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Background
Graph data are important data types in many scientific areas, such as social network 
analysis, bioinformatics, and computer and information network analysis [1]. In recent 
years, the size of graph data has grown dramatically. For example, a typical social net-
work graph may contains millions of vertices and hundreds of million of edges. Further 
more, these graphs may continuously evolve over time. Processing these dynamic big 
graph data is very challenging and time consuming. In general, big graphs are normally 
heterogeneous. They have such non-uniform structures that edges between vertices in a 
group are much denser than edges connecting vertices in different groups. Graph clus-
tering (also named as “community detection” in the literature) algorithms aim to reveal 
the heterogeneity and find the underlying relations between vertices [2]. This technique 
is critical for understanding the properties, predicting dynamic behavior and improving 
visualization of big graph data.

Graph clustering is a computationally challenging and difficult task, especially for 
big graph data. Many algorithms have been proposed over the last decades [2–4]. The 
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criteria-based approaches try to optimize clustering fitness functions using different 
optimization techniques. Newman defined a modularity measurement based on the 
probability of the link between any two vertices. He applied a greedy search method to 
minimize this modularity fitness function in order to partition a graph into clusters [5]. 
Blondel et al. used the same fitness function but combined it with other optimization 
techniques [6–8]. Spielman and Teng opted the graph conductance measurement as the 
fitness function [9]. Other than criteria-based methods, spectral analysis has also been 
widely adapted in this area [10, 11]. Random-walk-based methods tackle the problem 
from a different angle [12–14]. These methods use the Markov chain model to analyze 
the graph. Each vertex represents a state and the edges indicate transitions between the 
states. The probability values that are distributed among the states (vertices) reveal the 
graph structure.

For big graph data, the problem becomes more challenging or even intractable. Very 
often, people are only interested in finding the cluster for a given seed vertex. This prob-
lem is called local clustering problem [9, 15, 16]. For example, from an end user’s per-
spective, finding the closely connected friends around him or her is more important than 
revealing the global user clusters of a large social network. It is unnecessary to explore 
the whole graph structure for this problem. Recently, random walk methods have gained 
great attention on this local graph clustering problem, since a walk started from the seed 
vertex is more likely to stay in the cluster where the seed vertex belongs. Comparing to 
the criteria-based methods, the random-walk-based methods are capable of extracting 
local information from a big graph without the knowledge of the whole graph data. In 
[17–19], a random walk is first applied to find important vertices around the seed vertex. 
Then a sweep stage is involved to select the vertices that minimize the conductance of 
the candidate clusters.

The accuracy of any criteria-based clustering method (or those combined with the 
random walk procedures) is greatly affected by the chosen clustering fitness function. 
Furthermore, most local clustering algorithms use the criteria that are more suitable for 
the global graph clustering problem. These choices greatly degrade the performance of 
these algorithms when the graph is big and highly uneven. Also the majority of the graph 
clustering algorithms are designed in sequential computing paradigm. Therefore, they 
do not take advantage of modern high-performance computing systems.

In this paper, we propose a novel random-walk-based graph clustering algorithm—the 
limited random walk (LRW) algorithm. First of all, the LRW algorithm does not rely on 
any clustering fitness function. Furthermore, the proposed method can efficiently tackle 
the computational complexity using a parallel programming paradigm. Finally, as a 
unique property among many graph clustering methods, LRW can be adapted to both 
global and local graph clustering in an efficient way.

The rest of the paper is organized as follows: basics of random walk procedure and the 
proposed LRW algorithm are explained in "Methodology" section; an extensive set of 
experiments on the simulated and real graph data, along with both numerical and visual 
evaluations are given in "Experiments" section; finally, the conclusions and future work 
are discussed in "Conclusions" section.
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Methodology
Basic definitions and the random walk procedure 

Let G(V, E) denote a graph of n vertices and m edges, where V = {vi|i = 1, . . . n} is the 
set of vertices and E = {ei|i = 1, . . .m} is the set of edges. Let A ∈ Rn×n be the adja-
cency matrix of the graph G and Aij are the elements in the matrix A. Let D ∈ Rn×n be 
the degree matrix, which is a diagonal matrix whose elements on the diagonal are the 
degrees of each vertex. In this paper, we assume the graph is undirected, unweighted and 
does not contain self-loops.

Clustering phenomenon is very common in big graph data. A cluster in a graph is a 
vertex set where the density of the edges inside the cluster is much higher than the den-
sity of edges that link the inside vertices and the outside vertices.

Random walk on a graph is a simple stochastic procedure. At the initial state, an agent 
stays on a chosen vertex (seed vertex). At each step, the agent randomly picks a neigh-
boring vertex and moves to it. The agent repeats this movement and there is certain 
probability that the agent lands on a vertex after each movement.

Let x(t)i  denote the probability that the agent is on vertex vi after step t, where 
i = 1, 2, . . . n. x(0)i  is the probability of the initial state. Let s be the seed vertex. We have 
x
(0)
s = 1, and x(0)i = 0 for i �= s. Let x(t) =

[

x
(t)
1 , x

(t)
2 , . . . , x

(t)
n

]T
 be the probability vector, 

where the superscript T denotes the transpose of a matrix or a vector. By the definition 
of the probability, it is easy to see that 

∑n
i=1 x

(t)
i = 1 or 

∥

∥x(t)
∥

∥

1
= 1.

The random walk procedure is equivalent to a discrete-time stationary Markov chain 
process. Each vertex is corresponding to a state in the Markov chain and each edge indi-
cates a possible transition between the two states. The Markov transition matrix P can 
be obtained by normalizing the adjacency matrix to have each column sum up to 1, e.g.

or

Other forms of the transition matrix P can also be used, for example the lazy random 
walk uses transition matrix P = 1

2 (I + AD−1), where I is the identity matrix. Given the 
transition matrix P, we can calculate x(t+1) from x(t) using the equation:

A closed walk is a walk on a graph where the ending vertex is same as the seed vertex. 
The period of a vertex is defined as the greatest common divisor of the lengths of all 
closed walks that start from this vertex. We say a graph is aperiodic if all of its vertices 
have periods of 1.

