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Abstract  
Extracellular and cytosolic leaflets in cellular membranes are distinctly different in lipid 
composition, yet they contribute together to signaling across the membranes. Here we 
consider a mechanism based on long-chain gangliosides for coupling the extracellular and 
cytosolic membrane leaflets together. Based on atomistic molecular dynamics simulations, 
we find that long-chain GM1 in the extracellular leaflet exhibits a strong tendency to 
protrude into the opposing bilayer leaflet. This interdigitation modulates the order in the 
cytosolic monolayer and thereby strengthens the interaction and coupling across a 
membrane. Coarse-grained simulations probing longer time scales in large membrane 
systems indicate that GM1 in the extracellular leaflet modulates the phase behavior in the 
cytosolic monolayer. While short-chain GM1 maintains phase-symmetric bilayers with a 
strong membrane registration effect, the situation is altered with long-chain GM1. Here, the 
significant interdigitation induced by long-chain GM1 modulates the behavior in the 
cytosolic GM1-free leaflet, weakening and slowing down the membrane registration process. 
The observed physical interaction mechanism provides a possible means to mediate or foster 
transmembrane communication associated with signal transduction. 
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Introduction 
Cells invest substantial resources to synthesize a broad range of membrane lipids and to 

maintain their asymmetric inhomogeneous distributions in biological membranes [1, 2]. In 

addition to roles in maintaining membrane stability and fluidity, awareness is growing that 

the headgroups of glycosphingolipids (GSLs) are of particular relevance for recognition 

processes, especially by tissue lectins [3-5]. Notably the presence of glycolipids and the 

mode of presentation are of critical significance to serve as functional counterreceptors [6]. 

In this respect, organization of lipids as in-plane membrane domains has been studied for 

decades [7-9], yet an understanding of domain structure and composition, and the biological 

function of domains overall, is still quite incomplete. The concept of lipid rafts [10-12] 

(functional nanoscale domains rich in cholesterol, saturated phospholipids, and bioactive 

lipids such as gangliosides) as well as different interpretations of research data [13] concur 

with the existence of functional membrane units comprised of proteins and lipids, where 

lipid-protein interactions modulate several aspects of protein activity [14]. This suggests that 

membrane-associated proteins can reorganize their membrane environment to be rich in 

lipids that modulate protein features dynamically. In comparison, under protein-free 

conditions the existence of membrane domains with different lipid compositions and 

physical properties is well established [15]. Studies on model membranes have 

unambiguously shown macroscopic phase separation into cholesterol-rich liquid-ordered (Lo) 

and cholesterol-poor liquid-disordered (Ld) domains in a manner [16, 17], where the phase 

separation in the bilayer plane arises from lipid-dependent liquid-liquid immiscibility.  

Due to their already noted asymmetry, the two leaflets of biological membranes are 

also different in composition [1, 2]. The lipid mixture that is typical for the extracellular 

leaflet of eukaryotic plasma membranes contains sphingolipids with a high percentage of 

cholesterol. It tends to phase separate when reconstituted in model membranes. In contrast, 

such phase separation does not take place for the lipid mixture that represents the 

cytoplasmic leaflet enriched in, e.g., unsaturated lipids [18, 19].  

The distinctly different transmembrane compositions of biological membranes can 

lead to phase asymmetry or antiregistration, meaning that Lo and Ld domains overlap each 

other in the two opposite leaflets [20,21]. Meanwhile, a domain in one leaflet can induce 

formation of a similar domain also in the opposite leaflet (i.e., both being in the Lo or Ld 

phase), leading to phase symmetry or registration [20-22]. Several mechanisms for protein-

independent domain induction between membrane leaflets have been proposed, including 
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interfacial energy minimization [23], electrostatic coupling [20], lipid and cholesterol flip-

flop [20, 24], composition-curvature coupling [25, 26], and dynamic chain interdigitation 

[20, 27, 28]. However, despite considerable research efforts, there is no consensus on 

whether biological membranes are phase symmetric or asymmetric. Furthermore, the exact 

mechanism of induced domain formation remains undetermined.  

