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Stability-Guaranteed Impedance Control of
Hydraulic Robotic Manipulators

Janne Koivumäki and Jouni Mattila, Member, IEEE

Abstract—In challenging robotic tasks, high-bandwidth closed-
loop control performance of the system is required for successful
task completion. One of the most critical factors inhibiting the
wide-spread use of closed-loop contact control applications has
been the control system stability problems. To prevent unstable
system behavior, the need for rigorously addressed manipulator
dynamics is substantial. This is because the contact dynamics
between a manipulator and its environment can be drastic.

In this paper, a novel Cartesian space impedance control
method is proposed for hydraulic robotic manipulators. To
address the highly nonlinear dynamic behaviour of the hydraulic
manipulator, the system control is designed according to the
subsystem-dynamics-based virtual decomposition control (VDC)
approach. The unique features of VDC (virtual power flow and
virtual stability) are used to analyze the interaction dynamics
between the manipulator and the environment. Based on the
desired impedance parameters and stability analysis, an explicit
method to design the control gains for the proposed impedance
control law is developed. The LLL2 and LLL∞ stability is guaranteed
in both free-space motions and constrained motions.

Experimental results demonstrate that the hydraulic robotic
manipulator is capable of adjusting its dynamic behaviour
accurately in relation to the imposed target impedance behaviour.
This provides compliant system behaviour, which is needed in
many dynamically challenging robotic tasks.

Index Terms—hydraulic manipulators, impedance control,
nonlinear model-based control, stability analysis, virtual decom-
position control, virtual power flow.

I. INTRODUCTION

ADVANCED robotic systems, such as humanoid robots,
legged robots and exoskeletons, are currently receiv-

ing substantial attention in industry and academia. From a
mechanical design perspective, hydraulic actuators provide
an attractive solution for robotic systems because they can
produce significant forces/torques for their size, are robust
and can provide accurate motions. Indeed, hydraulic robotic
systems, such as Boston Dynamics’ BigDog, Cheetah and
Atlas, and SARCOS’ humanoids and exoskeletons, have al-
ready advanced the state-of-the-art in robotics. Academic in-
depth research is also ongoing (e.g., IIT’s HyQ and Shandong
University’s SCalf). For robotic systems, articulated limbs are
crucially important subsystems because they can provide many
versatile abilities, such as legged locomotion or manipulation
of the environment. However, successful completion of these
interactive tasks requires that the robotic system is capable
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of accurately controlling its interaction with the surrounding
environment, with humans or with other devices.

However, force control of a single hydraulic actuator is
challenging due to its highly nonlinear dynamic behaviour [1].
Moreover, control design for articulated robotic systems is
greatly complicated by the nonlinear nature of the associated
multibody dynamics. Impeded by these nonlinearities, an accu-
rate contact control for articulated hydraulic robots becomes an
extremely challenging task. In robotic contact control, system
stability issues have drawn considerable attention since the
installation of the first industrial robots, and numerous reasons
for the unstable responses have been identified [2]–[6]. One
reason is that contact dynamics between the robotic system and
the environment can be drastic while robot nonlinear dynamics
are not considered rigorously [4], [7].

The design challenges mentioned above have led to the
utilization of nonlinear model-based control (NMBC) meth-
ods to achieve better dynamic performance for hydraulic
robots, which is needed in dynamically challenging contact
tasks. In contrast to linear control methods, NMBC methods
(where the specific feedforward control term can be used
for system nonlinearities) can theoretically provide “infinite”
control bandwidth, as long as proper feedforward control
is designed [8]. As introduced in many books on the con-
trol of robots, such as [9]–[11], typical NMBC designs are
based on the complete dynamic models of robots using the
Lagrangian formulation. However, for complex robots (such
as humanoids), the implementation of complete-dynamics-
based control becomes substantially challenging, because with
these methods, the complexity (computational burden) of robot
dynamics is proportional to the fourth power of the number
of degrees of freedom (DOF) in motion [8].

Virtual decomposition control (VDC) [8], [12] is a unique
subsystem-dynamics-based control method using the Newton-
Euler formulation. A number of significant state-of-the-art
control performance improvements have been reported with
VDC with electrically-driven robots (see [13]–[18]) and with
hydraulically-driven robots (see [19]–[23]). The subsystem-
dynamics-based control of the VDC enables NMBC design
with many attractive special features for (complex) robotic
systems, including the following: 1) control computations
are proportional to the number of subsystems and can be
performed even by locally embedded hardware/software, 2)
subsystem dynamics remain relatively simple with fixed dy-
namic structures invariant to the target system, 3) changing
the control (or dynamics) of one subsystem does not affect the
control equations within the rest of the system, 4) parameter
uncertainties in the subsystem dynamics can be addressed with
a parameter adaptation and 5) system stability analysis can be
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addressed at a subsystem level using the unique features of
VDC, virtual power flow (VPF) and virtual stability.

In this paper, a novel non-switching impedance control
method is proposed. To address the highly nonlinear dy-
namic behavior of the hydraulic manipulator and to obtain
the rigorous dynamic performance needed in contact control
tasks, the manipulator’s internal control is designed based on
VDC. Interaction dynamics between the manipulator and the
environment are analyzed using a VPF located at the contact
point. Based on the analysis, an interconnection between the
desired impedance parameters (characterizing system target
impedance behaviour) and the parameters of the proposed
novel impedance control method can be found such that
impedance behavior can be designed for the system.

This paper provides the following contributions. 1) A novel
non-switching impedance control method, including the VDC
design and the proposed Cartesian space impedance con-
trol laws, is developed for hydraulic manipulators. 2) The
impedance control is designed using the framework of VDC.
3) A rigorous stability proof for a hydraulic manipulator is
provided for the first time to cover both free-space motions
and constrained motions. 4) The experiments demonstrate the
efficiency of the proposed method and rigorously support
the mathematical theorems on the stability-guaranteed system
behaviour and the target impedance behaviour.

