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ABSTRACT 12 

The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for 13 

encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class 14 

II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the 15 

oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated 16 

cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate 17 

protein coated oil droplets in NFC fiber network. In our previous study it has been shown that 18 

hydrophobin proteins and NFC can be used successfully to stabilize oil-in-water emulsions (Varjonen 19 

et al., Soft Matter 7, 2011, 2402-2411). In this study the use of these materials has been extended for 20 

stabilization of pharmaceutical emulsions. The potential of both native and oxidized NFC were 21 

studied for this purpose. Various emulsion formulations were prepared and the abilities of different 22 

formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, 23 

were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% 24 

HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of 25 

native NFC in combination with HFBII resulted in an immediate drug release for both of the 26 

compounds. The results indicate that these NFC originated biopolymers are suitable for 27 

pharmaceutical emulsion formulations.  The native and oxidized NFC grades can be used as emulsion 28 

stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the 29 

emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage 30 

when compared to surfactant concentrations of conventional excipients traditionally used in 31 

pharmaceutical emulsion formulations.  32 
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1. Introduction 8 

Oral administration route is the preferred drug delivery route for chronic therapy due to its high patient 9 

compliance and ease of administration when compared to the parenteral routes. The bioavailability 10 

of orally administered poorly water soluble biopharmaceutical classification system (BCS) class II 11 

drugs is limited by their solubility in the varying conditions of the gastrointestinal tract (GIT) (Khadra 12 

et al., 2015). Consequently this may result in poor bioavailability. Several formulation strategies have 13 

been developed to tackle the solubility limitation including soluble complexes, emulsions and self-14 

emulsifying systems (Fahr, 2007;Singh et al., 2011). In lipid based drug delivery systems the drug 15 

molecules are solubilized in the formulation, which is beneficial for consistent bioavailability of 16 

poorly water soluble drugs. Emulsion formulation strategies have been used to increase the aqueous 17 

solubility of poorly soluble drugs and to control the required bioavailability of these drugs (Gao et 18 

al., 1998;Gorain et al., 2014;He et al., 2011).  19 

Emulsions are widely used as pharmaceutical dosage forms as the emulsified materials may obtain 20 

advantages such as improved bioavailability and masking of poor organoleptic properties when 21 

compared to other dosage forms. Typically pharmaceutical emulsions are used for oral, topical or 22 

intravenous administration routes. However, emulsions are thermodynamically unstable and 23 

therefore must be stabilized by addition of an emulsifying agent. Several emulsifying agents can be 24 

used depending on the type of emulsion that is produced (Strickley, 2004). The use of traditional 25 

pharmaceutical emulsifiers may be limited by their concentration dependent toxicity (Davis et al., 26 

1970;Gloxhuber, 1974). In general, orally administered nonionic and anionic surfactants are low in 27 

toxicity but compatibility with skin and mucous membranes is concentration dependent (Gloxhuber, 28 

1974).  29 

Typically used nonionic surfactants in pharmaceutical dosage forms include Tweens, Spans, 30 

Cremphors and Pluronic block copolymers. However, these compounds may interfere with the 31 
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absorption of certain drugs due to the inhibition of various efflux pumps and transporters present in 1 

the GIT (Rege et al., 2001;Rege et al., 2002;Woodcock et al., 1992). The drug absorption may be 2 

increased if the surfactants affect the functionality of efflux pumps. This may affect the desired 3 

bioavailability levels of certain drug compounds that are substrates for efflux pumps or transporters 4 

in the GIT.  In food industry proteins in addition to emulsifiers are widely used in emulsion 5 

stabilization (Wilde et al., 2004). Proteins stabilize emulsions due to their interfacial properties and 6 

the ability to form viscoelastic layers at interfaces. Natural biopolymers, such as proteins, offer an 7 

alternative to synthetic excipients used in the stabilization of pharmaceutical emulsions. 8 

Development of nanotechnology has enabled the production of nanocellulose from the natural 9 

polymer cellulose. Nanocellulose term applies to nanofibrillated cellulose (NFC), bacterial cellulose 10 

(BC) and cellulose nanocrystals (Klemm et al., 2011). Plant materials such as wood pulp are 11 

commonly used starting materials for NFC preparation. Typically the production includes mechanical 12 

fibrillation of native cellulose before and/or after enzymatic or chemical pretreatment. The diameter 13 

of native NFC (NFC-N) fibers is typically 5-60 nm and the length is several micrometers. The NFC-14 

N surface chemistry, hemicellulose content, fiber dimensions and the proportions of crystalline and 15 

amorphous regions may vary depending on the origin of cellulose as well as nanofibrillation 16 

processing (Klemm et al., 2011;Lin and Dufresne, 2014). NFC-N from plant materials may have 17 

hemicelluloses and lignin as accompanying impurities on the surface of the fibrils (Fall et al., 2011). 18 

Hemicellulose contains carboxyl groups and on the surface of NFC-N it introduces a surface charge 19 

to the NFC fibers due to the deprotonation of carboxyl groups.  20 

Cellulose can be generally considered to be biocompatible due to moderate, if any, foreign responses 21 

in vivo (Märtson et al., 1999;Miyamoto et al., 1989).  Additionally, NFC has been shown to be 22 

nontoxic in various in vitro cell models (Hannukainen et al., 2012;Hua et al., 2014;Vartiainen et al., 23 

2011). Plant derived NFC-N and BC have been used in various biomedical applications such as drug 24 

delivery, skin tissue repair and tissue bioscaffolds for cellular culture (Kolakovic et al., 25 

2012;Kolakovic et al., 2013;Malinen et al., 2014;Rouabhia et al., 2014). Plant derived native NFC-N 26 

is a promising matrix material for controlled drug release applications due to its high surface area to 27 

its volume ratio and the multiple carboxyl binding sites on the surface of NFC-N fibers that can 28 

interact with drug molecules via electrostatic interactions (Kolakovic et al., 2013). The electrostatic 29 

binding of molecules with carboxyl groups present on the surface of NFC-N is pH dependent. 30 

Electrostatic interactions between negatively charged carboxyl groups present in NFC-N and 31 

positively charged drugs has been seen as the main binding mechanism for these drugs (Kolakovic et 32 

al., 2013). However, drug interactions with NFC driven by other mechanisms such as aromatic π 33 
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stacking and hydrogen bonding might still take place regardless of the charge of the molecule. The 1 

surface of NFC can be activated via TEMPO [(2,2,6,6-Tetramethylpiperidin-1-yl)oxyl] oxidation to 2 

contain negatively charged carboxyl groups as binding sites for various macromolecules such as 3 

peptides and enzymes (Weishaupt et al., 2015). This approach enables the immobilization of drugs 4 

and macromolecules by electrostatic interactions due to the high density of negative charges on the 5 

surface of TEMPO oxidized NFC (NFC-O). The NFC-O fibers have typically 3-4 nm diameter and 6 

the length in the range of few micrometers (Saito et al., 2006;Saito et al., 2007). Furthermore, NFC-7 