There is evidence in favor of both bilayer registration and antiregistration [18, 20, 23, 

29] but the overall understanding of their causes is still unclear. This partly stems from 

difficulties to carry out robust and unambiguously interpretable experiments on domains in 

biological membranes, where, for instance, one applies methods such as detergent extraction 

that is unable to characterize the phases in individual bilayer leaflets. On the other hand, 

experiments on asymmetric model membranes are carried out under non-equilibrium 

conditions, right after the formation of an asymmetric membrane, since lipid flip-flops quite 

rapidly lead to transbilayer symmetry. Although these studies have significantly enhanced 

our current understanding of this topic, the interpretation of experimental data is admittedly         

not straightforward.  

Theoretical and simulation studies provide another means to explore the coupling 

between membrane domains in different leaflets and to elucidate the physical principles that 

lead to domain registration and/or antiregistration [20, 26, 30-33]. These studies have 

suggested that the coupling of phase behavior between the leaflets is highly sensitive to lipid 

composition, yet it is not well understood why certain lipid mixtures induce domain 

registration whereas others do not.  

Based on the concept of the sugar code that ascribes informational contents to 

glycans presented by scaffolds (sphingolipids, proteins) [34-36], giving special attention to 

GSLs is warranted. GSLs are integral components of ordered lipid domains [37, 38], and 

their carbohydrate headgroup is linked to a ceramide moiety, exclusively sorted to the 

extracellular leaflet of plasma membranes, where they can engage in biorecognition [39, 40]. 

We here focus on ganglioside GM1, a so-called true factotum of nature [41], because it is a 

counterreceptor for adhesion/growth-regulatory galectins, hereby involved for example in 

effector/regulatory T cell communication, lectin endogytosis, neuritogenesis, and 

neuroblastoma growth arrest [42-47]. To efficiently do so, positional aspects (density and 

presentation) appear crucial [48]. Notably, the interaction with the human bioeffector has 

also been analyzed in model membranes without proteins [49]. Looking at the structure of 

GSLs, a source of variability concerns the length of the acyl chain. While the majority of 

phospholipids have acyl chains with 16 to 18 carbons, GSLs can typically have considerably 
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longer chains that consist of 24 carbons or more [50-52], allowing GSLs to pack tightly into 

ordered membrane domains. The long hydrocarbon chains may promote greater exposure of 

the carbohydrate headgroup and therefore enhance ligand binding of GSLs [51]. In fact, the 

routing signal for apical and axonal transport of glycoproteins by galectin-4, i.e. the sulfatide 

headgroup, is presented preferentially by ceramide with long (C24)-chain fatty acids [52-54]. 

As a further consequence, a long tail can extend into the opposite bilayer leaflet through 

interdigitation and thereby provide a potential means for signal transduction [50]. Given that 

contribution by both modes of placement of the long acyl chain can be of physiological 

relevance, consideration of the effect of GSL chain length on membrane registration is of 

interest.   

To address this issue, we carried out a series of atomistic and coarse-grained 

molecular dynamics (MD) simulations on many-component membranes with GM1 to 

unravel how its acyl chain length (ranging from 16 to 30 carbons) contributes to membrane 

registration. We found that long-chain GM1 interdigitates to a substantial degree to the 

opposite membrane leaflet and alters its phase behavior.   