For an undirected, connected and aperiodic graph, there exists an equilibrium state π , 
such that π = Pπ. This state is unique and irrelevant to the starting point. By iterating 
Eq. 3, x(t) converges to π. More details about the Markov chain process and the equilib-
rium state can be found from [20].

(1)Pij =
Aij

∑n
k=1 Akj

(2)P = AD−1.

(3)x(t+1) = Px(t).
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Limited random walk procedure

Definitions

 We first define the transition matrix P. We assign the same probability to the transition 
that the walking agent stays in the current vertex and the transition that it moves to any 
neighboring vertex. We add an identity matrix to the adjacency matrix and then normal-
ize the result to have each column sum to 1. The transition matrix can be written as

Comparing to the transition matrix in Eq. 2, this is similar to adding self-loops to the 
graph, but increasing the degree of each vertex by 1 instead of 2. This modification fixes 
the periodicity problem that the graph may have [20]. It greatly improves the stability 
and accuracy of the algorithm in graph clustering.

At each walking step, the probability vector x(t) is computed using Eq. 3. Note that, in gen-
eral, elements in x(t) that are around the seed vertex are non-zeros and the rest are zeros. So 
we do not need the full transition matrix to calculate the probability vector for the next step.

Starting from the seed vertex, a normal random walk procedure will eventually explore 
the whole graph. To reveal a local graph structure, different techniques can be used to limit 
the scope of the walks. Harel and Koren fix the number of walking steps by a predefined 
constant [21]. Xin et al. use a stochastic method to determine if a walk should be contin-
ued and set the maximum number of walking steps to be 6 according to the principle of 
“six degrees of separation” [14]. In [13, 17, 22], the random walk function is defined as

where α is called the teleport probability. The idea is that there is a certain probability that 
the walking agent will teleport back to the seed vertex and continue walking.

Inspired by the Markov clustering algorithm (MCL) algorithm [12], we adapt the infla-
tion and normalization operation after each step of the transition. The inflation opera-
tion is an element-wise super-linear function—a function that grows faster than a linear 
function. Here we use the power function

where the exponent r > 1. Since x indicates the probability that the agent hits each ver-
tex, x must be normalized to have a sum of 1 after the inflation operation. The normali-
zation function is defined as

where �x�1 =
∑n

i=1 |xi| is the L1 norm of the vector x. Since xi ≥ 0 and 
∑n

i=1 xi = 1, 
Eq. 7 can also be written in a vector form as

where 1 = [1, 1, . . . 1]T . The inflation and normalization operation enhance large values 
and depress small values in the vector x.

(4)P = (I + A)(I + D)−1.

(5)x(t+1) = αx(0) + (1− α)Px(t),

(6)f (x) =
[

xr1, x
r
2, . . . , x

r
n

]T
,

(7)g(x) =
x

�x�1
,

(8)g(x) =
x

xT · 1
,
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We call the aforementioned procedure the limited random walk (LRW) procedure. 
Comparing to the normal random walk procedure defined in "Basic definitions and the 
random walk procedure" section, LRW involves inflation and normalization operations 
in each walking step. These nonlinear operations limit the agent to walk around the 
neighborhood of the seed vertex, especially if there is a clear graph cluster boundary.

The MCL algorithm simulates flow within a graph. It uses the inflation and normalization 
operation to enhance the flow within a cluster and reduce the flow between clusters. The 
MCL procedure is a time-inhomogeneous Markov Chain in which the transition matrix var-
ies over time. The MCL algorithm starts the random walk from all vertices simultaneously—
there are n agents walking on the graph at the same time. The walking can only continue after 
all agents have completed a walking step and the result probability matrix has been inflated 
and normalized. Unlike in the MCL algorithm, the LRW procedure is a time-homogeneous 
Markov Chain. We initiate random walk from a single seed vertex, and do the inflation on 
the probability values of this walking agent. This design has many advantages. First, it avoids 
unnecessary walks since the graph structure around the seed vertex may be exposed by a sin-
gle walk. Second, the procedure is suitable for the local clustering problems because it does 
not require the whole graph data. Third, if multiple walks are required, each walk procedure 
can be executed independently. Thus the algorithm is fully parallelizable.

The LRW procedure involves a nonlinear operation, thus it is difficult to analyze 
its properties on a general graph model. Next we study the equilibrium of the LRW 
procedure.

Equilibrium of the LRW procedure 

We first prove the existence of equilibrium of the LRW procedure. Let X be the set of 
values of the probability vector x. We have

The LRW procedure defined by Eqs. 3, 6 and 7 is a function that maps X to itself. Let 
L : X → X, such that

Theorem 1  There exists a fixed-point x∗ such that L(x∗) = x∗.

Proof   We use the Brouwer fixed-point theorem to prove this statement.

Given 0 ≤ x1, x2, · · · , xn ≤ 1, the set X is clearly bounded and closed. Thus X is a com-
pact set.

Let u, v ∈ X and w = �u+ (1− �)v, where � ∈ R and 0 ≤ � ≤ 1. So 
wi = �ui + (1− �)vi for i = 1, 2, · · · n. Obviously 0 ≤ wi ≤ 1.

Further,

(9)X = {(x1, x2, . . . , xn) | 0 ≤ x1, x2, . . . , xn ≤ 1 and x1 + x2 + · · · xn = 1}.