O has been shown to be nontoxic in in vitro cell models (Alexandrescu et al., 2013;Hua et al., 2014). 8 

Hydrophobin proteins (HFBs) are a group of small about 10 kDa amphiphilic fungal proteins that are 9 

capable of lowering the interfacial tension by self-assembly into monolayers at 10 

hydrophobic/hydrophilic interfaces such as air-water (a/w) and oil-water (o/w) (Linder et al., 11 

2005;Linder, 2009;Paananen et al., 2013). Due to this property HFBs have the ability to convert 12 

hydrophobic surfaces into hydrophilic ones and vice versa (Lumsdon et al., 2005;Szilvay et al., 2007). 13 

HFBs are nontoxic by themselves which is a prerequisite for pharmaceutical excipients (Ebbole, 14 

1997). Additionally, a surface layer of HFB on the airborne fungal spores has been shown to prevent 15 

immune recognition (Aimanianda et al., 2009). This is an attractive feature for materials in 16 

pharmaceutical applications. Based on differences in biophysical properties and hydropathy patterns 17 

HFBs are divided into class I and class II HFBs (Linder, 2009). Class II Trichoderma reesei HFBs 18 

(e.g., HFBI, HFBII and HFBIII) are more water soluble than class I HFBs and can be easily dissolved 19 

at rather high concentrations (at least 100 mg/ml) in aqueous solutions (Kisko et al., 2008;Linder et 20 

al., 2005). The amphiphilic nature of HFBs is attributed to the existence of a hydrophobic patch on 21 

the surface of otherwise fairly hydrophilic surface of HFB monomers (Linder et al., 2005). The 22 

overall structure therefore resembles the structure of surfactants with one hydrophobic and one 23 

hydrophilic part. The amphiphilicity makes HFBs suitable surface coating materials for pure drug 24 

crystals as well as drug carrier materials. HFBs have been successfully used as surfactants, 25 

encapsulating agents for nutraceuticals and coatings for drug nanoparticles (NPs) (Israeli-Lev and 26 

Livney, 2014;Sarparanta et al., 2012;Valo et al., 2010).  HFBII coating on the surface of drug NPs 27 

has been shown to introduce mucoadhesive properties to drug NPs in the GIT (Sarparanta et al., 28 

2012). For poorly water soluble drugs, mucoadhesive formulations are beneficial for improving drug 29 

bioavailability due to the prolonged time at the site of drug absorption.  30 

Recently NFC has been used in combination with HFBs to produce emulsions, stabilize drug 31 

nanocrystals and to produce aerogel matrices for HFB coated drug NPs (Valo et al., 2011;Valo et al., 32 

2013;Varjonen et al., 2011). It has been shown in our previous study that HFBs and NFC can be used 33 
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successfully to stabilize o/w emulsions (Varjonen et al., 2011). Surface active HFB fusion proteins 1 

that contained cellulose-binding domains from cellulolytic enzymes were used. By combining the 2 

fusion protein HFBs and NFC emulsions that contained tightly packed thin NFC films at the oil/water 3 

interface were obtained. In this study Trichoderma reesei HFBII and NFC were used for the 4 

stabilization of pharmaceutical emulsions. Due to the interesting surface properties, low toxicity and 5 

good biocompatibility of both NFC and HFBII, these materials were selected for the production of 6 

o/w emulsion formulations. 7 

The emulsions were used for the encapsulation and release of poorly water soluble BCS II drugs 8 

naproxen (NAP) and ibuprofen (IBU). HFBII was used as a surfactant to stabilize the o/w interface 9 

of the emulsions, whereas NFC was added to modify the viscosity of the continuous aqueous phase. 10 

The addition of NFC polymer increases the viscosity of the continuous phase in o/w emulsions as 11 

well as w/o/w emulsions and creates a polymer network that limits drop collision, thus reducing the 12 

coalescence phenomena (Carrillo et al., 2015;Dimic-Misic et al., 2013;Garti, 1999;Xhanari et al., 13 

2011).  Furthermore, the bending of hydrophilic NFC at the o/w interface favors positive curvature 14 

towards the organic oil-phase and results in water continuous o/w emulsions (Binks, 2002). These 15 

properties were exploited for emulsion stabilization. The effect of the amount of NFC, HFBII and 16 

their combinations on the emulsion stability was studied. After the preliminary formulation 17 

optimization, the most suitable formulations were selected for the drug release studies. The two 18 

different grades of NFC, native and oxidized, were expected to induce differences in the drug release 19 

profiles.  20 

2. Materials and methods 21 

2.1 Materials 22 

Hydrophobin class II protein HFBII from Trichoderma reesei was provided by VTT Technical 23 

Research Centre of Finland, Finland. Native (Growdex® 1.73%) and oxidized (0.56%) nanofibrillated 24 

cellulose hydrogels (NFC-N and NFC-O, respectively) were kindly provided by UPM-Kymmene 25 

Corporation, Finland. Cellulose kraft pulp was chemically modified and fibrillated to form NFC 26 

hydrogels (Saito et al., 2006;Saito et al., 2007). Due to birch based raw material the NFC-N used in 27 

this work contained some soluble hemicelluloses. This hemicellulose fraction attributes to the slightly 28 

anionic surface charge of NFC-N. Higher negative charge of NFC-O is generated by the carboxyl 29 

groups directly on the fiber surface (carboxylic acid  content 1.02 mmol/g pulp). 5 mg/ml stock 30 

solutions of HFBII and NFC-N were prepared in ultrapure water. NFC-O was used at the provided 31 

concentration of 5.6 mg/ml. Soybean oil (batch no. MKBN8800V) and ethyl oleate (batch no. 32 
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BCBL9739V) were purchased from Sigma-Aldrich, USA and UK respectively. NAP and IBU were 1 

purchased from Sigma-Aldrich, USA and China respectively. 1 mg/ml stock solutions of IBUand 2 

NAP were prepared in soybean oil. Solubility of IBUand NAPin soybean oil was confirmed by 3 

nephelometry (data not shown) (Nepheloscan Ascent, Labsystems, Finland). Acetonitrile was of 4 

analytical grade, Sigma-Aldrich, Germany. Phosphate salts used in the preparation of 0.1 M pH 7.4 5 

phosphate buffer were of analytical grade, Sigma-Aldrich, Germany. Whatman 0.4 µm pore size 6 

Track-Etch polycarbonate membranes were used as semipermeable membranes in the 7 

diffusionstudies, Sigma-Aldrich, Germany. 8 

2.2 Methods 9 

2.2.1. Emulsion preparation method 10 

Emulsions were prepared from combinations of ultrapure water, soybean oil, ethyl oleate, HFBII 5 11 

mg/ml stock solution, NFC-N 5 mg/ml stock solution and NFC-O 5.6 mg/ml stock solution. To 12 

prevent aggregation in an aqueous environment, HFBII stock solution was sonicated first for 10 13 

minutes before preparing the emulsions. All formulations were premixed by repeated pipetting in 14 

eppendorf tubes prior to ultrasound-sonication. The final emulsion volume was 1 ml for all emulsion 15 

formulations and the volume of the oil phase was 10%. The ultrasound-sonication based method for 16 

the preparation of emulsions was described in our previous study (Varjonen et al., 2011). The same 17 

method was used in this study with minor modifications.  The sonication was performed with a high 18 

intensity ultrasound processor (Sonics, USA) equipped with a 2 mm stepped microprobe (power 750 19 