This paper is organized as follows. Section II describes con-
tact control strategies proposed for hydraulic robotic systems.
Section III introduces the essential mathematical foundations
needed in system control design. Section IV describes the
proposed impedance control design and its VDC-based imple-
mentation. Section V concentrates on system stability issues.
Section VI demonstrates contact control performance of the
proposed controller. Conclusions are outlined in Section VII.

II. RELATED WORKS

The basic approaches for robotic force control are based on
hybrid position/force control by Raibert [24] and impedance
control by Hogan [25]. Historical overviews of robot force
control can be found in [7], [26], [27]. With electrically-driven
manipulators, the force control, as presented, e.g., in [24], [25],
[28]–[32], has been extensively studied. Typically, hydraulic
manipulators are built to operate heavy objects (e.g., logs)
or to exert large forces on the physical environment (e.g., in
excavation). Thus, it is rather surprising that only a few studies
exist regarding force control in hydraulic robotic manipulators.

Heinrich et al. [33] implemented the impedance control
technique for hydraulically-actuated manipulators for the first
time. A nonlinear proportional-integral (NPI) controller was
developed for joint control. The stability proof of the proposed
controller design was not given.

Tafazoli et al. [34] (see also related studies in [35],
[36]) studied the impedance control of a teleoperated mini-
excavator, based on a simple proportional-derivative (PD) con-
troller. Stability proof for a simple PD impedance controller
was provided, but it was limited to a single-DOF hydraulic
cylinder acting on the environment.

Zeng and Sepehri [37] proposed a nonlinear tracking control
for multiple hydraulic manipulators handling a rigid object,

where internal forces of coupled manipulators were controlled.
The control design for the system was based on a backstepping
methodology and the stability of the system was proven. How-
ever, the stability analysis was limited to situations where con-
nection to the held object was already established. The exper-
iments were carried out with two single-axis electro-hydraulic
actuators, which were connected rigidly to the common object
with spring mechanisms [38], preventing unilateral constraint.

Semini et al. [39] reported their recent results on the active
impedance control of hydraulic quadruped robot HyQ. They
used input-output feedback linearization to construct their
model-based control design for the hydraulic leg. Rigorous
stability proof for their control design was not provided.

A major step forward from the existing solutions was taken
by Koivumäki and Mattila [23], who proposed a stability-
guaranteed contact force/motion control for heavy-duty hy-
draulic manipulators. In this study, the highly nonlinear be-
haviour of the hydraulic manipulator was addressed with the
VDC approach, and hybrid motion/force control was used
to control end-effector motions and forces in their own sub-
spaces. In the experiments, superior motion and force tracking
performance were reported. In the control design, switching
from free-space motion to constrained motion was utilized.

In summary, NMBC for hydraulic manipulators with non-
switching contact control law and with rigorous stability proof
in free-space and constrained motions is still an open problem.
This problem is addressed in the present paper.

III. MATHEMATICAL FOUNDATION

This section provides essential mathematical foundations
needed in control system design.

A. Linear/Angular Velocity Vectors and Force/Moment Vectors

Consider an orthogonal, three-dimensional coordinate sys-
tem {A} (called frame {A} for simplicity) attached to the rigid
body. Let the linear/angular velocity vector of frame {A} be
written as AV = [Av Aω]T , where Av∈R3 and Aω ∈R3 are the
linear and angular velocity vectors of frame {A}. Similarly,
let the force/moment vector in frame {A} be written as
AF = [Af Am]T , where Af∈R3 and Am∈R3 are the force and
moment vectors applied to the origin of frame {A}, expressed
in frame {A}. Then, consider two given frames, denoted as
{A} and {B}, fixed to a common rigid body. The following
relations hold

BV = AUT
B

AV (1)
AF = AUB

BF (2)

where AUB ∈ R6×6 denotes a force/moment transformation
matrix that transforms the force/moment vector measured and
expressed in frame {B} to the same force/moment vector
measured and expressed in frame {A}.

B. Parameter Adaptation

The following projection function from [8] is used for
parameter adaptation:
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Definition 1: A projection function P(s(t),k,a(t),b(t), t)∈
R is a differentiable scalar function defined for t > 0 such that
its time derivative is governed by

Ṗ = ks(t)κ (3)

with

κ =

 0, if P 6 a(t) and s(t)6 0
0, if P > b(t) and s(t)> 0
1, otherwise

where s(t) ∈ R is a scalar variable, k > 0 is a constant and
a(t)6 b(t) holds.

The projection function defined in (3) has the following
property: For any constant Pc subject to a(t)6Pc 6 b(t), it
follows that

(Pc−P)

(
s(t)− 1

k
Ṗ

)
6 0. (4)

C. Virtual Cutting Points and a Simple Oriented Graph

In the VDC approach, the original system is virtually
decomposed into the subsystems by placing conceptual virtual
cutting points (VCPs). A cutting point forms a virtual cutting
surface on which three-dimensional force vectors and three-
dimensional moment vectors can be exerted from one part to
another. The VCP is defined as shown in Definition 2.

Definition 2 [8]: A cutting point is a directed separation
interface that conceptually cuts through a rigid body. At
the cutting point, two parts resulting from the virtual cut
maintain equal positions and orientations. The cutting point
is interpreted as a driving cutting point by one part and is
simultaneously interpreted as a driven cutting point by another
part. A force vector f ∈ R3 and a moment vector m ∈ R3 are
exerted from one part to which the cutting point is interpreted
as a driving cutting point to the other part to which the cutting
point is interpreted as a driven cutting point.

After the original system is virtually decomposed into
subsystems by placing VCPs, the system can be represented
by a simple oriented graph. A simple oriented graph is defined,
as shown in Definition 3.

Definition 3 [8]: A graph consists of nodes and edges. A
directed graph is a graph in which all edges have directions.
An oriented graph is a directed graph in which each edge has a
unique direction. A simple oriented graph is an oriented graph
in which no loop is formed.

