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SUMMARY  In this work we consider optimized twiddle fac-
tor multipliers based on shift-and-add-multiplication. We pro-
posc a low-complexity structure for twiddle factors with a reso-
lution of 32 points. Furthermore, we propose a slightly modified
version of a previously reported multiplier for a resolution of 16
points with lower round-off noise. For completeness we also in-
clude results on optimal coefficients for eight points resolution.
We perform finite word length analysis for both coefficients and
round-off errors and derive optimized coefficients with a mini-
mum complexity for varying requirements.
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1. Introduction

Computation of the discrete Fourier transform (DFT)
and inverse DFT is used in c¢.g. orthogonal frequency-
division multiplexing (OFDM) communication systems
and spectrometers. An N-point DFT can be expressed
as

N-—-1
X (k)= a(n)Wi k=01,N -1, (1)
n=0

where Wy = e/ ¥ is twiddle factor, the N:th prim-
itive root of unity with its exponent being evaluated
modulo N, n is the time index, and k is the frequency
index. Various methods for efficiently computing (1)
have been the subject of a large body of published lit-
craturc. These methods arc commonly referred to as
fast Fourier transform (FFT) algorithms. Also, many
different architectures to efficiently map the FFT algo-
rithm to hardware have been proposed [1].

A commonly used architecture for transforms of
length N = b" is the pipelined FFT [2-7]. The pipeline
architecture is characterized by continuous processing
of input data. In addition, the pipcline architecture is
highly regular, making it straightforward to automati-
cally generate FFTs of various lengths.

Figure 1 outlines the architecture of a Radix-2’,
single-path delay feedback (SDF), pipelined FFT ar-
chitecture for N = 256. This architecture is generic
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Table 1  Multiplication at different stages for different archi-
tecture (N = 256).

Stage number

Radix 1 2 3 4 5 6 7
2 Wass | Wizs | Wea | Wsz | Wig | Wy | Wa
22 [5 Wy | Wage | Wa Wea Wy | Wig | Wy

Wsg | Wase Wy Ws | Wag | Wy
Wy Ws | Wi | Wase | Wy | We | Wig
Wiy Wg | Wie | W3 | Wase | Wi | Wy
M.24[7]| Wy | Wie | Wa | Wase | Wa | Wig | Wa

while the required ranges of each complex twiddle fac-
tor multiplier for different algorithm are outlined in Ta-
ble 1 [5-8].

We will from now on denote a multiplier with a
twiddle factor resolution of N points around the unit
circle a Wy-multiplier. For small ranges of the twiddle
factor multipliers it is advantageous to use arithmetic
circuits optimized for the required coefficients rather
than general multipliers. A Wy multiplier only per-
forms multiplication by one of {1, j, —1, —j}, in practice
1 or —j, and is most commonly realized by combining it
in the subsequent butterfly (often denoted BFII as op-
posed to the standard butterfly BFI following [5]). For
larger NN it is common to utilize the octave symmetry
of the coefficients. This means that only twiddle fac-
tors corresponding to angles in the range 0 < o < w/4
needs to be considered. This is equivalent to twiddle
factors in the range 0 < m < N/8. Multiplications for
other valucs of m can be obtained by optionally swap-
ping outputs (symmetry around R(m) = (m) and
R(m) = F(m)) and negating one or both outputs (sym-
metry around R(m) = 0 and J(m) = 0). A complete
complex multiplier based on complex constant multi-
plication is shown in Fig. 2. In previous work, the com-
plex multipliers for Wg and Wy have been replaced
with constant complex multipliers based on shift-and-
add networks for performing the multiplication [10-12].

In this work, we propose a low complexity complex
constant Wso-multiplier based on trigonometric iden-
titics. Furthermore, we revisit and slightly improve
the Wig-multiplier proposed in [7] and, for complete-
ness, calculate the coefficients and complexity of the
Ws-multiplier. A preliminary version of this work was
presented in [9]. In this extended version, we have in-
cluded results on the finite word length properties. It
is shown that the coefficient quantization can lead to
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Fig.1 Radix-2? single-path delay feedback (SDF) pipeline FFT architecture (N = 256)
with twiddle factor stages as used in Table 1.
-1 Table 2  Trigonometric identities used for Wjg-multiplier.
R(x) Complex }* Coefficient, ‘ Used expression
Constant sin 2sin g cos ¢
Multiplier . ' sin % sin gr
N R(0) cos g cos g
¥ T {R—
S(0)
-1
() ﬁ o
Complex b1
Constant
Multiplier
-1
j"i
1 L1
Fig.2 Block diagram of complex multiplier based on complex Data o
constant multipliers. e Contral
Fig.3 Complex constant Wig-multiplier modified form [7].

larger errors than considered in [7,9]. Furthermore,
expressions for the round-off noise are derived. Based
on this, a slight modification is proposed for the Wi4-
multiplier from [7].