 

 

Methods 
 

Atomistic simulations of symmetric bilayers  

We used all-atom MD simulations to consider eight types of model membranes that were 

composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) (202 molecules), 

GM1 (14 molecules), and cholesterol (Chol) (72 molecules). These eight systems were also 

simulated in the absence of cholesterol. The molar concentrations of GM1 (POPC) were 

therefore 4.9 (70.1) and 6.5 (93.5) mol% in systems with and without cholesterol, 

respectively. Cholesterol concentration was 25 mol% in the three-component system (Table 

1). The transmembrane lipid distributions were in all systems symmetric. The factor that 

differentiates the eight types of bilayers is the length of the fatty acid acyl chain of GM1: it 

ranged from palmitic acid (16:0, referred to as GM116) to melissic acid (30:0, referred to as 

GM130). Given the abundance of both POPC and cholesterol, the POPC/cholesterol/GM1 

mixture provides an appropriate basis to consider the effects of GM1 in a system, whose 

phase behavior has been suggested to be rich, especially when it is extended with other lipid 

components (see, e.g., [55]). Figure 1 shows the chemical structure of all lipid molecules 
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involved in this study. Bilayers were extensively hydrated with 13785 water molecules, and 

14 Na+ counterions were added to neutralize the excess charge of GM1.  

Lipid molecules were described by the all-atom OPLS force field [56] with recent 

extensions for carbohydrates [57] and lipids [58-61]. Water was described by the TIP3P 

model [62] that is compatible with the OPLS-AA force field. Prior to MD simulations the 

systems were energy-minimized using the steepest-descend algorithm. For each of the 16 

systems, an MD simulation of 400 ns was conducted using the GROMACS 4.6.6 software 

package [63]. The first 100 ns period of the trajectories was considered as equilibration and 

the last 300 ns of the trajectories were used for analyses.  

Simulations were performed in the isobaric-isothermal (NpT) ensemble (310 K and 1 

bar). The temperature of the system was maintained by the velocity-rescaling (v-rescale) 

thermostat with a time constant of 0.1 ps [64]. The temperatures of the solute and the solvent 

were controlled independently. The pressure of the system was maintained semiisotropically 

by the Parrinello–Rahman barostat with a 1 ps time constant [65]. The time step for 

integration of equations of motion was set to 2 fs. Periodic boundary conditions were 

imposed in all three dimensions. For the long-range electrostatic interactions, the particle-

mesh Ewald (PME) method was used [66]. Lennard–Jones interactions were cutoff at a 

distance of 1.0 nm. The linear constraint solver (LINCS) algorithm was used to preserve 

covalent bond lengths [67].  

 

Coarse-grained simulations of asymmetric bilayers 

To study the effect of acyl chain length of GM1 on membrane phase behavior, we employed 

the coarse-grained Martini model [68-70]. A bilayer consisting of 1348 lipids (674 in each 

leaflet) was first constructed as a random arrangement of 30 mol% palmitoylsphingomyelin 

(PSM), 40 mol% dilinoleylphosphatidylcholine (DLiPC), and 30 mol% cholesterol (Figure 

1). This system was then used for preparing four systems with varying concentration and 

acyl chain length of GM1 (Table 1). First, either 1.5 or 6.0 mol% of GM1 was inserted into 

the upper leaflet by randomly replacing existing lipids from this leaflet with GM1 in a 

manner where the 30:40:30 ratio between PSM, DLiPC, and cholesterol, respectively, was 

maintained. Second, the fatty acid attached to these GM1 molecules was chosen to be either 

five (referred to as GM1short) or eight beads (referred to as GM1extended) long (Figure 1). The 

“short” and “extended” cases correspond to GM1 molecules with an acyl chain of ~18 and 

~30 carbons, respectively. The ternary DLiPC/PSM/cholesterol system chosen for coarse-

grained simulations is largely the standard system employed in phase separation studies 
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using the Martini approach (see, e.g., refs. [71,72]). The systems were hydrated with 18110 

water beads. About 150 mM of NaCl was added to the system together with counterions to 

compensate for the charge of GM1s. 