(10)L(x) = g(f (Px)).

n
∑

i=1

wi =

n
∑

i=1

(�ui + (1− �)vi)

= �

n
∑

i=1

ui + (1− �)

n
∑

i=1

vi

= 1
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Thus w ∈ X. This indicates that the set X is convex.
Since function f(x) is continuous over the set X and function g(x) is continuous over 

the codomain of function f(x), function L is continuous over the set X.
Given L is a continuous function that maps a convex set to itself, according to the 

Brouwer fixed-point theorem, there is a point x∗ such that L(x∗) = x∗. � �

Theorem  1 shows the existence of fixed-point of the LRW procedure, i.e., the LRW 
procedure will not escape from a fixed-point whenever the point is reached. Since the 
LRW procedure is a non-linear discrete dynamic system, it is difficult to analytically 
investigate the system behavior. However, when r = 1, the LRW procedure is simply 
a Markov chain process, in which the fixed-point x∗ is the unique equilibrium state π 
and the global attractor. In another extreme case when r → ∞, a fixed-point can be an 
unstable equilibrium and the LRW procedure may have limit cycles that oscillate around 
a star structure in the graph. In one state of the oscillation, the probability value of the 
center of a star structure is close to one. In practice, we chose r from (1, 2]. This makes 
the LRW procedure close to a linear system and oscillations are extremely rare. In this 
case, the fixed-points of the LRW procedure are stable equilibriums.

Limited random walk on general graphs

Without any prior knowledge of the cluster formation, we normally start the LRW procedure 
from an initial state where xs = 1, xi = 0 for i �= s and s is the seed vertex. During the LRW 
procedure, there are two simultaneous processes—the spreading process and the contracting 
process. When the two processes can balance each other, a stationary state is reached.

During the spreading process, the probability values spread as the walking agent visits 
new vertices. The number of visited vertices increases exponentially at first. The growth 
rate depends on the average degree of the graph. The newly visited vertices will always 
receive the smallest probability values. If the graph has an average degree of d, it is not 
difficult to see that the expected probability value of a newly visited vertex at step t is 
(1/d)t. As the walking continues, the probability values tend to be distributed more 
evenly among all visited vertices.

The other ongoing process during the LRW procedure is the contracting process. 
During this process, the probability values of the visited vertices contract to some ver-
tices. Since the graph is usually heterogeneous, some vertices (and groups of vertices) 
will receive higher probability values as the procedure continues. The inflation opera-
tion further enhances this contracting effect. The degrees of a vertex and its surrounding 
vertices determine whether the probability values concentrate to or diffuse from these 
vertices. Some vertices, normally the center of a star structure, receive larger probability 
values than others. We call these vertices attractor vertices and they can be used to rep-
resent the structure of a graph.

Because the density of edges inside a cluster is higher than that of linking the vertices 
inside and outside the cluster, the probability that a walking agent visits vertices outside 
the cluster is small. Thus, the LRW procedure will find attractor vertices that the seed 
vertex is associated. We can use these vertices as features to cluster the vertices.

The larger the inflation exponent r is, the faster the algorithm converges to the attractor 
vertices. The LRW procedure tries to find the attractor vertices that are near the seed ver-
tex. However, if r is too large, the probability values concentrate to the nearest attractor 
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vertex (or the seed vertex itself ) before the graph is sufficiently explored. If r is too small, 
the probability values will concentrate to the attractor vertices that may belong to other 
clusters. The performance of the LRW algorithm depends on choosing a proper inflation 
exponent r. From this aspect, it is similar to the MCL algorithm. In practice, r is normally 
chosen between 1 and 2 and the value 2 was found to be suitable for most graphs.

LRW for global graph clustering problems

In this section, we propose how to LRW in global graph clustering problems. Our algo-
rithm is divided into two phases—graph exploring phase and cluster merging phase. To 
improve the performance on big graph data, we also propose a multi-stage strategy.

Graph exploring phase

In the graph exploring phase, the LRW procedure is started from several seed vertices. 
At each iteration, the agent moves one step as defined in Eq. 3. Then the probability vec-
tor x is inflated by Eq. 6 and normalized by Eq. 7. The iteration stops when the probabil-
ity vector x converges or the predefined maximum number of iterations is reached. Let 
x(∗,i) denote the final probability vector of a random walk that was started from the seed 
vertex vi. As described in the previous section, the LRW procedure explores the vertices 
that are close to the seed vertex. Thus, the vector x(∗,i) has non-zero elements only on 
these neighboring vertices.

Algorithm  1 illustrates the graph exploring from a seed vertex set Q. Note that for 
small graph data, we can set the seed vertex set Q = V  (i.e. the whole graph). In such 
case, the LRW procedure is executed on every vertex of the graph and the multi-stage 
strategy is not used.

Note that the threshold ǫ limits the number of nonzero elements in the probability 
vector x. It is easy to prove that the number of nonzero elements in x(t,i) is less than 
1/ǫ. A larger ǫ eliminates very small values in x(t,i) and prevent unnecessary computing 
efforts. However, ǫ does not impose a limit on the largest cluster we can find. Further, the 
choice of ǫ has little impact on the final clustering results because either the LRW pro-
cedure finds the most dominant attractor vertices in a cluster or the small clusters are 
merged in the cluster merging phase.
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Cluster merging phase

After the graph has been explored, we will find the clusters in the cluster merging phase. 
We treat each x(∗,i) as the attractor vector for the vertex vi. Vertices belonging to the 
same cluster have attractor vectors that are close to each other. Any unsupervised clus-
tering algorithm, such as k-means or single linkage clustering method, can be applied 
to find the desired number of (k) clusters. Because of the computational complexity of 
these clustering algorithms, we design a fast merging algorithm that can efficiently clus-
ter vertices according to their attractor vectors.

Each element x(∗,i)j  in x(∗,i) is the probability value of the stationary state that the walk-
ing agent hits the vertex vj when the seed vertex is vi. The attractor vector x(∗,i) is deter-
mined by the graph structure of the cluster that the initial vertex vi has. Thus, vertices in 
the same cluster should have very similar attractor vectors. We first find the vertex that 
has the largest value in the vector x(∗,i). Suppose m = arg maxj

(

x
(∗,i)
j

)

, we call vm the 
attractor vertex of vertex vi. Grouping vertices by their attractor vertex can be done in a 
fast way (complexity of O(1)) using a dictionary data structure. After the grouping, each 
vertex is assigned to a cluster that is identified by the attractor vertex. However, it is pos-
sible that some vertices in one cluster do not have the same attractor vertex. This may 
happen when the cluster is large and the edge density in the cluster is low. We then apply 
the following cluster merging algorithm to handle this overclustering problem.