W, frequency 20 kHz and amplitude 30%). During 4 x 30 seconds of sonication the samples were 20 

kept in an ice bath. After the sonication the samples were homogenized in an ultrasonic bath for 1 21 

hour. For high-shear mixing tests, a process time of 1-4 minutes was used (25 000rpm, Ultra-Turrax 22 

T8, IKA WERKE, Germany). In NAP and IBU formulations the drug was dissolved in soybean oil 23 

in 1 mg/ml concentration prior to the emulsion preparation. Table 1 summarizes the different 24 

formulations and their specific contents. 25 

 26 

 27 

 28 

 29 

 30 

 31 
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Table 1. Emulsion formulation codes and contents. NAP and IBU containing formulations were 1 

prepared based on preliminary formulations. 2 

Formulation code HFBII 
(mg/ml) 

NFC-N 
(mg/ml) 

NFC-O 
(mg/ml) 

Soybean oil 
(10 %) 

Ethyl 
oleate 

(10 
%) 

NAP 
(mg/ml) 

IBU 
(mg/ml) 

CNS-1  0.1  ×    

CNS-2  0.5  ×    

CNS-3  1  ×    

CNS-4  1.25  ×    

CNS-5  1.5  ×    

CNE-1  0.1   ×   

CNE-2  0.5   ×   

CNE-3  1   ×   

CNE-4  1.25   ×   

CNE-5  1.5   ×   

HS-1 0.1   ×    

HS-2 0.5   ×    

HS-3 1   ×    

HS-4 1.25   ×    

HS-5 1.5   ×    

HCNS-1 1 0.5  ×    

HCNS-2 1 1  ×    

HCNS-3 1 1.5  ×    

HCNE-1 1 0.5   ×   

HCNE-2 1 1   ×   

HCNE-3 1 1.5   ×   

HCOS-1 1  0.5 ×    

HCOS-2 1  1 ×    

HCOS-3 1  1.5 ×    

HCOE-1 1  0.5  ×   

HCOE-2 1  1  ×   

HCOE-3 1  1.5  ×   

NAP-1 1 1  ×  0.1  

NAP-2 1  1 ×  0.1  

NAP-3 1 1.5  ×  0.1  

NAP-4 1  1.5 ×  0.1  

NAP-5 1   ×  0.1  

IBU-1 1 1  ×   0.1 

IBU-2 1  1 ×   0.1 

IBU-3 1 1.5  ×   0.1 

IBU-4 1  1.5 ×   0.1 

IBU-5 1   ×   0.1 

H = HFBII 
CN = NFC-N (native nanofibrillated cellulose) 
CO = NFC-O (TEMPO oxidized nanofibrillated cellulose) 
S = soybean oil 
E = ethyl oleate 

IBU= ibuprofen formulation 
NAP= naproxen formulation 

 3 

 4 
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2.2.2. Emulsion droplet size and zeta-potential measurements  1 

HFBII stabilized emulsions were diluted 1:10 with dilute HFBII (0.01 mg/ml in ultrapure water) 2 

solution to avoid the possible breakage of HFBII protein coated emulsion droplet o/w interface 3 

surface structures. The zeta-potential values of emulsion droplets were measured by a ZetaSizer 4 

Nano-ZS (Malvern Ltd., UK) in water at 25°C in a folded capillary cell (Malvern Ltd., UK). Dynamic 5 

light scattering (DLS) measurements for hydrodynamic diameter and size distribution of emulsion 6 

droplets were also measured by a ZetaSizer Nano-ZS (Malvern Ltd., UK) in water at 25°C in 7 

disposable polystyrene cuvettes (Sarstedt,Germany). Size measurements were performed at day 1 and 8 

at day 28 after the emulsion preparation, whereas zeta-potential measurements were performed only 9 

at day 1. 10 

2.2.3. Emulsion stability index (ESI)  11 

The stability of the emulsions was evaluated by following the emulsion phase separation. Qualitative 12 

emulsion stability index (ESI) values were used to evaluate the phase separation of emulsions during 13 

1 month storage at 4°C in glass vials (Varjonen et al., 2011). Digital camera images were taken to 14 

follow the phase separation of clear aqueous phase from the opaque emulsion phase. The volume 15 

fraction of opaque emulsion phase was determined from the separation of the clear aqueous phase. 16 

The digital camera images were analyzed with ImageJ software (National Institutes of Health, 17 

Bethesda, USA). With ImageJ, a line was drawn from the top to the bottom of the emulsion in the 18 

glass vial. Maximum and minimum intensities along the line length that represented the total volume 19 

were determined in order to estimate emulsion separation. The distance values in pixels (x-axis) were 20 

plotted against gray values (y-axis). The distance values were normalized to represent the total 21 

emulsion volume (x-axis). The gray values were normalized to represent emulsion/water separation 22 

(y-axis). Above or at a value of 0.5 (at a scale of 0-1) at y-axis, the corresponding volume fraction at 23 

x-axis was considered to be unseparated opaque emulsion. Below the value of 0.5 at y-axis, the 24 

corresponding volume fraction at x-axis was considered to be separated clear aqueous phase. ESI 25 

values were calculated from the volume of separated water and total volume as follows.  26 

𝐸𝑆𝐼 = 1 − 
𝑉𝑤,𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
 27 

ESI value 1 corresponds to completely unseparated emulsion whereas 0 is a value for completely 28 

separated system. The ESI values were calculated at day 1, 3, 7, 14, 21 and 28 after the emulsion 29 

preparation. 30 

2.2.4 Viscosity measurements 31 



9 
 

The shear rate viscosity of ultrapure water, 0.1 % and 0.15 % NFC-N and NFC-O was measured at 1 

4°C with HAAKE Viscotester iQ Rheometer (Thermo Fisher Scientific, Karlsruhe, Germany) 2 

equipped with a Peltier system for temperature control. Results were analyzed with HAAKE 3 

RheoWin 4.0 software (Thermo Fisher Scientific). Cup and double-gap cylinder geometry was used 4 

with a 4.0 mm gap and 2.64 ml sample volume. Before each measurement, the samples were allowed 5 

to rest for 2 min at 4°C. Shear viscosity was measured by increasing the shear rate from 100 to 1900 6 

1/s. All measurements were performed in triplicate. 7 

2.2.5. Screening of oils for emulsions 8 

The solubility of NAP and IBU in soybean oil and ethyl oleate was measured. An excess amount of 9 