D. L2 and L∞ Stability

Definition 4 [8]: Lebesgue space, denoted as Lp with p
being a positive integer, contains all Lebesgue measurable and
integrable functions f (t) subject to

‖ f‖p = lim
T→∞

 T∫
0

| f (t)|pdτ

 1
p

<+∞. (5)

Two particular cases are considered:
(a) A Lebesgue measurable function f (t) belongs to L2

if and only if limT→∞

∫ T
0 | f (t)|2dτ <+∞.

(b) A Lebesgue measurable function f (t) belongs to L∞

if and only if maxt∈[0,∞) | f (t)|<+∞.

The following Lemma 1 (Lemma 2.3 in [8]) provides that a
system is stable with its affiliated vector x(t) being a function
in L∞ and its affiliated vector y(t) being a function in L2.

Lemma 1 [8]: Consider a non-negative differentiable func-
tion ξ (t) defined as

ξ (t)>
1
2

x(t)T Px(t) (6)

with x(t) ∈ Rn, n > 1 and P ∈ Rn×n being a symmetric
positive-definite matrix. If the time derivative of ξ (t) is
Lebesgue integrable and governed by

ξ̇ (t)6−y(t)T Qy(t)− s(t) (7)

where y(t) ∈ Rm, m > 1 and Q ∈ Rm×m being a symmetric
positive-definite matrix and s(t) is subject to∫

∞

0
s(t)dt >−γ0 (8)

with 06 γ0 < ∞, then it follows that ξ (t) ∈ L∞, x(t) ∈ L∞ and
y(t) ∈ L2 hold.

The following Lemma 2 provides that L2 and L∞ signal re-
tains its properties after passing through a first-order multiple-
input-multiple-output (MIMO) filter.

Lemma 2 [8]: Consider a first-order MIMO system de-
scribed by

ẋ(t)+Kx(t) = u(t) (9)

with x(t) ∈ Rn, u(t) ∈ Rn, and K ∈ Rn×n being symmetrical
and positive-definite. If u(t) ∈ L2

⋂
L∞ holds, then x(t) ∈

L2
⋂

L∞ and ẋ(t) ∈ L2
⋂

L∞ hold.
The following Lemma 3 provides an asymptotic conver-

gence for an error signal e(t).
Lemma 3 [40]: If e(t)∈ L2 and ė(t)∈ L∞, then lim

t→∞
e(t) = 0.

E. Virtual Stability

The unique feature of the VDC approach is the introduction
of a scalar term, namely the virtual power flow (VPF); see
Definition 5. VPFs uniquely define the dynamic interactions
among the subsystems and play an important role in the
definition of virtual stability, which is defined in Definition 6.

Definition 5 [8]: The VPF with respect to frame {A} can
be defined as the inner product of the linear/angular velocity
vector error and the force/moment vector error as

pA = (AVr−AV )T (AFr−AF) (10)

where AVr ∈ R6 and AFr ∈ R6 represent the required vectors
of AV ∈ R6 and AF ∈ R6, respectively.

Definition 6 [8]: A subsystem with a driven VCP to which
frame {A} is attached and a driving VCP to which frame
{C} is attached is said to be virtually stable with its affiliated
vector x(t) being a virtual function in L∞ and its affiliated
vector y(t) being a virtual function in L2, if and only if there
exists a non-negative accompanying function

ν(t)>
1
2

x(t)T Px(t) (11)

such that

ν̇(t)6−y(t)T Qy(t)+ pA− pC− s(t) (12)
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Fig. 1. The studied system. Subfigure (a) shows the original two-DOF
hydraulic manipulator. Subfigure (b) shows a virtual decomposition of the
system. Note the parallelism (//) in the VCPs. Subfigure (c) shows a simple
oriented graph of the virtually decomposed system.

holds, subject to ∫
∞

0
s(t)dt >−γs (13)

with 0 6 γs < ∞, where P and Q are two block-diagonal
positive-definite matrices and pA and pC denote the VPFs (by
Definition 5) at frames {A} and {C}, respectively.

IV. CONTROL OF THE MANIPULATOR

This section addresses a design of novel impedance control
method for a two-DOF hydraulic manipulator, which is shown
in Fig. 1(a). Even though a two-DOF system is studied in this
paper, the developed approach is extendable to systems with
any number of actuators. First, to address the highly nonlinear
behaviour of the hydraulic manipulator, Section IV-A shows
the manipulator’s internal control design based on the VDC
approach. Then, Section IV-B introduces the novel impedance
control method, designed using the framework of VDC.

A. Virtual Decomposition Control
The first step in the VDC approach is to virtually decompose

an original system into subsystems (i.e., objects and open
chains) by placing conceptual VCPs (see Definition 2). Then,
the decomposed subsystems are represented by a simple ori-
ented graph imposing dynamic interactions among subsystems.
The system’s virtual decomposition and the simple oriented
graph presentation are addressed in Section IV-A1.

Then, the subsystem-dynamic-based control is designed to
make each subsystem qualified to be virtually stable. The
virtue of the VDC is that when all subsystems are virtually
stable, the stability of the entire system can be guaranteed.
This is addressed in Section V.

F
TO2

{G}

{TO2}

{O2}

F
G

VCP

Fig. 2. Object 2 in the constrained motion.

1) Virtual Decomposition and Simple Oriented Graph: The
virtually decomposed manipulator is shown in Fig. 1(b). As
discussed, changing the control (or dynamics) of one subsys-
tem does not affect the control equations within the rest of the
system. In this study, only the control equations subject to Ob-
ject 2 have been changed in relation to [23]. For this reason,
only the control design for Object 2 (subsystem interacting
with the environment) has been studied in detail in this paper.
Control designs for the remaining subsystems, shown at the
dashed line in Fig. 1(b), can be found in [23].

The simple oriented graph for the manipulator is shown
in Fig. 1(c). In this paper, the subsystems inside the dashed
line in Fig. 1(c) are considered as one subsystem; see the
corresponding lines in Fig. 1(b). Each subsystem corresponds
to a node, and each VCP corresponds to a directed edge
whose direction defines the force reference direction. Thus,
a VCP is simultaneously interpreted as a driving VCP by one
subsystem (from which the force/moment vector is exerted or
the directed edge is pointing away) and as a driven VCP by
another subsystem (toward which the force/moment vector is
exerted or the directed edge points) [8].