 The four GM1-containing bilayers were simulated for 10 µs each, using a time step of 

5 fs. We performed 10 repeats for each bilayer (4 x 10 x 10 µs) (Table 1). A GM1-free 

control system (as a symmetric bilayer) was simulated for 10 µs with a time step of 25 fs 

(Table 1). For the GM1-free control system, we performed 8 repeats. The temperature of the 

lipids and the solvent were separately maintained at 300 K using the velocity-rescaling 

thermostat with a time constant of 1 ps [64]. Pressure was coupled semiisotropically to the 

Parrinello–Rahman barostat [65]. A reference pressure of 1 bar was employed, and the 

coupling time was set to 12 ps. The Verlet cutoff scheme was employed for nonbonded 

interactions. Electrostatic interactions were handled with the reaction field method with a 

cut-off of 1.1 nm and the relative permittivity of 15. The potential shift modifier was 

employed for the Lennard–Jones interactions and a cut-off of 1.1 nm was used. Periodic 

boundary conditions were employed in all three dimensions. All coarse-grained simulations 

were run with GROMACS 5.0.x [73].  

 

Analyses  

Area per lipid was calculated by dividing the time-averaged total area of the simulation box 

(in the bilayer plane) by the number of lipids in a single leaflet. Bilayer thickness was 

computed from the distance between average positions of phosphate atoms in the two bilayer 

leaflets. The deuterium order parameter SCD describing the conformational order along lipid 

acyl chains is defined for each carbon in the chain as in [74]:  

 

𝑆!",!= !
!

 cos! 𝜃! −  !
!
, 

 

where θi is the angle between a C–D bond (C–H in simulations) for carbon number i and 

the bilayer normal. The angular brackets denote averaging over time and lipids of the 

same type.  

To characterize the conformation of GM1’s pentasaccharide, we analyzed the 

orientation of the GM1 headgroup in terms of three vectors depicted in Figure S1. The first 

vector was named as Wrist based on its location in the GM1 headgroup, describing the 

orientation of the first sugar (Glc) that is O-glycosidically connected to ceramide. The two 
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other vectors (Thumb and Forefinger) characterize the orientations of the two outermost 

branches in the GM1 head group (Figure S1) that are the contact sites for human and 

bacterial lectins [75]. The angles between these vectors and the bilayer normal provide an 

overall picture of the head group conformation.  

Interdigitation between the two membrane leaflets is characterized by the overlap 

parameter 𝑞!" 𝑧  as [76]  

 

𝑞!" 𝑧 = 4 !!(!)!!(!)
!!(!)!!!(!) !

, 

 

where z is the coordinate in the membrane normal direction, and 𝑞!(𝑧) and 𝑞!(𝑧) are the 

number densities of atoms belonging to the inner and outer leaflets, respectively, calculated 

from a trajectory centered at the middle of a bilayer center. When the overlap parameter is 

integrated over the membrane along the bilayer normal direction (over the simulation box 

from zero to d), one finds the length scale 

 

𝜆 = 𝑞!" 𝑧 d𝑧
!

!
 , 

 

where λ describes in a suggestive fashion the length scale over which the two monolayers are 

interdigitated. Here, one has to keep in mind that λ does not describe the extent of 

interdigitation of individual lipid chains. Rather, it provides a measure for the average 

interdigitation between the two leaflets.  

 In CG simulations of the many-component membranes, we quantified the extent of in-

plane phase separation by the contact fraction between saturated (PSM) and unsaturated 

(DLiPC) lipids using the approach of Domanski et al. [77],  

 

𝑓mix =
𝑐DLiPC–PSM

𝑐DLiPC-PSM + 𝑐DLiPC-DLiPC
, 

 

where cDLiPC–PSM denotes contacts between the phosphate (PO4) beads of DLiPC and PSM 

molecules. Here, a cut-off distance of 1.1 nm was employed for the determination of 

contacts. The contact fraction fmix was computed only within the GM1-free leaflet of the 

asymmetric CG membrane. In a randomly distributed leaflet with no phase separation, fmix is 
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large (e.g., about 0.41 in the CG system with 6 mol% GM1), but decreases the more the 

more the system phase separates.  