The vertices that have large values, which are determined by a threshold relative to 
x
(∗,i)
m , in x(∗,i) are called significant vertices for vertex vi. If two vertices have large enough 

overlaps of their significant vertices, they should be grouped into the same cluster. From 
this observation, we first collect significant vertices for the found clusters. Then we 
merge clusters if their significant vertices overlap more than a half. Note that the attrac-
tor vertex and the significant vertices are always in the same cluster as the seed vertex. 
This is very useful when we use the multi-stage graph strategy.

Algorithm 2 shows the details of the merging phase of the LRW algorithm. Note that, 
for small graph data, we set the seed vertex set Q = V and the initial clustering diction-
ary D to be empty.
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Multi‑stage strategy

For small graph data, we can do the LRW procedure on every vertex of the graph. So 
the seed vertex set Q = V . The graph clustering is completed after a graph exploring 
phase and a cluster merging phase. However, when the graph data is large, it is time-
consuming to perform the LRW procedure from every vertex of the graph. A multi-stage 
strategy can be used to greatly reduce the number of required walkings. First, we start 
the LRW procedure from a randomly selected vertex set. After the first round of the 
graph exploring, some clusters can be found after the cluster merging phase. Next we 
generate a new seed vertex set by randomly selecting vertices from those vertices that 
have not been clustered. Then we do the graph exploration from the new seed vertex set. 
We repeat this procedure until all vertices are clustered.

Algorithm  3 shows the global graph clustering algorithm using the multi-stage 
strategy.

LRW for local graph clustering problems

For the local graph clustering problems, the LRW procedure can efficiently find the clus-
ter from a given seed vertex. To achieve this, we first perform graph exploring from the 
seed vertex in the same way as described in "Graph exploring phase" section. Let x(∗) be 
the probability vector after the graph exploration. If a probability value in x(∗) is large 
enough, the corresponding vertex is assigned to the local cluster without further compu-
tation. Similar to the global graph clustering algorithm, we use a relative threshold η that 
is related to the maximum value in x(∗). Vertices whose probability values are greater 
than η ·max

(

x
(∗)
j

)

 are called significant vertices. The significant vertices are assigned 
to the local cluster directly. A small value of η will reduce the computational complexity, 
but may decrease the accuracy of the algorithm. Suitable values of η were experimentally 
found to be between 0.3 and 0.5.

The vertices with low probability values can either be outside the cluster or inside the 
cluster but with relatively low significance. Unlike [9, 15, 16], which involve a sweep 
operation and a cluster fitness function, we do another round of graph exploring from 
these insignificant vertices. After the second graph exploring is completed, we apply the 
cluster merging algorithm described in "Cluster merging phase" section.

Algorithm 4 presents the LRW local clustering algorithm.



Page 10 of 22Zhang et al. J Big Data  (2016) 3:26 

Computational complexity

We first analyze the computational complexity of the LRW algorithm for the global 
graph clustering problem. We assume the graph G(V, E) has clusters. Let n̄c be the aver-
age cluster size—the number of vertices in the cluster, and C is the number of clusters. 
We have n̄c · C = n. Note C ≪ n. The most time-consuming part of the algorithm is the 
graph exploring phase. For each vertex, every iteration involves a multiplication of the 
transition matrix P and the probability vector x. The LRW procedure visits not only the 
vertices in the cluster but also a certain amount of vertices close to the cluster. Let γ 
be the coefficient that indicates how far the LRW procedure explores the graph before 
it converges. Notice the maximum number of nonzero elements in a probability vector 
is 1/ǫ. Let J denote the number of vertices that the LRW procedure visits in each itera-
tion, thus J = min (γ n̄c, 1/ǫ). Thus the transition step at each iteration has complexity of 
O(J n̄c). The inflation and normalization steps, which operate on the probability vector x, 
have the complexity of O(J ). Let K be the number of iterations for the LRW procedure 
to converge. So, the computational complexity for a complete LRW procedure on each 
vertex is O(KJn̄c). For a global clustering problem when performing the LRW procedure 
on every vertex, the graph exploration phase has a complexity of O(KJn̄cn). In the worst 
case, the algorithm has a complexity of O

(

n3
)

. This is an extremely rare case and it only 
happens when the graph is small; does not have a cluster structure; and the edge density 
is high. This worst case scenario is identical to the MCL algorithm [12]. Notice that the 
variables J and K have upper bounds and n̄c is determined by the graph structure, the 
algorithm has a complexity of O(n) for big graph data.

The computational complexity of the cluster merging phase involves merging clusters 
that were found using the attractor vertices. This merging requires 

(C
2

)

 times of set com-
parison operations, where C is the number of clusters found by the attractor vertices. 
The complexity of this phase is roughly O(C2). This does not impose a significant impact 
to the overall complexity of the algorithm, since C ≪ n. The time spent in this phase is 
often negligible. Experiments show that the clusters found using the attractor vertices 
are close to the final results. For applications where speed is more important than accu-
racy, the cluster merging phase can be left out.

When the LRW algorithm is used in local graph clustering problems, the first graph 
exploration (started from the seed vertex) has a complexity of O(KJn̄c). After the first 
graph exploration, there are LJ vertices to be further explored, where L is related to the 
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threshold η and L < 1. The overall complexity of the LRW local clustering algorithm is 
thus O(LKJ2n̄c).

The LRW algorithm is a typical example of embarrassingly parallel paradigm. In the 
graph exploring phase, each random walk can be executed independently. Therefore it 
can be entirely implemented in a parallel computing environment such as a high-perfor-
mance computing system. The time spent for graph exploring phase decreases roughly 
linearly with respect to the number of available computing resources. The two-phase 
design also fits the MapReduce programming model and can easily be adapted into any 
MapReduce framework [23].