Next, in Sections IV-A2 through IV-A4, the kinematics,
dynamics and control of Object 2 are given.

2) Object 2 – Kinematics: Fig. 2 shows the Object 2, to
which frame {O2} is fixed to describe the force and motion
specifications. Frame {TO2} exists at the driven VCP of Object
2, and frame {G} is the end-effector target frame where the
contact occurs and in which the Cartesian motion and force
control is specified.

The linear/angular velocity vector GV ∈ R6 in frame {G}
can be written as

GV = Ncχ̇χχ (14)

where χ̇χχ ∈R2 is the Cartesian velocity vector and the mapping
matrix Nc can be written as

Nc =

[
1 0 0 0 0 0
0 1 0 0 0 0

]T

.

The following relations hold for Object 2:
O2V = GUT

O2
GV

= TO2 UT
O2

TO2V. (15)

3) Object 2 – Dynamics: The end-effector force/moment
vector in frame {G} can be written as

GF = Nc
G fff (16)

where G fff ∈R2 is a Cartesian contact force vector (exerted by
the manipulator on the environment).
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The net force/moment vector O2F∗ ∈ R6 of Object 2, ex-
pressed in frame {O2}, can be written in view of [8] as

MO2

d
dt
(O2V )+CO2(

O2ω)O2V +GO2 =
O2F∗ (17)

where MO2 ∈ R6×6 denotes the mass matrix, CO2(
O2ω) ∈

R6×6 denotes the matrix of Coriolis and centrifugal terms and
GO2 ∈ R6 denotes the gravity terms.

On the other hand, the net force/moment vector (i.e., force
resultant equation) for Object 2 can be written as

O2F∗ = O2UTo2
To2F−O2UG

GF. (18)

4) Object 2 – Control: This section addresses the VDC-
based rigid body control of Object 2.

Similar to (14), the required linear/angular velocity vector
in the end-effector target frame {G} can be written as

GVr = Ncχ̇χχ r (19)

where χ̇χχ r ∈R2 is the required Cartesian space velocity (design)
vector specified later in (31).

In view of (15), the required velocity transformations in
Object 2 can be written as

O2Vr =
GUT

O2
GVr

= TO2 UT
O2

TO2Vr. (20)

Similar to (16), the required force/moment vector in the
end-effector target frame {G} can be obtained as

GFr = Nc
G fff d (21)

where G fff d ∈ R2 is a desired Cartesian contact force vector.
Then, in view of [8], the required net force/moment vector

for Object 2 can be written as
O2F∗r = YO2θ̂θθ O2 +KO2(

O2Vr−O2V ) (22)

with

YO2θθθ O2 = MO2

d
dt
(O2Vr)+CO2(

O2ω)O2Vr +GO2 (23)

where regressor matrix YO2 ∈ R6×13 and parameter vector
θθθ O2 ∈ R13 can be solved as shown in [8, in Appendix A].
Moreover, in (22), θ̂θθ O2 denotes the estimate of θθθ O2 and
KO2 is a symmetric positive-definite matrix characterizing the
velocity feedback control.

The estimated parameter vector θ̂θθ O2 in (22) needs to be
updated. Define

sO2 = YT
O2
(O2Vr−O2V ). (24)

Then, (3) can be used to update the ith element of θ̂θθ O2 as

θ̂O2i = P(sO2i,ρO2i,θ O2i,θ O2i, t),∀i ∈ {1,2, ...,13} (25)

where θ̂O2i denotes the ith element of θ̂θθ O2 , sO2i denotes the
ith element of sO2 , ρO2i > 0 is the update gain, and θ O2i and
θ O2i denote the lower bound and the upper bound of θO2i.

In relation to (18), the required force resultant equation can
be written as

O2F∗r = O2UTO2
TO2 Fr−O2UG

GFr. (26)

Finally, the following Lemma 4 is used to prove the virtual
stability of Object 2.

Lemma 4: Consider Object 2, described by (15), (17) and
(18), combined with its control equations (20), (22) and (26)
and with the parameter adaptation (24) and (25). Let the non-
negative accompanying function νO2 be

νO2 =
1
2
(O2Vr−O2V )T MO2(

O2Vr−O2V )

+
1
2

13

∑
i=1

(θO2i− θ̂O2i)
2

ρO2i
(27)

Then, the time derivative of (27) can be expressed by

ν̇O2 6−(
O2Vr−O2V )T KO2(

O2Vr−O2V )+ pTO2 − pG (28)

where pTO2 is the VPF by Definition 5 at the driven VCP
of Object 2, and pG characterizes the VPF between the end-
effector and the environment.

Proof: The proof is similar to Appendix B in [23].
Remark 1: Note that Object 2 has only one VCP (see Fig. 2)

but two VPFs exists in (28). The VPF pTO2 locates at the
VCP in Object 2. Thus, for the virtual stability of Object 2, a
solution (which satisfies Definition 6) must be found for the
VPF pG in (28). This will be addressed later in Section V-A.

B. The Design of the Proposed Impedance Control

In this section, the impedance control law by Hogan [25] is
introduced first in Section IV-B1. Then, the proposed Cartesian
space impedance control laws are designed in Section IV-B2.

1) Impedance Control Law: In view of Hogan [25], the
target impedance for the manipulator can be described as

G fff d−G fff =−Md(χ̈χχd− χ̈χχ)−Dd(χ̇χχd− χ̇χχ)−Kd(χχχd−χχχ) (29)

where Md ∈ R2×2, Dd ∈ R2×2 and Kd ∈ R2×2 are diagonal
positive-definite matrices and characterize the desired inertia,
damping and stiffness, respectively. Neglecting the inertia term
in (29), the target impedance can be written as

G fff d−G fff =−Dd(χ̇χχd− χ̇χχ)−Kd(χχχd−χχχ). (30)

Then, the following Assumption 1 is made for the desired
impedance parameters Dd and Kd.