 The rate of phase separation was quantified by fitting the time evolution of the contact 

fractions (fmix) with an exponentially decaying function 

 

𝑓!"#(𝑡) = 𝐴𝑒!! ! + 𝑏 , 

 

where A and b are constants related to the initial and final levels of separation, t is the 

simulation time, and τ is a decay constant associated with the phase separation process. 

 In CG model systems, where phase separation into Lo and Ld domains was observed, 

we analyzed the transbilayer domain registration of regions with a similar degree of order, 

i.e. the membrane registry effect. To this end, for every analyzed frame, the saturated (PSM) 

and unsaturated (DLiPC) lipids were binned onto a 2D grid based on the position of the 

phosphate bead (PO4). The cell area was set to 1 nm2 and the binning was performed every 

10 ns. Then, we checked whether the corresponding cells in the 2D grids of the two leaflets 

were mostly occupied by the same lipid type (saturated vs. unsaturated). If this condition was 

satisfied, transbilayer domain registration for this cell was registered. The number of cells 

with observed coupling was then counted for each studied frame, and the data were 

normalized so that the value of one stands for perfect registry, where an Lo domain of one 

leaflet faces an Lo domain of the opposing leaflet, and similarly an Ld domain faces an Ld 

domain of the opposing leaflet. Similarly, the value of zero stands for perfect antiregistration, 

where an Lo domain in one leaflet faces an Ld domain of the opposing leaflet and vice-versa. 

Intermediate values describe the fraction of the system that is in registry.  

 In consideration of lateral diffusion, where the aim was to determine whether GM1 

interdigitation affects the fluidity in the opposing leaflet (see the results below), the mean-

squared displacement (MSD) of lipids was calculated from the first 2 µs, i.e., from the region 

in time where phase separation takes place. The fits to linear behavior in time were 

performed to the MSD data between 20–200 ns lag times. 

 

 

Results 
Long acyl chains of GM1 induce interleaflet coupling and ordering that span the whole 

membrane 
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Snapshots of atomistic simulations (Figure 2) clearly show the tendency of long acyl chains 

of GM1 to extend deep into the opposing bilayer leaflet. There is a significant reorganization 

of hydrocarbon chains at the midplane of the bilayer as demonstrated by the density profiles 

of the long acyl chains depicting a peak in the bilayer center, in contrast to a dip observed 

with short-tail GM1 (see Figure S2 in Supplementary Information).  

To quantify interdigitation in more detail, Figure S3 shows the partial densities of the 

terminal carbon atoms of the acyl and sphingosine tails of GM116 and GM130, as well as of 

the terminal carbon of the POPC sn-2 chain. The results for GM130 are quite revealing. The 

terminal carbon of the GM1 acyl chain protrudes about 2 nm into the opposite layer. This 

means that GM130 penetrates through the membrane to the head group region in the 

opposing membrane leaflet. The distribution of GM130 also has two maxima: the first 

maximum is located in the middle of the bilayer, characterizing acyl chains that lie along the 

membrane plane in the free volume cavity, and the second maximum resides deep in the 

opposite leaflet about 1.5 nm from the bilayer center. Cholesterol strengthens interdigitation, 

but the interdigitation is exceptionally pronounced without cholesterol, too. The two quite 

different orientations are also evident from the simulation snapshots in Figure 2. Meanwhile, 

the terminal carbons of GM116, the GM1 sphingosine chains, and the POPC sn-2 chain 

behave regularly.  

The threshold length of GM1 to observe the double-peak structure in the terminal 

carbon distribution is about 24 (Figure 3). For shorter acyl chains, calculations for GM1 

result in a single peak around the membrane center. For chain lengths of 24 and longer, the 

double-peak structure arises and becomes more and more prominent for increasing acyl 

chain length. Cholesterol increases the effect.  

Figure 4 highlights the above-discussed findings in terms of λ, which characterizes 

the length scale over which the two leaflets come into contact to a significant degree. The 

interdigitation becomes stronger for increasing GM1 acyl chain length. As to the role of 

cholesterol, GM130 in the absence of cholesterol results in the same value for λ as GM116 in 

the presence of cholesterol.  