Experiments
The LRW algorithm uses the following parameters: inflation exponent r, maximum 
number of iterations Tmax, small value ǫ, merging threshold τ and local clustering thresh-
old η. In practice, except the inflation exponent r, the values of the other parameters have 
little impact to the final results. The inflation power r should be chosen according to the 
density of the graph. A sparse graph should use a smaller value of r, though r = 2 is suit-
able for most real world graphs. In our experiments, we chose r = 2 unless otherwise 
specified. The other parameters have been set as: Tmax = 100, ǫ = 10−5 and τ = η = 0.3 . 
We will show the impact of some parameters in "The sensitivity analysis of the param-
eters" section.

Simulated data for global graph clustering problem

We first show the performance of the LRW algorithm using simulated graph data. The 
simulated graph is generated using the Erdos-Renyi model [24] with some modifications 
to generate clusters. Using the ground truth of the cluster structure, we can evaluate the 
performance of graph clustering algorithms. This kind of simulated data are widely used 
in the literature [5, 25–27].

The graphs are generated by the model G(n, p, c, q) where c is the number of clusters, 
n is the number of vertices, p is the probability of the link between two vertices, and 
q = din/dout is the parameter that indicates the strength of the cluster structure, where 
din is the expected number of edges linking one vertex to other vertices inside the same 
cluster, and dout is the expected number of edges linking a given vertex to other vertices 
in other clusters. Larger q indicates stronger cluster structure. When q = 1, each vertex 
has equal probability that it links to vertices that are inside and outside the cluster—the 
graph has a very weak cluster structure. Let d be the expected of degree of a vertex. So, 
d = din + dout = p(n− 1). We use this model to generate graphs that consist of c clus-
ters and each cluster has the same number of vertices. For each pair of vertices, we link 
them with the probability qpc(n−1)

(q+1)(n−c) if they belong to the same cluster, and the probabil-
ity of pc(n−1)

n(q+1)(c−1) if they belong to different clusters.
We use the normalized mutual information (NMI) to evaluate the clustering result 

against the ground truth [28, 29]. We first calculate the confusion matrix where each 
row is a cluster found by the clustering algorithm and each column is a cluster in the 
ground truth. The entries in the confusion matrix are the cardinality of the intersect set 
of the row cluster and the column cluster. Let Nij be the values at the i-th row and the 
j-th column, Ni− the sum of the values at the i-th row, N−j the sum of the values at the 



Page 12 of 22Zhang et al. J Big Data  (2016) 3:26 

j-th column, N the total number of vertices, CA the number of clusters that the clustering 
algorithm found (number of rows), and CG the number of clusters in the ground truth 
(number of columns). The NMI is calculated as follows:

where 0 ≤ NMI ≤ 1. If the clustering algorithm returns the exact same cluster structure 
as the ground truth, NMI = 1. Notice, NMI is not a symmetric evaluation metric. If an 
algorithm assigns all vertices into one cluster (CA = 1), then NMI value is 0. On the other 
hand, if an algorithm assigns each vertex to its own cluster (CA = N), then NMI > 0.

We generated graphs by choosing n = 128 and d = 16. The number of the generated 
clusters is 4 and each cluster contains 32 vertices. We varied the ratio q and evaluated 
the performance of the LRW algorithm against Girvan-Newman (GN) [27], Louvain 
[6], Infomap [30] and MCL [12] algorithms. GN clusters a graph by iteratively remov-
ing edges according to their “betweenness” measures. Louvain optimizes the modularity 
measure of a graph using a greedy search paradigm. Infomap is another modularity-
based algorithm. It starts with each vertex in its own cluster and iteratively merges the 
clusters, moves vertices between clusters or splitting a cluster until no better modularity 
measure can be found. MCL is a random walk based algorithm that also involves infla-
tion operation. The differences between the MCL algorithm and the proposed one are 
explained in "Definitions" section.

Two simulated graphs are shown in Fig. 1, where the clusters are colored differently 
and the graphs are visualized by force-directed algorithms.

The comparative results are given in Table 1, where the number of clusters found by 
the algorithms is placed between parentheses.

From the results, Louvain is the best performing algorithm and the LRW algorithm 
comes as the second. It can be seen that the LRW algorithm can find the correct struc-
ture if the graph has a strong cluster structure. When the cluster structure diminishes as 
q decreases, the walking agents quickly spread to the whole graph before the contraction 
dominates. Thus, the LRW algorithm returns the whole graph as one cluster. This behav-
ior is beneficial when we need to find the true clusters in a big graph. The GN and Lou-
vain algorithms are more like graph partition algorithms. They optimize certain cluster 
fitness functions using the whole graph data. They tend to partition the graph into clus-
ters even though the cluster structure is weak. That explains their better NMI scores in 
Table 1 when q is small.

We use real graph data to evaluate the performance of the LRW global clustering algo-
rithm on heterogeneous graphs. Details of the experiments and the results are given in 
"Real world data" section.

Simulated data for local graph clustering problems

In this section, we compare the LRW algorithm with other local clustering algorithms. 
The test graphs are generated using the protocol defined in [26]. To simulate the data 
that are close to real world graphs, the vertex degree and the cluster size are chosen to 
follow the power law. Each test graph contains 2048 vertices. The vertex degree has the 

(11)NMI =
−2

∑CA
i=1

∑CG
j=1Nij log

(

NijN/Ni−N−j

)

∑CA
i=1Ni− log (Ni−/N )+

∑CG
j=1N−j log

(

N−j/N
)

,
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minimum value of 16 and the maximum value of 128. The minimum and maximum 
cluster sizes are 16 and 256, respectively. Similar to the previous section, the inbound-
outbound ratio q defines the strength of the cluster structure.