NAP and IBU were added to both oils, and then mixed with magnetic stirring. After stirring for 72 h 10 

at 25 °C, the equilibrated samples were centrifuged for 10 min at 14 000 g to remove excess amount 11 

of undissolved drug. Then the supernatant was filtered through a 0.2 µm pore size Minisart syringe 12 

filter, Sartorius, Germany. Filtered supernatants were diluted first with methanol/acetonitrile (50:50) 13 

and then further with acetonitrile/phosphate buffer pH 2 (40/60). The concentrations of NAP and IBU 14 

were determined with Ultra performance liquid chromatography (UPLC) instrument Acquity UPLC 15 

(Waters, USA). 16 

2.2.4. Cryo-TEM and light microscopy 17 

Optical microscopy images of emulsions were taken with an optical microscope (Leica DMLB, 18 

Germany) and a microscope coupled digital camera as a quality control. Emulsion samples were 19 

diluted 1:10 for light microscopy imaging. A single droplet of an emulsion was dropped between the 20 

object plate and the cover glass for optical imaging. Emulsions were further imaged and characterized 21 

with 200 kV Tecnai F20 Cryo-TEM microscope (FEI Company, Holland). Before freezing, the 300 22 

mesh copper grids (Quantifoil R2/2, Holey Carbon Film) were treated with glow discharge treatment. 23 

The samples were frozen as thin films with automatic plunge freezing and bare grid technique (Leica 24 

EM GP, Germany) using liquid nitrogen cooled ethane. 25 

2.2.5. In vitro drug release studies 26 

In vitro drug release studies were performed in side-by-side-diffusion cells (Laborexin, Finland). 27 

Whatman 0.4 µm pore size Nuclepore Track-Etch polycarbonate membrane filters were clamped 28 

between two identical halves of diffusion cells. The exposed surface area of the clamped membrane 29 

was 0.785 cm2. The diffusion cells were kept at 37°C by a surrounding water socket to mimic 30 

physiological conditions. 0.8 ml of drug containing emulsion (0.1 mg/ml of drug) was transferred 31 

into the donor compartment, which was filled to 3.5 ml final volume with 0.1 M phosphate buffer pH 32 
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7.4. The acceptor compartment was filled with 3.5 ml of 0.1 M pH 7.4 phosphate buffer. Free drug 1 

solutions of NAP and IBU were used as drug release controls through the membrane. The control 2 

samples in the donor compartment contained 0.08 mg of drug per 3.5 ml volume corresponding to 3 

100 % of drug in the emulsions. 200 µl samples were collected from the acceptor compartment and 4 

replaced with 200 µl of fresh buffer at 0.17, 0.5, 1, 2, 3, 4, 5, 6, 7 and 8 h. The free drug solutions of 5 

NAP and IBU were used as controls. 6 

NAP and IBU concentrations from the in vitro drug release samples were analyzed with Ultra 7 

performance liquid chromatography (UPLC) instrument Acquity UPLC (Waters, USA). For NAP, 8 

the column was a BEH Shield column 1.7 µm (2.1 x 50 mm) (Waters, USA) at 30°C. The flow rate 9 

was 0.5 ml/min and the injection volume 5 µl. The detection was performed at a wavelength of 231 10 

nm. During the gradient run, the mobile phase consisted of a mixture of acetonitrile and 15 mM 11 

phosphate buffer pH 2 in 30:70 ratio at 0 - 3 min. After 3 min, the mobile phase ratio was changed to 12 

70:30. The retention time of NAP was 1.49 min. The linear concentration of NAP was established in 13 

the range of 0.1 - 10 µg/ml and LOQ for NAPwas 0.007 µg/ml. For IBU the column was a HSS-C18 14 

column 1.8 µm (2.1 x 50 mm) (Waters, USA) at 30°C. The flow rate was 0.5 ml/min and the injection 15 

volume 5 µl. The detection was performed at a wavelength of 219 nm. During the isocratic run the 16 

mobile phase consisted of a mixture of acetonitrile and 15 mM phosphate buffer pH 2 in 60:40 ratio. 17 

The retention time of IBU was 0.85 min. The linear concentration of IBU was established in the range 18 

of 0.1 - 25 µg/ml and LOQ for IBU was 0.09 µg/ml. 19 

3. Results and discussion 20 

3.1. Emulsion droplet size and zeta-potential measurements 21 

Measurements of emulsion droplet diameters and zeta potential values were performed in order to 22 

estimate the minimum amount of the protein needed to gain stable emulsion droplets with the 23 

sonication method (Varjonen et al., 2011). Sonication produces emulsions with ultrasound-driven 24 

mechanical vibrations. Droplet size, polydispersity index (PDI) and zeta potential measurements were 25 

performed for HFBII stabilized and 10% soybean oil containing preliminary formulations. These HS-26 

1 to HS-5 formulations contained 0.1–1.5 mg/ml of HFBII as the sole emulsion stabilizer (see Table 27 

1). DLS measurements were not possible with the samples containing NFC as the light scattering by 28 

the long fibers distorted the signal too much.  29 

Higher HFBII concentrations in the aqueous phase reduced the emulsion droplet sizes effectively 30 

from 2013 nm to 345 nm and increased the zeta potential values from 25 mV to 32.7 mV (Table 2). 31 

Based on DLS and zeta potential measurements it was concluded that HFBII concentrations between 32 
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1-1.5 mg/ml (HS-3–HS-5), in the aqueous phase of the emulsions, resulted in good colloidal stability 1 

at day 1. These formulations had smaller droplet sizes and higher zeta potential values over 30 mV 2 

when compared to the formulations with smaller amounts of HFBII. However, the PDI values were 3 

quite high for all formulations indicating that the size distribution of droplets was wide in all 4 

emulsions. It might be possible to obtain monodisperse emulsion droplets with other techniques like 5 

homogenization (Maa and Hsu, 1999). At day 28 the emulsion droplet size had increased significantly 6 

for formulations with low amount of HFBII (0.1-0.5 mg/ml) when compared to day 1 results. The 7 

amount of HFBII in these emulsions was therefore insufficient. For formulations that contained 8 

higher amounts of HFBII (1-1.5mg/ml) a decrease in the droplet size at day 28 was observed. This 9 

might have been caused by the loss of excess amount of protein at the o/w interface. As HFBII is 10 

known to self-associate and form tetramers in an aqueous solution at the concentration range 0.5-10 11 

mg/ml (Kisko et al., 2008). 12 

Table 2. DLS and zeta potential measurements at day 1 and 28 after the preparation (mean ± S.D., 13 
n=3). Preliminary formulations HS-1 to HS-5 contained 0.1 - 1.5 mg/ml of HFBII as the sole emulsion 14 

stabilizer. Higher HFBII concentrations reduced the emulsion droplet sizes and increased the zeta 15 
potential values. PDI values were relatively high for all formulations indicating polydispersity. 16 

Abbreviations: H=HFBII and S=soybean oil. 17 

Formulation Day 1: 
z-average 

diameter (nm) 

Day 28: 
z-average 

diameter (nm) 