The rest of the paper is arranged as follows. In the
next section, the complex constant multipliers are intro-
duced. Then, in Section 3, coefficient quantization and
data round off errors are analyzed. Then, in Section 4,
results are presented and finally, some conclusions are
given in Section 5.

2. Complex Constant Multipliers
2.1  Wg-Multiplier

For a Wg-multiplier, only a multiplication by either 1
or sin § (cos §) is required. This can easily be realized
using a multiplexer selecting between the input or the
output of a constant multiplier with coefficient sin 7.
The constant multiplier can be realized using a mini-

mum number of adders using the method in [14].
2.2 Wig-Multiplier

In [7], a Wig-multiplicr bascd on the trigonomctric
identity

sin 260 = 2sin 6 cos 6, (2)

was introduced. Hence, as 2% = 7 it is possible to

compute all the three required values for a Wig- multi-
plier using only two multipliers with the constant val-
ues sin T and cos % as shown in Table 2. The resulting
structure is shown in Fig. 3. Note that multiplication
by two is equivalent to a left-shift, and, hence, is not
considered a multiplication. The structure shown in
Fig. 3 is slightly modified compared to that in [7]: two
multiplexers arc added at the output to allow multipli-
cation by 1 and also the constant coefficient interchange
to reduce the round off noise in the structure. Fur-
thermore, it was in [7] suggested that the multipliers
should be implemented based on the canonic signed-
digit (CSD) representation. In the current work it is
instead suggested to use minimum adder multipliers
from [14].

2.3 Wso-Multiplier

For the W3- multiplier, we propose to use a similar
approach, i.e., based on trigonometric identities iden-
tify a small number of constant multiplications that can
be combined to form all the remaining cocfficients. In
our proposed approach these constant multiplications
are sin {5, cos {g, and cos § which can be combined
as shown in Table 3. One possible structure for the
resulting complex constant multiplier is illustrated in
Fig. 4 with the corresponding control signals shown

in Table 4. The proposed architecture will be imple-
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Table 3 Trigonometric identities used for W3s-multiplier.
Coefficient | Used expression
n & S T T qin &
S}n % 4 cos 27;Tco.s is sin {5
sin g 2 coiﬁ sin {4
cosgg cos g
M s M m s
sin T¢ sin (2005§ + 1)
, 37 m ™
cos g oS 16 (2 cos 3 1)
M s : s
S111 TT? S111 T;r’
os 75 oS 75

mented by constant multiplication, multiplexers and
adders (subtracters).

Table 4 Control signals to obtain the different coefficients for
the proposed complex constant Wag-multiplier in Fig. 4.

so  s1  s2 83 S4 O O2

1 X X 0 1 0 1

0 0 0 1 1 cos Llo sin 1—’:}

1 0 0 1 1 cos sin

o 1 1 1 1 g gy O

cos g sin g
1 0 1 1 0 cos & sin 7

Fig.4 Proposed complex constant Waa-multiplier.

3. Finite word length error analysis

As the proposed structures are based on combinations
of several multiplications it is of interest to consider the
crrors duc to cocfficicnt and data quantization. From
an FFT point of view, the coeflicient quantization will
lead to a static deviation from the ideal DFT response,
while the data quantization can be seen as a noise
source affecting the data. Here, we will consider the
absolute magnitude error of the coeflicients.

3.1 Coefficient quantization error

We can represent the coefficient quantization error for
coefficient ¢, with quantized value ¢,, as A, where

Cqg=2C¢C + Ac~ (3)

Now, if we use rounding with B fractional bits, we know
that |A.| < 2=(B+Y . However, given that we know the

3
Table 5 Coefficient quantization errors for considered multi-
plier.
Coefficient ‘ First-order expression
sin 7 2sin Ao a 4 2cos % Asin x
sin g Agin z
cos g Ao z
11—+ cos(n/8) 1
—= sin(n/8)
—= sin(n/4)
R e
w
ERPRES| % |
5
= 0 1 g L4 T . T i
: ! ti
o
s R R S R
_17 L L L L ]

10 15
Fractional bits, N

Fig.5 Relative quantization errors for the coefficients in Wig-
multiplier using uniform word lengths.

exact values of both ¢ and ¢y, as well as how these errors

are propagated one can make a more detailed analysis.