Assumption 1: The desired damping Dd and stiffness Kd
are selected such that: 1) their ratio and magnitudes are not
subject to unstable behavior in the overall system; and 2) the
target impedance in (30) is attainable for the manipulator.

Assumption 1 imposes the condition that the impedance pa-
rameters Dd and Kd must be selected within the dynamic range
of achievable impedance, so-called Z-width [41], which de-
fines the combination of stiffness and damping that can be pas-
sively achieved by a certain mechanism. One method to define
Z-width for hydraulic articulated systems is given in [42].

2) Proposed Impedance Control Laws: In the framework of
VDC, the required velocity1 serves as a reference trajectory for
a system and the control objective is to make the controlled ac-
tual velocities track the required velocities. In this section, the

1The general format of a required velocity includes a desired velocity
(which usually serves as a reference trajectory for a system) and one or more
terms that are related to control errors [8].
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Fig. 3. Diagram of the designed novel impedance control for the hydraulic manipulator. The required Cartesian velocity χ̇χχ r is computed from (31). Then, the
required joint velocity vector q̇qqr is solved using the Jacobian matrix. The detailed structure for the remaining subsystem (see Fig. 1) inside the VDC block
can be found in [23]. The output uuuc of the VDC block is the control signal for the hydraulic valves, which control the hydraulic cylinders. Finally, the motion
dynamics of the manipulator is produced by the output force fff p of the hydraulic cylinders. Please see [23] for more details.

objective is to design such a control for the required Cartesian
velocity vector χ̇χχ r ∈R2 in (19), which 1) realizes the Cartesian
impedance behaviour for the manipulator and 2) qualifies
Object 2 as virtually stable in the sense of Definition 6.

Let χ̇χχ r for the manipulator be designed as

χ̇χχ r = χ̇χχd +ΛΛΛχ(χχχd−χχχ)+ΛΛΛ f (
G fff d−G fff ) (31)

where ΛΛΛχ ∈ R2×2 and ΛΛΛ f ∈ R2×2 are two diagonal positive-
definite matrices characterizing Cartesian position and force
control, and let them be defined according to Condition 1.

Condition 1: The diagonal positive-definite matrices ΛΛΛ f and
ΛΛΛχ are defined as

ΛΛΛ f = D−1
d (32)

ΛΛΛχ = KdD−1
d . (33)

Then, the following Theorem 1 provides that the target
impedance behaviour (30) can be achieved for the system.

Theorem 1: Consider the proposed control law (31), which
defines the required velocity behaviour for the system. If and
only if the diagonal positive-definite matrices ΛΛΛ f and ΛΛΛχ in
(31) are defined according to (32) and (33) in Condition 1, then
the control law (31) equals the target impedance law (30).

Proof: See Appendix A.
A diagram for the proposed control design is shown in Fig. 3.

Remark 2: Compared to the typical Cartesian free-space
control law, term ΛΛΛ f (

G fff d−G fff ) is included in (31). In this
study, G fff d = [0 0]T is used. This enables a high control band-
width in free space (see free-space results in [22]), provided
that zero contact force is measured in free-space motions, i.e.,
(G fff d−G fff ) = 0 holds. Alternatively, time-variant solutions for
G fff d are not excluded.

Remark 3: Note that the actual target impedance behavior
in (30) is not directly involved in the system control; rather,
the proposed impedance control law (31) with Condition 1
provides an input for the control system (see Fig. 3). In
principle, the proposed control law (31) differs from the target
impedance law (30). However, as Theorem 1 shows, the target
impedance behaviour (30) can be designed for (31) with Dd
and Kd by using Condition 1.

Theorem 1 satisfies the first objective above: realization
of the target impedance behaviour for the required Cartesian
velocity vector χ̇χχ r in (19). The realization of the second
objective (Object 2 qualifies as virtually stable in the sense
of Definition 6) using the designed control laws (31)–(33) is
analyzed next in Section V-A.

V. STABILITY ANALYSIS

The conceptual VPFs (see Definition 5) are a unique feature
of VDC and they are used to address the dynamic interaction

between subsystems. The virtual stability (see Definition 6) of
every subsystem ensures that, at every placed VCP, a negative
VPF (at a driving VCP of a subsystem) is connected to its
corresponding positive VPF (at a driven VCP of the adjacent
subsystem). Thus, VPFs act as “stability connectors” between
subsystems; eventually, they cancel each other out at every
VCP [8]. Finally, as addressed in Theorem 2.1 in [8], the
virtual stability of every subsystem ensures the L2 and L∞

stability (see Lemma 1) of the entire system.
As can be seen from Fig. 2, only one VCP

(
having a

VPF pTO2 ; see (28)
)

is specified for Object 2. However,
in (28), there also exists another VPF pG (characterizing
the dynamic interaction between the manipulator and the
environment), which has no “stabilizing counterpart”. Con-
sequently, it is control designer’s obligation to ensure that a
control is designed for the system such that Object 2 qualifies
to be virtually stable. Next, in Section V-A, the VPF pG
between the manipulator and the environment is analyzed
using Definitions 5–6, eventually leading to the stabilizing
solution for pG and virtual stability of Object 2. Finally, the
stability of the entire system is proven in Section V-B.

A. Virtual Stability of Object 2

Using the designed control law (31), the following Lemma 5
can be derived.

Lemma 5: Definition 5, (14), (16), (19), (21), (30) and (31)
yields

pG = (χ̇χχd− χ̇χχ)T (DdΛΛΛ f Dd−Dd)(χ̇χχd− χ̇χχ)

+(χχχd−χχχ)T (KdΛΛΛ f Kd−ΛΛΛχ Kd)(χχχd−χχχ)

+(χχχd−χχχ)T (2DdΛΛΛ f Kd−ΛΛΛχ Dd−Kd)(χ̇χχd− χ̇χχ). (34)

Proof: See Appendix B.
Then, the following Lemma 6 is defined for pG to provide

sufficient conditions for the virtual stability of Object 2.
Lemma 6: Let the following constraints hold for the diago-

nal positive-definite matrices ΛΛΛ f and ΛΛΛχ :

ΛΛΛ f > D−1
d (35)

ΛΛΛχ 6 KdΛΛΛ f . (36)

Then, it follows from Lemma 5 that∫ t

0
pG(τ)dτ >−γG (37)

holds with 06 γG < ∞.
Proof: See Appendix C.