Interdigitation of long acyl chains of GM1 has a quite dramatic effect on the acyl 

chain conformational order described by SCD (Figure 5). When the length of the acyl chains 

rises above ~24, the order parameter profile first levels off and then starts to increase again, 

reflecting how the terminal region of the GM1 acyl chain aligns with the hydrocarbon chains 

in the opposing leaflet. The effect is exceptionally strong with cholesterol. Similar behavior 
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with long acyl chains was recently observed for sphingomyelin in atomistic MD simulations 

[27], and with long free fatty acids in both MD simulations and NMR measurements [78]. In 

older studies, a similar shape of the SCD profile was observed for highly asymmetric 

phosphatidylcholines [79]. In this work, we found that apart from the GM1 acyl chain, the 

interdigitation does not cause notable changes to the properties of other lipid chains, such as 

the sphingosine chain of GM1 or the acyl chains of POPC. 

Atomistic simulations also revealed that the physical lipid bilayer properties such as 

average area per lipid and membrane thickness were not affected to any significant degree by 

changes in acyl chain length of GM1. Further, we found that the length of the acyl chain did 

not influence the conformation behavior and the orientation of the GM1 head group. These 

results (Figure S1, Figure S4, Table S2) are presented in Supplementary Information.  

 

Long-chain GM1 perturbs the phase behavior of the opposing leaflet 

The above atomistic results suggest that the interdigitation of long-chain GM1 such as 

GM130 reaches a level that can alter the order and thereby also the physical phase of the 

opposing leaflet. Large-scale simulations of the CG models were performed to test this 

assumption. Figure 6 shows structures for asymmetric many-component 

GM1:PSM:DLiPC:Chol membranes, where GM1 gangliosides with an extended acyl tail 

(GM1extended) in the upper leaflet interdigitate to the lower monolayer. The membrane system 

in question undergoes spontaneous phase separation into Lo and Ld phases in the absence as 

well as in the presence of GM1. GM1 partitions to the Lo-phase, as expected, and it does not 

alter the in-plane phase behavior of the leaflet that hosts GM1 (Figure 6). However, the 

simulation structures (Figure 6) suggest that the long GM1extended chains perturb the structure 

of the opposite leaflet. More importantly, the data also propose that the transbilayer domain 

registry is altered by GM1extended. To explore this idea, we first monitored the phase 

separation of the GM1-free leaflet in time. Figure 7 depicts for the GM1-free membrane that 

the contact fraction fmix decreases to a significant degree in the course of time, indicating 

considerable phase separation. The systems with GM1short result in largely the same view. 

However, with long-chain GM1extended the situation changes. The long-chain GM1 perturbs 

the opposite leaflet to an extent that also influences its phase behavior: the phase separation 

process is slowed down, and the extent of phase separation is weakened compared to systems 

with GM1short or without any GM1. However, the diffusion coefficients of lipids in the 

opposite leaflet remain unaffected by the GM1 acyl chain length (Figure S5) and 

consequently the observed slowing down of phase separation does not result from reduced 
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mobility of lipids.   

 The rate of phase separation was quantified by fitting the time course of the contact 

fractions with an exponentially decaying function (see Methods). The average value of the 

decay constants (determined from the ten replicas for each system) was found to be 0.7 and 

0.8 µs with 1.5 and 6 mol% of GM1short, respectively. With long-chain GM1, the average 

decay constant was observed to be 0.7 µs with 1.5 mol% and 0.9 µs with 6 mol% of 

GM1extended. For comparison, in the GM1-free control system the decay constant to describe 

the rate of phase separation was 0.9 µs. These data suggest phase separation in a leaflet 

opposite to the GM1short-rich monolayer to take place somewhat faster than phase separation 

opposite to a GM1extended –rich leaflet.  