Consider the computation of sin 7 in Fig. 4. We have
™

sin i 2sin g cos g (4)

2 (sing + Asin1> (cos T + Acosz) (5)
3 s 3 8

2sin Ecos x + 2sin EACOS E
3 8 8 8

Q

42 cos %Asin%. (6)

Where we in (6) consider the first order error terms.
Summarizing these errors for the Wig multiplier we get
the error expressions presented in Table 5. The ac-
tual errors using rounding for the partial coefficients
arc shown in Fig. 5 which shows the relative crror in
ulps’.

It is clear from this figure that for 7 out of the
16 considered word lengths the magnitude of the er-
ror is larger than 0.5 ulp which breaks the precision
requirement of the sin 7 multiplication. Convention-
ally, the word length will increased by one or more bits
to achicve required precision. Specially, for the above
cases increasing the word length by one bit for one or
both of the partial coefficients to meet the specifica-
tion of all except for the 6 and 12 fractional bits cases.
In these cases, the word length must be increased by
the two bits to fulfill the requirement of the precision.
However, the need for this should be considered on the

tUnit of least position, i.e., the weight of the least sig-
nificant bit of the representation. When using B fractional
bits, ulp = 27 8.
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Table 6 Coefficient quantization errors for proposed W3o-
multiplier.
Coefficient | First-order expression
sin 7 4cos {5 sin {5 Acos a +4cos 5 sin 75 Acog =
+4cos g cos %Aqm k.3
sin § 2sin 75 Acos Z +2cos 76 Dsin z
cos g Acos 5
.3 P .
sin 9% ZSIH%ACOS%Jr(ZCOS%Jrl)A .
cos?—}f ZCOS%AMS% +(2008%71)A .S
sin 75 Agin =
o8 T
cos g Acos =
2 cos(3n/8) ]
—= sin(3n/8)
15[ — sin(n/8) 1
— sin(m/4)
1/ ]
g 050ttty
E |
=) ‘ . ’
s T
& 05— *1 SRR B RS SRR B
_l— 4
-15 1
-2t . . .
5 10 15 20
Fractional bits, N
Fig.6 Relative quantization errors for the derived coefficients

in Wag-multiplier using uniform word lengths.

system level by evaluating the effect of these additional
quantization errors. Note that the magnitudes of the
crrors for the used partial cocfficients arc smaller than
0.5 ulp, which is expected as these are derived directly
by rounding.

Similarly, error expressions are computed for the
different coefficients of the Wso-multiplier based on the
architecture in Fig. 4. The error expressions of the
W3o-multiplier is tabulated in Table 6 based on these
cxpressions and the crror for varying word lengths is
shown in Fig. 6 for those coeflicients that are using
more than one constant multiplication. Figure 6 shows
that, except for 20-bits resolution, at least one of the
derived coefficient breaks the precision requirement.

3.2 Round-off noise

In fixed point representation, it is infeasible to increase
the word length after each intermediate multiplication
stage, product result must be quantized to W-bits.
When it comes to data quantization errors this is of-
ten modcled as a random noisc source with statisti-
cal properties, determined by the quantization model
and word length. In the proposed architecture one will
typically quantize the data after each partial multipli-
cation which is shown in Figs. 7 and 8 for the Wiyg
and Wss-multipliers, respectively. The resulting noise
transfer functions at the output is derived and the re-
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08 T nZT
COs g sin g

Input Output
5 ; ) :

J )
Tlcos ) Tling)

Fig.7 Output quantization error after sin % and cos % in Wig-
multiplier.

COS < COS 7¢ sin 7 ‘0

D :[ D :[ D =

(w ) ) (;m 75)
(a)
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2

| %: § D“@

; ;

Olos =
(cos 75)

(b)

™ o
Cos g COS 1¢

2
Input C Output
D i v D !
9 (cos 2) I lcos

s & I
s % ) -
Input : C E C : C Output
Tcos 5) T T =)

(d)

Tsin &)