Finally, the following Theorem 2 ensures that Object 2
qualifies as virtually stable in the sense of Definition 6.
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Theorem 2: Let Condition 1 hold. Then, using Lemma 4,
Lemma 5 and Lemma 6, Object 2 qualifies as virtually stable
in the sense of Definition 6.

Proof: Let Condition 1 hold. Substituting ΛΛΛ f and ΛΛΛχ (in
Condition 1) into Lemma 5 yields pG = 0→

∫ t
0 pG(τ)dτ = 0,

which satisfies (37) in Lemma 6 (note that Condition 1 satisfies
the constraints in (35) and (36) in Lemma 6). Consider the
fact that Object 2 has one driven VCP associated with frame
{TO2}. Then, using Lemma 4 and (37), Object 2 qualifies as
virtually stable in the sense of Definition 6.

Remark 4: The design process for the proposed impedance
control laws (31)–(33) is iterative. The virtual stability, i.e,
Definition 6, of Object 2 determines the general constraints
for this process. In addition, the designed control input should
be written in the form of required velocity (see the footnote
in Section IV-B2), constraining the design of (31). Then,
given the target impedance law (30), Definition 5 is used to
design the control laws (31)–(33), which realizes the Cartesian
impedance behavior for the system (see Theorem 1) and
provides virtual stability for Object 2 (see Theorem 2).

Remark 5: Assumption 1, Condition 1 and Theorem 1 define
that ΛΛΛ f and ΛΛΛχ in (31) are not subject to unstable system
behaviour. As the constraints (35) and (36) in Lemma 6 sug-
gest, in addition to Condition 1, other stable solutions for
ΛΛΛ f and ΛΛΛχ can also exist. This is true; a Z-width [41] can
be determined for the impedance-controlled systems [42].
Note that selecting ΛΛΛ f and ΛΛΛχ with (35) and (36) (excluding
solution in Condition 1) will result to different impedance
behaviour in relation to the specified Dd and Kd.

B. Stability of the Entire System

In relation to [23], only the control laws for Object 2 have
been changed in this paper. Thus, in view of [23], the non-
negative accompanying function and its time-derivative for the
remaining subsystem, shown with dashed lines in Fig. 1(b)–
(c), can be written as

νR > 0 (38)
ν̇R 6 −pTO2 (39)

where pTO2 is the VPF at the driving VCP of this subsystem.
The following Theorem 3 guarantees the stability of the

entire system, in view of Lemma 1.
Theorem 3: Consider Object 2, shown in Fig. 2 and de-

scribed by Lemma 5. Furthermore, let the remaining subsys-
tem be addressed with (38) and (39), and let Assumption 1
and Condition 1 hold. Then, using (27), (28), (38), (39)
and Lemma 6, it can be shown that O2Vr − O2V ∈ L2

⋂
L∞

holds, in view of Lemma 1. Consequently, this yields that
ΛΛΛ
−1
f (χ̇χχd− χ̇χχ)+ΛΛΛ

−1
f ΛΛΛχ(χχχd−χχχ)+(G fff d−G fff ) ∈ L2

⋂
L∞ holds.

In the special case (G fff d−G fff )= 0, it follows from Lemma 2
that χ̇χχd − χ̇χχ ∈ L2

⋂
L∞ and χχχd − χχχ ∈ L2

⋂
L∞ hold, with an

asymptotic convergence for χχχd−χχχ (in the sense of Lemma 3).
Proof: See Appendix D.

Remark 6: In Theorem 3, (G fff d − G fff ) 6= 0 denotes con-
strained motion and (G fff d−G fff ) = 0, with G fff d = [0 0]T , de-
notes free-space motions.

VI. EXPERIMENTS

This section demonstrates the contact control performance
of the proposed controller. System set-up and implementation
issues are outlined in Section VI-A. Section VI-B demonstrates
the controller’s ability to prevent excessive contact forces when
the manipulator collides with an object. The main results of
this study are presented in Section VI-C, where the proposed
control method is verified and the accuracy of Theorem 1 is
shown in practice.

A. Experimental Set-up and Implementation Issues
The experimental set-up for the contact experiments is

shown in Fig. 4. For the environmental contact, a set of
wooden pallets was placed on a rubber mat. The set-up
consisted of the following hardware components:
• dSpace DS1103 system, with 3 ms sample time
• 475 kg payload, denoted as M in Fig. 1(a)
• Bosch 4WRPEH10 proportional valve (100 dm3/min @

∆p = 3.5 MPa per notch) for cylinders
• Heidenhain ROD 456 incremental encoder (5000 inc/rev)

with IVB interpolation units for joints 1 and 2, providing
a theoretical piston position resolution < 1.2×10−3 mm

• Druck PTX1400 pressure transmitters (range of 25 MPa)

{G}

{B}

1st pallet
2nd pallet

3rd pallet

X
Y

Y

X

Fig. 4. The experimental set-up. Manipulator’s base frame {B} and end-
effector target frame {G} are shown in red. The manipulator’s position in
this figure shows the starting point of the driven motion trajectories.

In the experiments, the manipulator should be stiff along the
frame {G} X-axis (the direction of unconstrained motion) and
compliant along the frame {G} Y-axis (the direction of con-
strained motion). For this reason, in Dd and Kd, high gains
were imposed along the X-axis and minor gains were imposed
along the Y-axis. Table I shows ΛΛΛ f and ΛΛΛχ based on the
determined Dd and Kd.