 Similar conclusions can be drawn from Figure 8. It shows how 6 mol% of GM1extended 

slows down membrane registration significantly. More importantly, Figure 8 highlights that 

in the system with 6 mol% of this long-chain GM1 (GM1extended), the interdigitating GM1 

chains have a clear effect on the opposing leaflet, and disturbing its phase behavior (see Fig. 

7) leads to the weakest domain registration between the two leaflets among the systems we 

studied. 

 

 

Discussion  
Glycosphingolipids constitute a diverse class of molecules both in terms of their glycan 

structure and fatty acids. Most frequently, fatty acids in GSLs are C16, C18, C20, C22, C24, 

and C24:1 [80], though shorter [81] C12 and C14 and longer [82, 83] C26-C36 fatty acids 

occur. Experimental evidence suggests that the chain length can affect ligand properties of 

the glycan headgroup. For instance, it was shown that long-chain GSLs enhance the binding 

of verotoxin [81]. Galectin-4, involved in apical transport, has been observed to have a 

strong preference for long-chain sulfatide (C24) [52]. In our study, we have selected GM1, 

known for its counterreceptor status for bacterial and tissue lectins. Earlier monolayer studies 

suggested that GSLs’ acyl chain structure would affect the glycan’s presentation, such that 

increasing exposure of GSL carbohydrates to the solvent would correlate positively with 

increasing acyl chain length [51]. However, our simulation results reported in this paper 

show hardly any impact of acyl chain length (ranging from 16 to 30 carbon atoms) on 

solvent accessibility or the conformation of the carbohydrate headgroup of GM1.  
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We found that a long acyl chain exhibits a very strong tendency to interdigitate, i.e., 

to protrude deep into the opposing bilayer. A deeper penetration of these chains into the 

opposing bilayer leaflet was observed to correlate with a substantial increase in the ordering 

at the chain end. The stronger the interdigitation, the more ordered the chain ends were 

observed to become. The observed interdigitation that takes place in a chain-length-

dependent manner establishes a coupling between the two bilayer leaflets, as lipids in one 

leaflet can affect the structural properties of the other. Such behavior can be general for 

sphingolipids that are typically characterized by an inherent length asymmetry between their 

two chains [84].  

The presented atomistic simulation data suggest that long-chain GM1 in the 

extracellular leaflet could modulate the phase behavior in the opposing cytosolic leaflet 

through GM1-induced membrane coupling. To explore this possibility, we used coarse-

grained Martini simulations that allow considerations of sufficiently long times and large 

system sizes. In the simulations, GM1 resides exclusively in the extracellular leaflet, fully in 

line with experimental data. Our results showed spontaneous phase separation in GM1-

containing membranes, where GM1 preferentially segregated into Lo domains. Given that the 

GM1 concentration in the simulations was low, the observed separation is in line with earlier 

Martini simulation studies [85]. Furthermore, based on experiments, phase separation takes 

place in mixtures of PSM and cholesterol together with dioleoylphosphatidylcholine [86]. In 

the present simulations for GM1 with a shorter acyl chain (~18 carbons), the two bilayer 

leaflets exhibited perfect registry, i.e., they were phase-symmetric. In contrast, GM1 with an 

extended acyl chain (~30 carbons) was observed to perturb the phase behavior of the GM1-

free cytosolic leaflet. A long GM1 acyl chain that interdigitated into the opposite leaflet 

induced mixing between saturated and unsaturated lipids, thereby preventing or at least 

slowing down the ideal phase separation in the cytosolic leaflet. This result is consistent with 

an earlier experimental study, which showed the existence of an intermediate phase in the 

region opposite to an Lo domain [23].  

In aggregate, the present study shows a connection between GM1 acyl chain length 

and bilayer phase behavior. Interleaflet coupling is strongly promoted by long-chain GM1-

induced interdigitation, which modulates the phase behavior in the opposing membrane 

leaflet. Such a physical interaction between the leaflets offers a plausible mechanism for 

mediating or fostering signaling across asymmetric membranes.  
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Table 1. Compositions of the atomistic and coarse-grained lipid bilayer models.  