The competing algorithms are criteria-based algorithms that optimize a fitness func-
tion using either the greedy search or the simulated annealing optimization method. Let 
vertex set K be the cluster that contains the seed vertex. Kc = V \K  is the complement 
vertex set of K. Let function a(·) be the total degree of a vertex set, that is

where Aij are the entries of the adjacency matrix. The cut of the cluster K is defined as

The following are the definitions of the fitness functions.
Cheeger constant (conductance):

(12)
a(S) =

∑

i∈S,j∈V

Aij ,

(13)
c(K ) =

∑

i∈K ,j∈Kc

Aij .

(14)f (K ) =
c(K )

min (a(K ), a(Kc))
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Fig. 1  Simulated graphs. a q = 4, b q = 1.22. The clusters are colored differently and the graphs are visualized 
by a force-directed method

Table 1  The NMI values and the numbers of clusters of the clustering results on simulated 
graph data

q GN Louvain Infomap MCL LRW

4.0 0.975 (4) 1.0 (4) 1 (4) 1 (4) 1.0 (4)

3.0 1 (4) 1.0 (4) 1 (4) 1 (4) 1.0 (4)

2.33 0.950 (4) 1.0 (4) 1 (4) 0.860 (7) 1.0 (4)

1.86 0.900 (4) 1.0 (4) 1 (4) 0.478 (95) 1.0 (4)

1.5 0.890 (4) 1.0 (4) 0 (1) 0.453 (119) 0.975 (4)

1.22 0.593 (4) 0.771 (5) 0 (1) 0.444 (128) 0 (1)

1 0.232 (4) 0.304 (7) 0 (1) 0.444 (128) 0 (1)
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Normalized cut:

Inverse relative density:

Different local clustering algorithms are used to find the cluster that contains the seed 
vertex. The Jaccard index is used to evaluate the performance of each algorithm. Let K 
be the set of vertices that an algorithm finds and T  be the ground truth cluster that con-
tains the seed vertex. The Jaccard index is defined as

We generated 10 test graphs for each inbound-outbound ratio q. From each generated 
graph, we randomly picked 20 vertices as seeds. For each algorithm and each inbound-
outbound ratio q, we computed the Jaccard index for each seed and took the average 
of the 200 Jaccard indices. The results are shown in Table 2, where “Che” stands for the 
Cheeger constant (conductance) fitness function; “NCut” stands for the normalized 
cut fitness function; “IRD” stands for the inverse relative density; the ending letter “G” 
stands for the greedy search method; and the ending letter “S” stands for the simulated 
annealing method.

From the results, it is obvious that the LRW algorithm clearly outperforms other 
methods when the graph has a clear cluster structure. For the same reason explained in 
"Simulated data for global graph clustering problem" section, it does not give good result 
if the cluster structure is weak. This is the main difference between the LRW algorithm 
and graph partition algorithms.

Real world data

In this section, we evaluate the performance of the LRW algorithm on some real world 
graph data.

Zachary’s karate club

We first do clustering analysis on the Zachary’s karate club graph data [31]. This graph 
is a social network of friendship in a karate club in 1970. Each vertex represents a club 
member and each edge represents the social interaction between the two members. 
During the study, the club split into two smaller ones due to the conflicts between the 
administrator and the coach. The graph data have been regularly used to evaluate the 
performance of the graph clustering algorithms [27, 30, 32]. The graph contains 34 verti-
ces and 78 edges. We applied the LRW algorithm on this graph and the result shows two 
clusters that are naturally formed. Figure 2 shows the clustering result, where clusters 
are illustrated using different colors.

(15)f (K ) =
c(K )

a(K )
+

c(K )

a(Kc)

(16)f (K ) =
|E| − a(K )+ c(K )

a(K )− c(K )

(17)J =
|K ∩ T |

|K ∪ T |
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As the figure shows, the LRW algorithm finds the two clusters of the Zachary’s karate 
club. Actually the two clusters perfectly match the ground truth—how the club was split 
in 1970.

Clustering results of the GN, Louvain, Infomap and MCL algorithms are given in 
Additional file 1.

Ego‑Facebook graph data

The second data we used is the ego-Facebook graph data [33]. The social network web-
site Facebook allows users to organize their friends into “circles” or “friend lists” (for 
example, friends who share common interests). This data was collected from volunteer 
Facebook users for researchers to develop automatic circle finding algorithms. Ego-net-
work is the network of an end user’s friends. The ego-Facebook graph is a combination 
of ego-networks from 10 volunteer Facebook users. There are 4039 vertices and 88234 
edges in the graph.

We applied the LRW, GN [27], Louvain [6], Infomap [30] and MCL [12] graph cluster-
ing algorithms to this data. To compare the results, we generated the ground truth clus-
tering by combining the vertices in the “circles” of each volunteer user. So, the ground 
truth contains 10 clusters. If a vertex appears in the circles of more than one volunteer, 
we assign the vertex to all of these ground truth clusters. We evaluated the number of 
clusters and the NMI values of the results that each competing algorithm generated.

We also calculated the mean conductance (MC) value of the clustering results. The 
conductance value of a cluster is calculated using Eq. 14. We then took the mean of all 
the conductance values of the clusters that an algorithm finds. Smaller MC values indi-
cate better clustering results. Note that MC tends to favor smaller numbers of clusters in 
general. If the numbers of clusters are roughly the same, MC values give good evaluation 
of the clustering results. It is also worth noting that MC value is capable of evaluating 
clustering algorithms without the ground truth. We shall use this metric in later experi-
ments where the ground truth is not available.

The MC scores, NMI scores and the number of clusters found by each algorithm 
are reported in Table  3. A italic font indicates the best score among all competing 
algorithms.

The results show that the random-walk-based algorithms—LRW and MCL—are able 
to find the correct cluster structure of the data. Other criteria-based algorithms are sen-
sitive to trivial disparities of the graph structure and are likely to overcluster the data.

The clustering result of the LRW algorithms is shown in Fig. 3.