TABLE I
GAINS FOR THE CARTESIAN CONTROL; SEE (31)

Specified Dd and Kd for the manipulator
Dd = diag(1 ·105, 2.2 ·103)
Kd = diag(1 ·106, 1.1 ·104)

⇓
Condition 1

ΛΛΛ f = diag(1.0 ·10−5, 4.545 ·10−4)
ΛΛΛχ = diag(10, 5)
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As Fig. 4 shows, a force sensor that measures the exact six-
dimensional contact forces/moments at the end-effector was
not used. The contact forces (applied by the manipulator on
the environment) were estimated from the cylinder chamber
pressures by removing the gravitational forces. This method-
ology to estimate the contact forces is discussed in more detail
in [23]. Even though this method has some limitations, e.g., in
force estimation accuracy, it may provide a practical solution
for many heavy-duty operations where a fragile six-DOF
force/moment sensor cannot be placed at the end-effector.

B. Collision Experiment

To test the proposed controller interaction dynamics be-
haviour, in the first set of experiments, a collision between the
manipulator end-effector and an obstacle was arranged with
three different Cartesian velocities. The manipulator position
in Fig. 4 shows the starting point for the test trajectories. Then,
a set of wooden pallets was placed in the way of the driven
trajectories, so that the end-effector collided with the surface
of the second pallet (when pallet 1 was removed); see Fig. 4.
In the first trajectory, the end-effector was instructed to travel
from −0.5 m to −1.0 m along the Y-axis of the system base
frame {B} in one second. Then, the same path was driven
over three seconds and, finally, over five seconds.

The plots in the first row of Fig. 5 show the manipulator
position paths in blue, red and green, using a one-second
trajectory, three-second trajectory and five-second trajectory,
respectively. In these plots, the desired path is shown in
black and the surface of the second pallet is depicted with a
dashed line. As these plots show, the proposed controller limits
the end-effector path when contact with the environment is
established. The collision velocities between the end-effector
and the environment were −0.52 m/s, −0.26 m/s and −0.18
m/s for the one-second trajectory, three-second trajectory and
five-second trajectory, respectively. Note that the X-axes of the
plots are scaled significantly smaller compared to the Y-axes.

The plot in the second row of Fig. 5 shows the measured
end-effector contact forces in blue, red and green, using the
one-second trajectory, three-second trajectory and five-second
trajectory, respectively. The contact points are shown by blue
circles. As this plot shows, the proposed controller efficiently
limits the contact force (applied by the manipulator on the
environment along the frame {G} Y-axis) to approximately
−2800 N when contact with the environment is established.
Because contact forces were estimated from the cylinder
chamber pressures, inaccuracies exist in the estimates; there-
fore, the measured end-effector force before contact is not
zero. This is due to the fact that system inertia and piston
friction were not considered in the contact force estimation.
Thus, the smaller velocity yields a better contact force esti-
mation in free space. One practical method to estimate link
accelerations (and to address the system inertia in the contact
force estimation proposed in [23]) can be found in [43].

C. Target Impedance Behaviour

In the second set of experiments, three test cases were
chosen to evaluate the ability of the proposed controller to

Cartesian forces along Y-axis of frame {G}
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surface
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1.7 1.7051.695 1.7 1.7051.695 1.7 1.7051.695
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-0.8
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-0.6

-0.8

-1.0

-0.4

-0.6

-0.8

-1.0

-0.4

Cartesian path 

(3-sec. traj.)

Cartesian path

(5-sec. traj.)

1-second trajectory
3-second trajectory
5-second trajectory

Desired

path

Desired

path

Fig. 5. The collision experiments. The plots in the first row show the measured
end-effector paths in color, the desired paths in black and the surface of the
environment with the dashed line. The test cases in the first row are driven
using 1-second, 3-second and 5-second trajectories. The plot in the second row
shows the measured contact forces in the test trajectories.

perform the target impedance behaviour. In test case 1, contact
occurred on the surface of pallet 1. In test case 2, contact
occurred on the surface of pallet 2 (after removing pallet 1).
In test case 3, contact occurred on the surface of pallet 3 (after
removing pallets 1 and 2). The manipulator position in Fig. 4
shows the starting point for the test trajectories.

Fig. 6 shows the test trajectory in the Cartesian coordinates
(along the Y- and X-axes of the system base frame {B}). The
surfaces of wooden pallets 1–3 are marked in the first plot
(see relation to Fig. 4). As Fig. 6 shows, the end-effector was
first instructed to travel a distance of −0.5 m along the Y-axis
in three seconds (see time interval 0–3 s from the first plot).
Then, the end-effector was instructed to travel a distance of 0.5
m along the X-axis in three seconds (see time interval 3–6 s
from the second plot). Finally, the end-effector was instructed
to travel a distance of 0.5 m along the Y-axis in three seconds
(see time interval 6–9 s from the first plot).

The main results of this paper are shown in Figs. 7–9. The
first plots in Figs. 7–9 show the desired Cartesian paths in
black and the measured Cartesian paths in red. The contact
point is shown by a blue circle in these plots. As all these plots
show, the proposed controller delimits the end-effector position
when contact with the environment occurs, thus preventing ex-
cessive contact forces from being applied to the environment.

Desired Cartesian position trajectory along Y-axis

Time [s]
3

[m
]

6 9

-0.5

-1.0

[m
]

1.7

2.2

Desired Cartesian position trajectory along X-axis

Pallet 1 surface 

Pallet 2 surface

Pallet 3 surface

3 6 9

Fig. 6. Desired Cartesian position trajectories. The first plot shows the desired
Cartesian position trajectory along the Y-axis, and the second plot shows the
the desired Cartesian position trajectory along the X-axis. The surfaces of
wooden pallets 1–3 are marked in the first plot (see the pallets in Fig. 4).
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The second plots in Figs. 7–9 show the position tracking
error along the X-axis of frame {G}, in which direction the
manipulator was made stiff. The contact point is shown by a
blue circle in these plots. As these plots show, the maximum
position tracking errors are all below 4 mm for the test
trajectory. This can be considered a significant result in light of
the manipulator scale, which has a reach of about 3.2 meters.