Fig. 8 Output quantization errors in Wja- multiplier: (a) sin 7
and cos 7, (b) sin g, (c) cos 37 and (d) sin 37
Table 7 Noise terms at the Wig-multiplier output.
Coefficient ‘ Noise term
2
P 2 2
sin Ol = z (2 sin 8) +0l.. z
A 2
S g Ocin 5
s 2
cos g ol z
Table 8 Noise terms at the Wio-multiplier output.
Coefficient | Noise term
2 2
- 2 e 2 9 ain T
sin 7 ol z (400@ 1 Sin 10) +ol, = (d sin 16)
2
+oi =
sin ﬁ
in T 2 in =
sl g Tcos = (2sin F5) " + 02, =
ks 2
cos g Tcos %
2
37 2 9 l) 2
sin % ol z (d sin 75 S
cos 3% o? (2 cos 1) ? 2
) 16 S),os % 16 cos %
sin 75 ol =
s 2
cos 7= o :
16 cos 1LG

sults are presented in Tables 7 and 8 for the Wig and
Wse-multipliers, respectively.
In the original Wig-multiplier introduced in [7], the

round-off noise term for the sin 7 was
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[|—* cos(n/8)| 7

1
—= sin(n/8)
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Fig.9 Relative quantization errors for the coefficients in Wig-
multiplier using addition aware quantization.

2 9 T2 2 7
Usin%( COoS g) +O—cos%' ( )

Compared to the proposed modified Wig-multiplier, the
round-off noise is reduced corresponding to about one
bit lower data word length.

4. Results
4.1 Coefficient quantization and optimized coefficient

As discussed previously, the Wig and Wjss-multipliers
are composed of several constant multiplications.
Then, the coefficient quantization error of the individ-
ual multiplications are combined. While this may lead
to cancellation of quantization errors having opposite
signs, it may also lead to that the total coeflicient quan-
tization error is larger than the individual coefficient
quantization errors. The straightforward way of han-
dling this is to increase the word lengths of the indi-
vidual multiplications until the total crror meets the
specification.

Addition aware quantization [13] provides a bet-
ter way of obtaining this incrcase in accuracy of cocf-
ficients. In [13], F additional fractional bits is used to
realize that there are exactly 2 different representable
coefficients for which ¢ < 2=V +1)7 including the one
obtained by rounding to N fractional bits. These 27
combinations are searched for the best solution.

For each precision requirement. the solution with
smallest maximum quantization error among those so-
lutions with the smallest addition count is selected.
Here, the coefficient quantization errors of the Wi and
Wso-multipliers are shown in Figs. 9 and 10, respec-
tively. In Fig. 9, it can be scen that in all 7 out of 16
which were breaking the precision requirements in the
rounded version are now meeting the precision require-
ments. In the Wss-multiplier. 15 out of 16 cases which
was breaking the precision requirement point, now are
within the precision requirement.

For a Wg-multiplier implemented with constant co-

1 —* cos(3n/8) 1
—= sin(3r/8)
—* sin(r/8)
—= sin(m/4)

05f

Error in ulp:s
o
-
o pe
—ne

5 10 15 20
Fractional bits, N

Fig.10 Relative quantization errors for the coeflicients in Waz2-
multiplier using addition aware quantization.

Table 9 Coefficient of Wg-multiplier.
Fractional | Coeflicient | Addition | Correct
bits cos g count bits
5-6 £ 2 6.972
7-12 2882 3 12.692
13 -19 ST 4 19.322

20 Mo 5 20.912
Table 10 Coefficient of Wjg-multiplier.
Fractional Coeflicient Correct

bits cos § sin & bits
5 3 12 5.198
6-8 25 = 8.926

9-11 7567 e 11.493

12-13 Ta67 3 13.247

14-18 1900;188755736 é‘égﬁﬁ 18.796

19 20 | e | s | o3

efficient, the optimal coefficients have been tabulated
with fractional bits range and correct bits in Table 9.
Corresponding results for Wi and Wss-multipliers are
tabulated in Tables 10 and 11, respectively.

The hardware resources comparison of the straight
forward approach and addition aware method in terms
of required number of additions are shown in Figs. 11
and 12 for Wy and Wss multipliers, respectively. It can
be seen that in rare cases the addition aware method
can even decrease the number of additions, as can be
scen for cight bits.