Day 1: 
PDI 

Day 28: 
PDI 

Day 1: 
Zeta Potential (mV) 

HS-1 2013 ± 33 4623± 1879 0.517 ± 0.014 1 ± 0 25 ± 0.6 

HS-2 537.6 ± 11.7 696.8 ± 208.4 0.415 ± 0.028 0.492 ± 0.219 24.8 ± 0.2 

HS-3 339.0 ± 1.6 324.9 ± 39.0 0.440 ± 0.012 0.349 ± 0.035 31.4 ± 1.0 

HS-4 301.4 ± 7.3 194.1 ± 0.9 0.443 ± 0.024 0.144 ± 0.027 30.2 ± 1.0 

HS-5 345.0 ± 4.7 183.6 ± 1.3 0.520 ± 0.017 0.129 ± 0.006 32.7 ± 1.1 

 18 

HS-3 formulation contained 1 mg/ml of HFBII and the emulsion droplet size did not change 19 

drastically during 28 days. Therefore, 1 mg/ml HFBII concentration was selected to be used in the 20 

combination formulations with NFC fibers. HFBII has been shown to adsorb to hydrophobic 21 

interfaces, such as hydrophobic polymer films and o/w interphase of an emulsion, and to lower the 22 

interfacial tension even at low concentrations (Lumsdon et al., 2005). 0.2 mg/ml HFBII concentration 23 

in the aqueous phase has been shown to stabilize o/w emulsions effectively. These results support our 24 

finding that HFBII can be used as a surfactant to stabilize emulsions at extremely low concentrations. 25 

Furthermore HFBs are nontoxic, which is an advantage when HFBs are used as pharmaceutical 26 

excipients (Aimanianda et al., 2009;Ebbole, 1997).  27 
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The sonication method produced submicron emulsion droplets with high zeta potential values (Table 1 

2). Therefore, the emulsion quality was considered to be sufficient for the evaluation of HFBII and 2 

NFC materials in the stabilization of pharmaceutical emulsions. Different sonication times and high-3 

shear mixing were tested with HS-3 formulation in order to evaluate further whether the emulsion 4 

droplet size and PDI values could be decreased. Based on the results it was observed that a sonication 5 

time of 2 minutes was optimal (Table 3). Longer sonication times or high-shear mixing resulted in 6 

over processing and significant increase in the droplet size. The size range of droplet diameters was 7 

in micrometers with high-shear mixing as opposed to nanometers obtained with sonication. 8 

Therefore, high-shear mixing was not suitable as a preparation process. Furthermore, it was observed 9 

that it was beneficial to mix all formulation components gently by repeated pipetting prior to 10 

sonication while preparing the formulations that contained NFC in addition to HFBII. The addition 11 

of NFC after the sonication of HFBII and other formulation components (oil and water) was tested, 12 

but this approach led to fast phase separation in a matter of minutes. 13 

Table 3. The effect of the preparation process on emulsion droplet size and PDI values (mean ± S.D., 14 
n=3). HS-3-formulation was prepared with sonication and high-shear mixing techniques with 15 
different mixing durations. Sonication technique produced overall smaller emulsion droplet diameters 16 

than the high-shear mixing technique.  17 

Preparation method Day 1:  
z-average 

diameter (nm) 

Day 28:  
z-average 

diameter (nm) 

Day 1: 
 PDI 

Day 28:  
PDI 

2 min sonication 339.0 ± 1.6 324.9 ± 39.0 0.440 ± 0.012 0.349 ± 0.035 

3 min sonication 415.3 ± 6.1 366.0 ± 6.2 0.796 ± 0.046 0.310 ± 0.008 

4 min sonication 550.0 ± 18.7 480.0 ± 11.8 0.937 ± 0.045 0.540 ± 0.027 

5 min sonication 605.9 ± 55.3 357.0 ± 35.0 0.834 ± 0.113 0.550 ± 0.090 

1 min high-shear mixing 4117 ± 468 nd 0.319 ± 0.052 nd 

2 min high-shear mixing 4327 ± 202 nd 0.372 ± 0.073 nd 

4 min high-shear mixing 6388 ± 120 nd 0.123 +0.029 nd 

 18 

3.2. NFC and HFBII as emulsion stabilizers 19 

3.2.1. Formulations and emulsion stability index (ESI) 20 

Formulation optimization process was performed by evaluating the ability of different formulation 21 

components and their combinations to stabilize the emulsion. Emulsions of soybean oil or ethyl oleate 22 

and water in the presence of HFBII (1 mg/ml) and/or NFC were studied (see Table 1 for details). 23 

Soybean oil and ethyl oleate are pharmaceutically acceptable oils that have been used successfully in 24 

a variety of pharmaceutical formulations (Chen et al., 2006;Cui et al., 2009;Gorain et al., 2014;Wulff-25 

Pérez et al., 2009). However, soybean oil has a broader use as it is FDA approved for intravenous, 26 
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oral and topical formulations. The stability of different formulations were evaluated by following the 1 

phase separation of emulsions with ESI (Fig. 1A-F). The best material combinations were selected 2 

for IBU and NAP formulations based on the highest ESI values of preliminary formulations. 3 

The ability of NFC-N (0.1-1.5 mg/ml) to stabilize the emulsions increased when a higher amount of 4 

NFC-N was used in combination with soybean oil (Fig. 1A-B). NFC-N formulations with soybean 5 

oil were more stable than with ethyl oleate during the 28 day period, which could be observed as 6 

higher ESI values and less phase separation. The stability of the soybean oil based emulsions 7 

increased in direct proportion to the amount of NFC-N, whereas the effect of NFC-N amount on the 8 

stability of ethyl oleate emulsions could not be seen as clearly. It has been previously shown that a 9 

continuous NFC-N matrix forms in the aqueous phase of o/w emulsions when NFC-N concentration 10 

is increased to 1 mg/ml (Varjonen et al., 2011).  This was reportedly followed by association of oil 11 

droplets to the NFC-N fibrils most likely caused by the emulsification process. Best stability was 12 

gained in our study when at least 1.5 mg/ml NFC-N was used with soybean oil in emulsion 13 

stabilization. Reportedly the addition of NFC increases the viscosity of the continuous phase of o/w 14 

emulsions and creates a polymer network that limits drop collision, thus reducing the coalescence 15 

phenomena (Carrillo et al., 2015;Dimic-Misic et al., 2013;Garti, 1999;Xhanari et al., 2011). 16 

Therefore, the stability of NFC-N containing emulsions depended on the concentration of NFC-N 17 

due to the increased viscosity of the water phase as well as the benefits gained from increasing the 18 

amount of NFC for encapsulation of the oil droplets. 19 
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 1 

