrbf 68.2 24.3 29.5 81.1 73.8 40.9 38.5 89.5
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Figure 8: Mixed-species plot species separation with two classification features.
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der QSMs can produce high classification accuracies.
The presented 15 classification features yielded good re-

sults, but the use of QSMs allows the computation of numer-
ous other features as well. It is also possible to combine the
features computed fromQSMwith features computed directly
from the spatial point cloud, or hyper-spectral data, to achieve
even better separation between species. However, in compar-
ison to previous studies (Puttonen et al., 2010, 2011), the pre-
sented QSM based approach produced similar or even higher
classification accuracies without using hyperspectral data or
even TLS intensity values. Furthermore, the proposed classi-
fication method is fully automatic and works on a lower reso-
lution scanning data than the bark texture based method pro-
posed by Othmani et al. (2013).

Optimization can also be done by increasing the number of
scan positions, or, e.g., by elevating the scanner to get better
coverage in higher tree parts. The improvement in the scan
detail will translate to the quality of the reconstructed mod-
els. Alternatively, it could be studied how high classification
accuracies can be achieved by using a more coarse scanning
setup. It might be possible to integrate automatic species
identification to forest inventories done with TLS if the classi-
fication features are chosen correctly.

5 Conclusion
We have presented a novel, fully automatic tree species clas-
sification approach for terrestrial laser scanning data. The
approach is based on reconstructing quantitative structure
models (QSM) of the trees, which enables the computation of
tree properties that have not been available before for species
classification. 15 classification features that utilize the geom-
etry and topology stored in the QSMswere proposed, and their
suitability for separating tree species was studied in various
tests using three different classification methods: 4 nearest
neighbours (4-NN), multinomial regression (MNR) and sup-
port vector machines. For the latter, three different kernel
functions were also considered: linear (SVMlin), polynomial
(SVMpol), and radial basis function (SVMrbf).

The classification accuracy was tested on tree models re-
constructed from three single-species forest plots. Over 1,000
treeswere used in a 10-fold cross-validation classification test
with all classification methods. Furthermore, all possible fea-
ture combinations were tested, and the best classification ac-
curacy, 96.9 %, was achieved with the 4-NN method and 10
features. With the feature count between 6 and 15, it was pos-
sible to find a feature combination that resulted in an average
classification accuracy above 93 % for all the methods.

To further test the performance of the classification meth-
ods, 126 of the top feature sets were selected to test how
the amount of training data affected the classification accu-
racy. The training and testing trees were selected randomly
from the total tree population, and the process was repeated
ten times for each feature combination and classification
method. The results showed that 4-NN, MNR and SVMlin gave
consistent results with all the sets, and were able to classify
trees with an average accuracy above 90 % and minimum ac-
curacy over 82 %, with the training sample number per species
greater or equal to 30. The SVMpol and SVMrbf methods had

lower minimum accuracies as they did not perform well with
all of the top feature sets. Thus, more caution should be ex-
ercised when selecting feature sets for these particular meth-
ods.

Preliminary testing on mixed-species forest plot trees
showed that training data collected solely from single-species
forest plots is not sufficient for good results. Although, more
testing is requiredwhenmore comprehensive training data be-
comes available, adding training data frommixed-species for-
est plots even for just one species improved the classification
accuracy to be over 80 % for the MNR method.

Our study showed that tree features made accessible
through QSM reconstruction can outperform the existing tree
species classification approaches based only on 3D spatial,
or hyper-spectral, point cloud data. QSMs provide access to
features based on detailed geometry and branching structure
making the source data more than three-dimensional. The
study also showed that QSMs provide a very robust basis
for classification with little need for tuning. Three different
methods could accurately andwith small variation classify the
trees based on QSMs that were not optimized for each tree
and with considerable errors in the tree separation. Finally,
the proposed species recognition approach is fully automatic
because the required pre-processing steps of tree separation
of the underlying forest plot (Raumonen et al., 2015) and the
QSM reconstruction are automatic.
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