Table 2  Jaccard index of local graph clustering results on the simulated graphs

q CheG CheS NCutG NCutS IRDG IRDS LRW

4.0 0.753 0.840 0.752 0.820 0.753 0.830 0.945

3.0 0.671 0.812 0.671 0.801 0.671 0.798 0.927

2.33 0.668 0.774 0.668 0.758 0.668 0.776 0.880

1.86 0.593 0.650 0.593 0.681 0.593 0.684 0.823

1.5 0.492 0.630 0.493 0.629 0.492 0.609 0.660

1.22 0.444 0.544 0.437 0.549 0.444 0.529 0.504

1 0.298 0.410 0.296 0.452 0.298 0.424 0.295
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Clustering results of other algorithms are shown in the Additional file 1.

Heterogeneous graph data

To evaluate the performance of the LRW algorithm on real heterogeneous graph data, 
we selected 5 graph data from the collection of the KONECT project [34]. The graph 
data are selected from different categories and the size of the graph data varies from 
small to medium. The properties and the references of the test graphs are shown in 
Table 4.

Since there is no ground truth available for these test data, we evaluated each cluster-
ing algorithm by the mean conductance (MC) values. The results are in Table  5. The 
best MC scores are shown in a italic font. The numbers of clusters found by each algo-
rithm are placed between parentheses. We also plot the clustered graphs in which the 
vertices are located using a force-directed algorithm and colored according to their asso-
ciated clusters. These clustered graphs are given in the Additional file 1 for subjective 
evaluation.

The reactome and the infectious graphs have low density. We chose the inflation expo-
nent r = 1.2 to prevent overclustering the data. For other graph data, the default value 
r = 2 is used.

Based on the MC scores and the visualized clustering results, the LRW algorithm 
achieves a superior clustering performance in most of the cases. Note that the reactome 
data has a weak cluster structure, thus the LRW algorithm has difficulty to find a good 
partition for it.

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33
34

Fig. 2  Clustering result of the karate club graph data. The two clusters found by the LRW algorithm match 
the ground truth—how the club was split in 1970

Table 3  Global graph clustering results on the ego-Facebook graph

GN Louvain Infomap MCL LRW

Mean conductance 0.156 0.133 0.397 0.0882 0.0770

NMI 0.778 0.796 0.723 0.908 0.910

Number of clusters 16 19 76 10 10



Page 17 of 22Zhang et al. J Big Data  (2016) 3:26 

The sensitivity analysis of the parameters

The proposed LRW algorithm depends on a number of parameters to perform global 
and local graph clustering. In this section, we perform the sensitivity analysis on the 
parameters.

We use both simulated and real-world graphs in our experiments. Test graph G1, G2 
and G3 are similar to those used in "Simulated data for global graph clustering prob-
lem" section except that we vary the density of each graph. The expected degree d, which 
is a measure of the graph density, of graph G1, G2 and G3 are 12, 16 and 20 respec-
tively and q is set to be 1.86 for all test graphs. Test graph G4 is generated in the same 
way as described in "Simulated data for local graph clustering problems" section. The 

Fig. 3  Clustering result on the ego-Facebook graph data. Different colors indicate the clusters found by the 
LRW algorithm and the graph is visualized by a force-directed method
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ego-Facebook graph data in "Ego-Facebook graph data" section is used as an example of 
real-world graphs. We performed global graph clustering on these test graphs using the 
LRW algorithm with different parameters. the NMI scores are used to evaluate the per-
formance of the algorithm. The experiments using simulated graph data were repeated 
10 times and the average NMI scores and the average number of clusters are reported.

As described in "Limited random walk on general graphs" section, the most important 
parameter of the LRW algorithm is the inflation exponent r. We first set Tmax = 100, 
ǫ = 10−5, τ = 0.3 and vary the inflation exponent r. Table 6 shows the NMI scores and 
the number of clusters reported by the LRW algorithm with different values of r.

The test results show the relationship among the inflation exponent r, the density of 
the test graphs and the performance the LRW algorithm. A large inflation exponent 
r may overcluster the data as the results on graph G1 and G2 shows. It can be easily 
noticed that the LRW algorithm is not sensitive to the choice of r for test graph G4 and 
the ego-Facebook graph. These graphs, and almost all real-world graphs, are more het-
erogeneous than the simulated graphs G1, G2 and G3. The LRW algorithm performs 
better on this type of graph since the attractor vertices and significant vertices are more 
stable on these graphs.

The parameter Tmax sets a limit on the number of iterations for the LRW procedure to 
converge. According to our experiments, value 100 is large enough to ensure the con-
vergence of almost all cases. For example, only 3 out of 88,234 LRW procedures do not 
converge within 100 iterations on the ego-Facebook graph. A few exceptional cases has 
no impact on the final clustering results. The parameter ǫ is used to remove small values 
in the probability vector thus decrease the computational complexity. It has no impact 
on the final clustering result as long as the value is small enough, for example ǫ < 10−4.

We also conducted the experiments by varying the threshold value τ from 0.1 to 0.5. 
The NMI scores and the number of clusters found by the LRW algorithm with different τ 
values are almost identical to the values in the corresponding cells in Table 6. This indi-
cates that the choice of τ has very little impact on the clustering performance.

Table 4  Properties of the heterogeneous graphs used for testing

Vertices Edges Category Reference

Dolphins 62 156 Animal [35]

Arenes-jazz 198 2742 Human social [36]

Infectious 410 2765 Human contact [37]

Polblogs 1490 19,090 Hyperlink [38]

Reactome 6229 146,160 Metabolic [39]

Table 5  Global graph clustering results on the real heterogeneous graph data

GN Louvain Infomap MCL LRW

Dolphins 0.425 (4) 0.440 (5) 0.487 (6) 0.675 (12) 0.347  (4)

Arenes-jazz 0.485 (4) 0.455 (4) 0.577 (7) 0.529 (5) 0.364  (4)

Infectious 0.162  (5) 0.214 (6) 0.465 (17) 0.673 (40) 0.175 (5)

Polblogs 0.524 (12) 0.501 (11) 0.727 (36) 0.777 (45) 0.427  (11)

Reactome 0.108 (110) 0.099  (114) 0.315 (248) 0.478 (352) 0.221 (191)
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According to these results, one only needs to choose a proper inflation exponent r to 
use the LRW algorithms. Other parameters can be chosen freely from a wide range of 
reasonable values. r = 2 is suitable for most of graphs and is preferable because of the 
computational advantage.