Figure 1. Emulsion stability index (ESI) values for different emulsion formulations (n=1): A) NFC-2 
N with soybean oil, B) NFC-N with ethyl oleate, C) HFBII with soybean oil, D) 1 mg/ml HFBII (HS-3 
3) with soybean oil prepared by different sonication times, E) HFBII-NFC-N formulations with 4 

soybean oil or ethyl oleate, F) HFBII-NFC-O formulations with soybean oil or ethyl oleate. 5 
Abbreviations: H=HFBII, CN= NFC-N (native nanofibrillated cellulose), CO= NFC-O (TEMPO 6 

oxidized nanofibrillated cellulose), S=soybean oil and E=ethyl oleate. 7 
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When HFBII (0.1-1.5 mg/ml) was used for emulsion stabilization only the formulation that contained 1 

the smallest amount of HFBII (0.1 mg/ml) was clearly unstable (Fig. 1C). The most stable 2 

formulations contained 1.25-1.5 mg/ml of HFBII, which indicated clearly that the stability of these 3 

emulsions increased in direct proportion to HFBII content. However, 1 mg/ml HFBII concentration 4 

(HS-3 formulation) was selected to be used in combination with NFC due to the size and PDI 5 

measurements that clearly indicated 1.25 and 1.5 mg/ml concentrations to be excessive (Table 2). 6 

The stability of 1 mg/ml HFBII stabilized HS-3 formulation series that was prepared with different 7 

sonication times was tested (Fig. 1D). Differences in emulsion stability evaluated by phase separation 8 

were quite small. By contrast, the emulsion droplet size and PDI value increased when sonication 9 

time was increased. Regarding the overall emulsion stability 2 min sonication time was optimal. 10 

The stability of the emulsions was increased when adequate amounts of HFBII and NFC-N or NFC-11 

O were used in combination (Fig. 1E-F). The ESI values were higher than when sole emulsion 12 

stabilizers were used in the formulations. We tested 0.5, 1 and 1.5 mg/ml concentrations of NFC-N 13 

and NFC-O in combination with 1 mg/ml HFBII and evaluated the impact of the two oils, soybean 14 

oil and ethyl oleate, on ESI values. Formulations with low amounts (0.5 mg/ml) of NFC-N or NFC-15 

O proved to be quite unstable as the emulsion phase separation was quite fast already at day 3. The 16 

most stable formulations had 1.5 mg/ml of NFC-N or NFC-O in combination with 1 mg/ml of HFBII. 17 

Relatively stable emulsions were obtained when the surfactants like properties of HFBII were 18 

combined with NFC that can be used to modify the viscosity of the water phase in addition to droplet 19 

encapsulation. Based on the emulsion stability data, the HFBII concentration was kept at a constant 20 

1 mg/ml and two different NFC-N and NFC-O concentrations, 1 mg/ml and 1.5 mg/ml, were selected 21 

for the drug containing formulations in the release studies. 22 

Shear viscosities of 1 mg/ml (0.1 %) and 1.5 mg/ml (0.15 %) of NFC-N and NFC-O were measured 23 

as a function of shear rate in order to evaluate the effect of NFC concentration on the viscosity of 24 

aqueous continuous phase in emulsions (Fig. 2). NFC-N at low concentrations of 0.1% and 0.15% 25 

did not affect the viscosity significantly as the shear rate did not affect the viscosity and the viscosity 26 

profile was similar to pure water. NFC-O had approximately ten times higher viscosity values than 27 

NFC-N at 100 (1/s) shear rate. Furthermore, moderate shear thinning was observed for NFC-O.  It 28 

has been shown for both NFC grades in several previous studies that the concentration affects the 29 

viscosity and intense shear thinning behavior is observed (Benhamou et al., 2014;Bhattacharya et al., 30 

2012;Nechyporchuk et al., 2014;Pääkkö et al., 2007). NFC hydrogels can be classified as 31 

pseudoplastic materials in this regard.  32 
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 1 

Figure 2. Shear rate viscosities of water, 0.1 % and 0.15 % of NFC-N and NFC-O at 4 °C (mean ± 2 

S.D., n=3). 3 

The low shear viscosity of 0.1% and 0.15% NFC-N and NFC-O was not surprising as there was a 4 

very small amount of fibers to form the NFC network in the aqueous environment. Upon exposing 5 

increased shear rate the weakly bonded network falls apart easily and individual fibers start to flow. 6 

However, as NFC-O had slightly higher shear viscosity at 4 °C, which was also used as the storage 7 

temperature of emulsions, it seems that NFC-O may be more effective in emulsion stabilization due 8 

to modified viscosity of  the continuous phase even at low concentrations. The effect of low NFC-N 9 

concentration on viscosity was minimal. The emulsion stabilizing effect of NFC-N at 0.1 - 0.15 % 10 

concentration may be attributed to the reduced emulsion droplet movement rather that the increased 11 

viscosity of the continuous phase. 12 

The solubility of NAP and IBU in soybean oil and ethyl oleate was measured to find the drug 13 

solubilization capacity of the oils (Table 4). Ethyl oleate had a higher solubilization capacity than 14 

soybean oil with regard to both drugs. The solubility of NAP was 2.8 g/L in soybean oil and 5.1 g/L 15 

in ethyl oleate. For IBU, the solubility was 46.2 g/L in soybean oil and 98.7 g/L in ethyl oleate. The 16 

different drug solubilization capacity of soybean oil and ethyl oleate is attributed to the structural 17 

differences of these oils (Chen et al., 2006;Date and Nagarsenker, 2008;Sharif Makhmalzadeh et al., 18 

2012). Vegetable origin soybean oil contains triglycerides with long hydrocarbon chains and is a high 19 

molecular volume oil, whereas fatty acid ester ethyl oleate is a lower molecular volume oil than 20 

soybean oil (Date and Nagarsenker, 2008). Soybean oil with a 1563 Å3 molecular volume has been 21 

shown to have a slightly lower solubilizing capacity for lipophilic drugs than ethyl oleate with a 600 22 

Å3 molecular volume (Malcolmson et al., 1998). However, the solubility of both drugs in tested oils 23 

was significantly higher than the aqueous solubility. Therefore, the emulsion formulations containing 24 

either of these oils can be used to effectively solubilize both NAP and IBU. Soybean oil was selected 25 

for the oil phase in the emulsions and for the solubilization of poorly water-soluble model drugs NAP 26 
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and IBU as it proved to be slightly better than ethyl oleate with regard to ESI values. 10% of oil phase 1 

and 90 % of aqueous phase with 0.1 mg/ml drug loading was used for all emulsions. The drug amount 2 

in the emulsions can be improved by a higher amount of drug in the oil phase or by a higher amount 3 

of the oil phase. However, these conditions were chosen for the release studies in order to evaluate 4 

the performance of the emulsion stabilizing excipients. Further studies are needed to optimize the 5 

amount of NFC and HFBII for emulsions with a higher volume of oil phase. 6 

Table 4. Solubility values for NAP and IBU in aqueous media, soybean oil and ethyl oleate. 7 