Bilayer Lipid composition GM1 type  
(number of carbon atoms or 
beads in the acyl chain)  

Simulation 
length 

Symmetric 
bilayers  
(all-atom 
model) 

GM1:Chol:POPC =  
4.86:25:70.14 

GM116 (16 carbon atoms) or 
GM118 (18 carbon atoms) or  
… or  
GM130 (30 carbon atoms)  

400 ns each 
(16 bilayers) 
= 6.4 µs 

GM1:POPC =  
6.48:93.52 

Asymmetric 
bilayers 
(coarse-
grained 
model) 

 
 

GM1:PSM:DLiPC:Chol = 
1.50:28.5:40:30 [GM1-rich leaflet] 
GM1:PSM:DLiPC:Chol =  
0:30:40:30 [GM1-free leaflet] 

GM1short (5 beads, corresponds 
to ~18 carbon atoms)  
or 
GM1extended (8 beads, 
corresponds to ~30 carbon atoms)  

For 1.5 
mol%, 10 µs 
each  
(3 bilayers) x 
10 repeats 
each  
= 300 µs; for 
6 mol% 
GM1extended, 
20 µs x 20 
repeats  
= 200 µs. 

GM1:PSM:DLiPC:Chol =  
6:27:38.5:28.5 [GM1-rich leaflet] 
GM1:PSM:DLiPC:Chol =  
0:30:40:30 [GM1-free leaflet] 

Symmetric 
bilayer 
(coarse-
grained 
model) 

GM1:PSM:DLiPC:Chol =  
0:30:40:30 

GM1-free model  
(control system) 

10 µs x  
8 repeats  
= 80 µs 
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Figure 1. Chemical structure different lipid species used for (a) all-atom and (b) coarse-
grained simulations. In atomistic simulations, the acyl chain length of GM1 was varied from 
16 to 30 carbon atoms. In coarse-grained simulations, GM1 had an acyl chain with either 
five (GM1short) or eight beads (GM1extended). 
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Figure 2. Snapshots of symmetric bilayers with the shortest (GM116, upper panel) and the 
longest (GM130, lower panel) ganglioside in the atomistic simulations. For clarity, bilayers 
are shown as a green transparent surface, where dark green depicts the edges of the bilayer 
region. GM1 (cyan) and cholesterol (orange) molecules are shown only in the upper leaflet, 
and POPC is not shown. For GM130, carbon atoms beyond the 18th carbon are shown in blue. 
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Figure 3. Partial density profiles (atomistic simulations) showing the distribution of the 
terminal carbon atom of the GM1 acyl chain in membranes (a) with cholesterol (Chol) and 
(b) without it, with varying length of the GM1 acyl chain. GM1 molecules considered here 
locate in the upper leaflet with z > 0 and interdigitate to the lower leaflet with z < 0.  
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Figure 4. Values of λ (in units of nm) for systems (red) with and (black) without cholesterol 
as a function of GM1 acyl chain length (atomistic simulations).  
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Figure 5. SCD order parameter profiles of GM1 chains shown in terms of the carbon number 
in the chain: (a, b) sphingosine and (c, d) acyl chain, in membranes (a, c) with, and (b, d) 
without cholesterol.  
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Figure 6. Final simulation structures of coarse-grained systems containing 6 mol% of (left) 
GM1extended or (right) GM1short, viewed from (top row) the side and from (bottom row) above. 
PSM is pictured in orange, DLiPC in green, cholesterol in white, and GM1 in cyan. Water 
and ions have been omitted from the images for clarity.    
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Figure 7. Contact ratio between PSM and DLiPC lipids during CG simulations that start 
from a random initial configuration and evolve towards phase separation.  
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Figure 8. Transbilayer domain registration in the different systems (CG simulations). The 
gray dotted line highlights the value where the data of the simulated systems (except for 
GM1extended (6 mol%)) converge.  
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