Big graph data

In this section, we apply the LRW algorithm on real-world big graph data and show the 
computational advantage of its parallel implementation. The test graphs were received 
from the SNAP graph data collection [40, 41]. These graphs are from major social net-
work services and E-commerce companies. We use the high quality communities that 
either created by users or the system as ground truth clusters. The details of the high 
quality communities are described in [41]. The Rand index is used to evaluate the results 
of the proposed clustering algorithm. To generate positive samples, we randomly picked 
1000 pairs of vertices, where the vertices in each pair come from the same cluster in the 
ground truth. Negative samples consist of 1000 pairs of vertices, where the vertices from 
each pair come from different clusters in the ground truth. The Rand index is defined as

where TP is the number of true positive samples, TN is the number of true negative 
samples, and N is the total number of samples.

Since none of the competing algorithms used in previous sections can complete this 
task due to the large size of the data, we only report the results from the LRW algo-
rithm. Table 7 shows the size of the test graphs, the time spent on the graph exploration 
phase, the number of CPU cores and the amount of memory used for graph explora-
tion, the time spent on cluster merging phase, the number of clusters that the LRW algo-
rithm finds and the Rand index of the clustering results. In this experiment, multiple 
CPU cores were used for graph exploration and one CPU core was used for clustering 
merging.

Table 7 shows that the LRW algorithm is able to find clusters from large graph data 
with a reasonable computing time and memory usage. The Rand index values indicate 
that the clusters returned by the LRW algorithm match well the ground truth. The time 
spent on the graph exploration phase is inversely proportional to the number of CPU 

(18)RI =
TP + TN

N
,

Table 6  The NMI scores and the number of clusters by the different inflation exponent val-
ues

r G1 G2 G3 G4 Facebook

1.2 0 (1) 0 (1) 0 (1) 0.155 (5) 0.902 (10)

1.4 0 (1) 0 (1) 0 (1) 0.927 (22.7) 0.906 (10)

1.6 0 (1) 0 (1) 0 (1) 1.0 (23) 0.908 (11)

1.8 1 (4) 1 (4) 1 (4) 1.0 (20.8) 0.910 (10)

2 0.971 (4.6) 1 (4) 1 (4) 1.0 (25) 0.910 (10)

2.4 0.868 (7.0) 0.990 (4.2) 1 (4) 1.0 (21.8) 0.910 (10)

3 0.822 (6.3) 0.962 (4.8) 0.988 (4.2) 1.0 (24.3) 0.910 (10)
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cores. Computational time can be further reduced if more computing resources are 
available. The proposed algorithm can efficiently handle graphs with millions of vertices 
and hundreds of millions of edges. For even larger graphs that exceed the memory limit 
for each computing process, a mechanism that retrieves part of the graph from a central 
storage can be used. Since the LRW procedure is capable of exploring a limited number 
of vertices that are near a seed vertex, the algorithm can cluster much larger graphs if 
such a mechanism is implemented.

Conclusions
In this paper, we proposed a novel random-walk-based graph clustering algorithm, the 
so-called LRW. We studied the behavior of the LRW procedure and developed the LRW 
algorithms for both global and local graph clustering problems. The proposed algorithm 
is fundamentally different from previous random-walk-based algorithms. We use the 
LRW procedure to find attracting vertices and use them as features to cluster vertices in 
a graph. The performance of the LRW algorithm was evaluated using simulated graphs 
and real-world big graph data. According to the results, the proposed algorithm is supe-
rior to other well-known methods.

The LRW algorithm can be efficiently used in both global and local graph clustering 
problems. It finds clusters from a big graph data by only locally exploring the graph. This 
is important for extreme large data that may not even fit in a single computer memory. 
The algorithm contains two phases—the graph exploring phase and the cluster merging 
phase. The graph exploring phase is the most critical part and also the most time-con-
suming part of the algorithm. This phase can be implemented in embarrassingly parallel 
paradigm. The algorithm can easily be adapted to any MapReduce framework.

From our experiments, we also noticed the limitations of the LRW algorithm. First, 
when used as a global clustering algorithm, the computational complexity can be high, 
especially when the graph cluster structure is weak. This is due to the fact that the graph 
may be analyzed multiple times during the graph exploration phase, if we perform the 
LRW procedure from every vertex of the graph. However, using the multi-stage strategy 
can dramatically reduce the computation time. Second, if the cluster structure is weak, 
the LRW algorithm may return the whole graph as one cluster—though this behavior is 
desired in many cases.

The experiments show that the performance of the proposed LRW graph clustering 
algorithm is not sensitive to any parameter except the inflation exponent r, especially 

Table 7  Clustering performance of real-world big graph data

com-Amazon com-Youtube com-LiveJournal com-Orkut

Vertices 334,863 1,134,890 3,997,962 3,072,441

Edges 925,872 2,987,624 34,681,189 117,185,083

CPU cores (graph exploration) 12 96 96 96

Memory per CPU core 4G 4G 8G 8G

Graph exploration (in hours) 0.83 3.08 17.4 24.0

Cluster merging (in hours) 0.20 1.34 9.44 2.53

Clusters 37,473 170,569 381,246 165,624

Rand index 0.908 0.755 0.951 0.751
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when the graph is not heterogeneous. For future research, we will further improve the 
LRW algorithm so that it can optimally select the inflation function that best suits the 
problem at hand.
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