Compound Molar mass  
(g/mol) 

pKa logP Solubility in 
aqueous media 

Solubility in 
soybean oil 

Solubility in 
ethyl oleate 

NAP 230.3 4.15 3.18 
15.9 mg/L, MQa 

2.8 - 3.6 g/L, pH=7.4b 
2.8 g/L 5.1 g/L 

IBU 206.3 4.85 3.97 
21 mg/L, MQc 

6 g/L, pH=7.4d,e 
46.2 g/L 98.7 g/L 

aYalkowsky et al., 2003; bMora and Martínez, 2006; cYalkowsky and Dannenfelser, 1992; 8 
dLerdkanchanaporn et al., 2001; eLevis et al., 2003 9 

 10 

3.2.2. Characterization with optical microscopy and cryo-TEM 11 

HFBII stabilized emulsion droplets could clearly be observed in optical microscopy as well as cryo-12 

TEM images. Optical microscopy images of formulations that were selected for the drug release 13 

studies were taken after 1:10 dilution as a quality control (Fig. 3 A-C). The formulations contained 14 

HFBII and combinations of HFBII-NFC-N and HFBII-NFC-O as stabilizers. NFC-O stabilized 15 

emulsions seemed to be more stable upon dilution in light microscopy images than NFC-N stabilized 16 

(Fig. 3B-C). NFC-O stabilized emulsions had more uniform distribution of emulsion droplets in 17 

evenly distributed fiber network whereas NFC-N stabilized emulsions formed clusters of NFC-N and 18 

emulsion droplets upon dilution. Emulsion droplets with diameters in the micrometer range were 19 

observed with optical microscopy.  20 
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1 
Figure 3. Light microscopy and cryo-TEM images of HFBII, HFBII-NFC-N (1:1 mass ratio) and 2 

HFBII-NFC-O (1:1 mass ratio) stabilized emulsions. Upper image row (A-C) contains light 3 
microscopy images of respective formulations, whereas lower image row (D-F) contains cryo-TEM 4 

images. The emulsion droplets of HFBII-NFC-N and HFBII-NFC-O formulations were within the 5 
entangled NFC fibers. For solely HFBII stabilized emulsions only spherical emulsion droplets were 6 

observed. Scale bar is 40 µm for A-C, 100 nm for D-E and 200 nm for F image. 7 

 8 

The spherical morphology of the protein coated emulsion droplets as well as the wide size distribution 9 

in all formulations was confirmed with cryo-TEM (Fig. 3D-F). For HFBII-NFC-N formulation the 10 

fibrous NFC matrix surrounded the emulsion droplets, whereas for solely HFBII stabilized emulsion 11 

only the protein coated spherical emulsion droplets were observed. The NFC-O fibers surrounding 12 

the protein coated oil droplets consisted of shorter NFC-O fibers as observed in cryo-TEM images 13 

(Fig. 3F) as opposed to the longer NFC-N fibers (Fig. 3E). NFC-O fibers are typically shorter than 14 

NFC-N fibers due to the oxidation process that reduces the fiber length (Benhamou et al., 2014). It 15 

was observed that the emulsion droplets had a tendency to exist as clusters when stabilized with the 16 

shorter NFC-O fibers. The expected stabilization mechanism, a combination of HFBII stabilized oil 17 

droplets with NFC fiber network, of the emulsions was confirmed with cryo-TEM. 18 

3.3. In vitro drug release studies 19 
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In vitro drug release studies were done in diffusion cells through a 0.4 µm pore size membrane. 1 

Therefore, lag times were observed in the release rate profiles at the beginning of the drug release 2 

studies. The model compounds NAP and IBU both have three distinctive diffusion steps from the o/w 3 

emulsions in our experimental setup that need to be considered when interpreting the drug release 4 

results. These steps include: 1) diffusion across the HFBII coated oil droplet interfacial film, 2) 5 

diffusion through the water phase of the diluted emulsion in the donor compartment and 3) diffusion 6 

from the donor compartment across the membrane to the receptor solution.  7 

The drug release profiles of NAP and IBU from solely HFBII stabilized formulations were compared 8 

to NFC containing formulations. The amount and grade of NFC was investigated in terms of effect 9 

to drug release rate. The cumulative drug release of NAP and IBU from the HFBII, HFBII-NFC-N 10 

and HFBII-NFC-O stabilized emulsions are presented in Figure. 3. NAP (pKa 4.15) and IBU (pKa 11 

4.85) are both weak acids and poorly soluble in low pH values but have a high solubility above pH 12 

6.8 due to the ionization (Álvarez et al., 2011;Khadra et al., 2015). Therefore, the diffusion of NAP 13 

and IBU across the HFBII coated oil droplet interfacial films and NFC fiber matrix was evaluated by 14 

using the free drug solutions of NAP and IBU as positive controls for immediate release. The in vitro 15 

drug release experiments, conducted under sink conditions, indicated that different formulation 16 

compositions had an impact on the drug release rate when compared to the free drug solution controls 17 

of NAP and IBU. Major differences in the drug release rate were observed depending on the grade of 18 

NFC fibers used in the formulations.  19 

NAP release was fast from HFBII-NFC-N formulations and 64-70% was released during 8 h in 20 

comparison to 85% of the free drug through the membrane (Fig. 4). The drug release was slightly 21 

slower than for the positive control of immediate release (free drug solution), but still close to an 22 

immediate drug release profile. Sustained drug release profile for NAP was obtained with the HFBII-23 

NFC-O formulations as only 18-27% was released during 8 h. The drug release of NAP from HFBII 24 

formulation (NAP-5) resembled a sustained release profile with the 38% of drug release during 8 h. 25 

The amount of NFC-N or NFC-O in the formulation affected only slightly the drug release rates of 26 

NAP. However, the grade of NFC fibers used in the formulations with HFBII had a significant impact.  27 
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 1 

Figure 4. Drug release studies with NAP andIBU: A) Cumulative NAP release (%) from different 2 
formulations (mean ± S.D., n=3-5), B) Cumulative IBUrelease from different formulations (mean ± 3 

S.D., n=4-5). Mass ratios of HFBII to NFC-N or NFC-O are in brackets. 4 

 5 

The drug release results of NAP and IBU from different formulations were rather similar (Fig. 4). 6 

IBU release was fast from the HFBII-NFC-N and HFBII formulations. 62-67% of IBU was released 7 

in 8 h, while 80% of the free drug had passed through the membrane in the same time. Sustained drug 8 

release profiles were obtained for IBU with HFBII-NFC-O formulations as only 20-23% of IBU was 9 

released during 8 h. The amount of NFC-N or NFC-O in the formulation did not affect significantly 10 

the IBU release rates, but the grade of NFC fibers did. Overall, the model drugs were released in a 11 

sustained manner from the HFBII-NFC-O formulations. By comparison, immediate release profiles 12 

were gained with the HFBII-NFC-N formulations. It was expected that different release profiles 13 

would be gained with these materials as it has been previously reported that the drug interactions with 14 
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HFBII and different NFC-grades has an impact on the drug release rate (Kolakovic et al., 2013;Valo 1 

et al., 2010;Valo et al., 2013). Especially pH dependent electrostatic interactions between drug 2 

molecules and NFC fibers seem  to play an important role with regard to drug release (Kolakovic et 3 

al., 2013). It is possible that some drug interactions existed with both NFC grades driven by aromatic 4 