4.2 Comparison with previous method

Here, a comparison with the previously proposed meth-
ods in [10, 11] are presented. The reduced Booth-
like multipliers in [11] are based on the observation
that when the set of coefficients is known, the Booth-
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Table 11  Coefficient of W3s-multiplier.
Fractional Coefficient Correct
bits cos % sin 1L6 cos 1—"6 bits
119 25 127
5-7 128 28 12é 7.122
945 49 1007
8 1024 256 1024 8.255
473 99 503
9 512 512 512 9.673
945 799 1005
10 1024 1096 1024 10.403
. 3781 3197 16069
11 -12 4096 16394 16384 12.144
60547 12783 16069
13-14 65536 65536 16384 14.461
121095 25571 32133
15 131072 131072 32768 15.426
) 121095 25571 128553
16 — 17 131072 131072 131072 17.129
968757 204567 4113711 .
18 —20 1048576 | 1048576 | 4194304 20.870
100 Il Rounding |
[ Increasing bits
[_] Addition aware quantization
8, i
€
>3
8
= 67 1
i<l
%
g4 |
ol l
0 L1
5 0 15 20
Fractional bits, N
Fig.11 Addition counts for Wig-Multiplier.
20— _ : :
Il Rounding
[ Increasing bits
[_]Addition aware quantization
15¢ 1

Addition count
=
e

5 ,
0g 10 15 20
Fractional bits, N
Fig.12  Addition counts for Wia-Multiplier.

encoding logic can be simplified as well as the partial
product accumulation trce. Here, we have assumed
that four multiplexers are required for each non-zero
position in the accumulation tree. This will in practice
for some positions be higher. To use multiple constant
multiplication (MCM) and a multiplexer to select the
correct coefficient was proposed in [10]. For the results
presented here, the algorithm in [10] is used, which in
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Table 12 Complexity of Wig-multipliers.
Fractional| Considered (Fig. 3) [Red. Booth [11] MCM [10]
bits Adders®Adders®MUXg Adders MUXs | AddersMUXs
9 5 5 4 8 20 5 4
10 5 5 4 8 20 5 4
11 5 5 4 ] 20 5 4
12 6 6 4 ] 20 7 4
13 6 6 4 10 24 7 4
14 7 7 4 10 24 8 4
15 7 7 4 10 24 8 4
16 7 8 4 12 28 9 4
17 7 9 4 12 28 10 4
18 7 10 4 12 28 10 4
19 8 10 4 12 28 10 4
20 8 11 4 14 32 12 4

“Using minimum adder multipliers from [14].
"Using CSD-multipliers as proposed in [7].

general should provide better results compared to the
algorithm used in [10].

The complexity results of the Wig-multiplier are
shown in Table 12 for a varying numbecr of fractional
bits. It is clear that using minimum adder multipliers
t [14] is better than CSD multipliers, which is not sur-
prising since CSD multipliers is a subset of minimum
adder multipliers. Compared to the reduced Booth-
like multipliers, the considered multipliers always have
a lower complexity, both in terms of adders and mul-
tiplexers. Finally, the MCM approach is as good or
slightly worse compared to the complex constant mul-
tiplier in Fig. 3.

When it comes to the Wso-multipliers, the results
are shown in Table 13. Here it can be seen that the
adder complexity is typically slightly smaller for the
reduced Booth multipliers proposed in [11] compared
to the proposed complex constant multiplicr in Fig. 4.
However, the number of multiplexers is higher in all
cases and in most technologies this should mean that
the proposed complex constant multiplier has a lower
total complexity. Compared to the MCM approach the
proposed multiplier has fewer or as few adders. except
for the case with nine fractional bits. The advantage
of the proposed multiplicr increasces as the word length
increases.

5. Conclusions

In this work, the design of reconfigurable complex con-
stant multipliers was considered, with the focus of ro-
tators in fast Fourier transforms. A multiplier for 32-
point resolution was introduced. In addition, a slightly
modified previously proposed multiplier for 16-point
resolution was discussed. For these two multipliers,
finite word length properties for both data and coef-
ficient quantization was discussed and optimal coeffi-
cients were derived. For completeness, the optimal co-

TFor coefficients longer than 19 bits, the heuristic in [15]
is used.
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Table 13 Complexity of W3s-multipliers.
Fractional|Proposed (Fig. 4)|Red. Booth [11]| MCM [10]
bits Adders MUXs [Adders MUXs [Adders MUXs
9 9 9 8 20 8 8
10 10 9 9 22 9 8
11 11 9 9 22 10 8
12 11 9 9 22 11 3
13 12 9 11 26 13 8
14 12 9 11 26 15 8
15 13 9 11 26 15 8
16 14 9 13 30 15 3
17 14 9 13 30 18 8
18 15 9 14 32 19 3
19 15 9 14 32 18 3
20 15 9 16 36 22 3

efficients for multipliers with eight points resolution was
also derived.

The results show that the proposed 32-point mul-
tiplier has lower complexity compared to earlier work.
Also, the 16-point multiplier was compared with earlier
work and was shown to have low complexity. Further-
more, the proposed modification leads to slightly lower
round-off noise.
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