π stacking and hydrogen bonding. However, physical interactions such as viscosity, stability and the 5 

surface barrier of the emulsion droplets were most likely more critical in determining the drug release 6 

rates. 7 

At pH 7.4 both NFC grades are negatively charged, but NFC-O has a greater negative charge due to 8 

a greater distribution of carboxyl groups directly at the fiber surface (Saito et al., 2007;Weishaupt et 9 

al., 2015). HFBII has an isoelectric point (pI) of 6.7 and a negative net charge at higher pH values 10 

(Krivosheeva et al., 2013). However, it is possible that the protein coated oil droplets may have had 11 

a positive charge at pH 7.4 as the formation of tight interfacial HFBII film reportedly reduces the 12 

surface area and ionizable functional groups exposed to water resulting in a shift of the pI (Basheva 13 

et al., 2011). The measured zeta potential values of HFBII stabilized preliminary formulations 14 

indicated positive net charge at neutral environment of ultrapure water (Table 2). It is likely that the 15 

sustained release profiles of NAP and IBU from HFBII-NFC-O formulations were attributed to a 16 

greater diffusion barrier at the o/w-interphase that was present due to electrostatic attraction between 17 

negatively charged NFC-O and positively charged HFBII. As NFC-N has a lower negative charge, 18 

the effect was not as pronounced resulting in an immediate drug release profiles.  19 

Futhermore, NFC-O stabilized emulsions were more stable upon dilution (Fig. 3B-C, 10x dilution) 20 

and the emulsion structure remained more intact than with NFC-N. This was probably attributed the 21 

high surface density of negative charges of NFC-O fibers due to multiple carboxyl groups on the fiber 22 

surface (Benhamou et al., 2014). Since the emulsions were slightly diluted (4x) in the release 23 

experiments, the electrostatic repulsion between NFC-O fibers may have stabilized the emulsion 24 

droplets of HFBII-NFC-O formulations more effectively in addition to electrostatic attractive 25 

interactions between HFBII and NFC-O. Furthermore, NFC-O had a higher viscosity than NFC-N 26 

(Fig.2) indicating that NFC-O was a more effective grade for emulsion storage stabilization due to 27 

increased viscosity of the continuous phase. In theory, the higher viscosity of HFBII-NFC-O 28 

formulations may have prolonged the drug release, but upon dilution the effect should have been 29 

minimal. We believe that the sustained drug release properties of HFBII-NFC-O formulations were 30 

at least partially attributed to the electrostatic interactions between HFBII and NFC-O, which 31 

stabilized the emulsion structure. 32 
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For solely HFBII protein stabilized formulations an immediate and sustained drug release profiles 1 

were observed for IBU and NAP respectively. IBU has a higher solubility at pH 7.4 than NAP (see 2 

Table 4.). The solubility difference at pH 7.4 may be the reason for the differences in the drug release 3 

rates of these molecules. The solubility of the diffusing drug molecules can reportedly have a higher 4 

effect on drug release rate than the interfacial film properties of the emulsion droplets (Llinàs et al., 5 

2013). Consequently, the solubility of the ionized drug molecules, in the pH 7.4 release medium, can 6 

affect the diffusion rate from the inner oil phase and overall drug release. Therefore, it was concluded 7 

that while the HFBII formulations were successful in controlling the drug release to some extent it 8 

was beneficial to add NFC into the formulations to gain well defined release profiles. Furthermore, 9 

the storage stability of the emulsions was improved when NFC was used in the stabilization together 10 

with HFBII (Fig. 1).  11 

HFB proteins have hydrophobic and hydrophilic patches directly at their surfaces (Lumsdon et al., 12 

2005;Paananen et al., 2013;Szilvay et al., 2007). The amphiphilic nature of HFBII has been exploited 13 

for hydrophilic and hydrophobic interactions with interfaces. Previously the ability of HFBs to 14 

modify hydrophobic interfaces into hydrophilic ones has been used in nanoencapsulation of 15 

hydrophobic nutraceuticals, stabilization of emulsions and hydrophobic drug nanoparticles (Israeli-16 

Lev and Livney, 2014;Valo et al., 2010;Varjonen et al., 2011). Here HFBII was mainly used to 17 

stabilize the o/w interphase of pharmaceutical emulsions and to aid in the solubilization of BCS class 18 

II drugs in the oil phase of emulsions. Some hydrophobic and hydrophilic interactions between HFBII 19 

and the model drugs may have existed, but the effect on drug release profiles was minimal. Similar 20 

release profiles were observed from the HFBII and HFBII-NFC-N formulations apart from NAP with 21 

HFBII. The release profiles of IBU and NAP were close to an immediate release profiles from HFBII-22 

NFC-N. At the low concentrations of 1 mg/ml for HFBII and 1 - 1.5 mg/ml for NFC-N in the 23 

formulations, these materials were better suited for emulsion storage stabilization than to provide 24 

controlled release. However, immediate release profile after oral administration is beneficial in many 25 

pharmaceutical applications such as analgesia. 26 

Based on the in vitro drug release studies, it was clearly shown that the use of native or oxidized NFC 27 

as an emulsion stabilizer results in different drug release profiles. Morphology and the stability of the 28 

different formulations most likely had an impact on drug release results. Drug release profiles were 29 

affected only moderately by the viscosity of the emulsions or by the interactions of the drug molecules 30 

with NFC fibers and HFBII proteins. Clearly both NFC grades, native and TEMPO oxidized, can be 31 

used as emulsion stabilizers. However, further studies are needed in order to evaluate a concentration 32 

range where HFBII may act as a surfactant and provide sustained release from the inner oil phase. 33 



23 
 

The oxidized NFC grade seems promising excipient for sustained release formulations as an emulsion 1 

stabilizer due to its greater extent to modify the drug release rate. The native NFC grade in turn seems 2 

more suitable for formulations that benefit from an immediate drug release profile. As an increasing 3 

number of drug candidates suffer from poor aqueous solubility, the emulsion formulation is an option 4 

for solubilization of lipophilic drugs and enhancement of the adequate absorption from the GIT 5 

following oral administration.  6 

4. Conclusions 7 

This study has shown that a combination of natural biopolymers HFBII and nanofibrillated cellulose 8 

can be used to tailor emulsions for immediate and sustained drug release applications. The low 9 

toxicity of these materials is a significant benefit in drug delivery applications via the oral route when 10 

compared to synthetic traditional surfactants. The formulations that contained HFBII and oxidized 11 

nanofibrillated cellulose proved to be effective in controlling the drug release rate, which indicated 12 

the suitability of these materials for controlled drug release applications. Formulations with HFBII 13 

and native nanofibrillated cellulose were more suitable for immediate drug release applications. The 14 

drug release profiles or our poorly soluble model compounds, naproxen and ibuprofen, could be tuned 15 

by the choice of the nanofibrillated cellulose grade.  16 
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