The last plots in Figs. 7–9 show the measured contact force
exerted by the manipulator on the environment (shown in
black) along the Y-axis of frame {G}, in direction which the
manipulator was made compliant. The contact point is shown
by a blue circle in these plots. As addressed in Theorem 1,
the target impedance behavior (30) should be achieved for
the manipulator when the diagonal positive-definite matrices
ΛΛΛ f and ΛΛΛχ in (31) are defined according to Condition 1.
Consequently, the measured contact force should correspond
to the contact force G fy solved from (30), i.e,2

G fy = yyy f [Dd(χ̇χχd− χ̇χχ)+Kd(χχχd−χχχ)+G fff d] (40)

where yyy f = [0 1], G fff d = [0 0]T , and (χ̇χχd− χ̇χχ) and (χχχd−χχχ)
are variables from the driven test cases. As the last plots in
Figs. 7–9 show, the measured contact force (shown in black)
corresponds accurately to the contact force suggested by (40)
(shown in green). The nearly perfect matching of the two
lines in these plots demonstrates the accuracy of Theorem 1.
The maximum deviations between the measured contact force
and (40) are 136 N, 170 N and 146 N in Figs. 7–9, respectively.

VII. CONCLUSIONS

In this paper, a novel impedance control method in the
Cartesian space was developed for hydraulic manipulators.
To acquire high-bandwidth closed-loop performance for the
system, the internal control for the manipulator was designed
according to the subsystem-dynamics-based virtual decompo-
sition control (VDC) approach. Interaction dynamics between
the hydraulic manipulator end-effector and the environment
were analyzed in a novel manner, using the virtual power
flow, which is a unique feature of VDC. From the analysis,
an explicit method (see Condition 1) was developed to define
parameters for the proposed impedance control law (external
control for the manipulator), so that target impedance behavior
can be designed for the hydraulic manipulator. The L2 and L∞

stability was guaranteed for both free-space and constrained
motion control. The experimental results support the mathe-
matical theorems on the stability-guaranteed (see Theorem 3)
target impedance behaviour (see Theorem 1).

Even though a two-DOF system was studied in this paper,
the developed approach is extendable to systems with any
number of actuators. The results of this study can be used
to realize compliant behaviour for complex and nonlinear sys-
tems, not limited only to hydraulic manipulators. The control
method, which rigorously addresses the nonlinear dynamic
behaviour of the system, can be applied to many dynamically
challenging (robotic) tasks, such as legged locomotion.

2Note that (40) is solved from the target impedance law (30) by Hogan [25],
which is not directly involved in the control laws; rather it is used to define
ΛΛΛ f and ΛΛΛχ in control law (31); see Condition 1 and Remark 3.
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Fig. 7. Test Case 1: Environmental contact on the surface of the first pallet (see
Figs. 4 and 6). The collision velocity with pallet 1 was approx. −0.22 m/s.
The first plot shows the desired Cartesian position path in black and the
measured Cartesian path in red. The second plot shows the Cartesian position
tracking along the frame {G} X-axis. The last plot shows the measured
Cartesian contact force (along the frame {G} Y-axis) in black. The contact
force suggested by the target impedance law (40) is shown in green.
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Fig. 8. Test Case 2: Environmental contact on the surface of the second pallet
(see Figs. 4 and 6). The collision velocity with pallet 2 was approx. −0.27 m/s.
The first plot shows the desired Cartesian position path in black and the
measured Cartesian path in red. The second plot shows the Cartesian position
tracking along the frame {G} X-axis. The last plot shows the measured
Cartesian contact force (along the frame {G} Y-axis) in black. The contact
force suggested by the target impedance law (40) is shown in green.
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Fig. 9. Test Case 3: Environmental contact on the surface of the third pallet
(see Figs. 4 and 6). The collision velocity with pallet 3 was approx. −0.28 m/s.
The first plot shows the desired Cartesian position path in black and the
measured Cartesian path in red. The second plot shows the Cartesian position
tracking along the frame {G} X-axis. The last plot shows the measured
Cartesian contact force (along the frame {G} Y-axis) in black. The contact
force suggested by the target impedance law (40) is shown in green.
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APPENDIX A
PROOF FOR THEOREM 1

Define ΛΛΛ f = D−1
d and ΛΛΛχ = KdΛΛΛ f , as proposed in Con-

dition 1. Then, it follows from the diagonal positive-definite
property of Dd, Kd and ΛΛΛχ that

D−1
d ΛΛΛχ Dd = ΛΛΛχ (41)

DdKdD−1
d = Kd (42)

hold. Substituting (30) into (31) and using Condition 1 and
(41) yields

χ̇χχ r = χ̇χχd +ΛΛΛχ(χχχd−χχχ)−ΛΛΛ f [Dd(χ̇χχd− χ̇χχ)+Kd(χχχd−χχχ)]

= χ̇χχd +ΛΛΛχ(χχχd−χχχ)−D−1
d Dd(χ̇χχd− χ̇χχ)

−D−1
d ΛΛΛχ Dd(χχχd−χχχ)

= χ̇χχd +ΛΛΛχ(χχχd−χχχ)− χ̇χχd + χ̇χχ−ΛΛΛχ(χχχd−χχχ)

= χ̇χχ. (43)

Then, using Condition 1, (42) and (43) yields

χ̇χχ r = χ̇χχd +ΛΛΛχ(χχχd−χχχ)+ΛΛΛ f (
G fff d−G fff )

⇔ G fff d−G fff =−ΛΛΛ
−1
f (χ̇χχd− χ̇χχ r)−ΛΛΛ

−1
f ΛΛΛχ(χχχd−χχχ)

⇔ G fff d−G fff =−Dd(χ̇χχd− χ̇χχ)−DdKdD−1
d (χχχd−χχχ)

⇔ G fff d−G fff =−Dd(χ̇χχd− χ̇χχ)−Kd(χχχd−χχχ). (44)

Note that the first row in (44) is equal to (31), whereas
the last row is equal to (30). This completes the proof for
Theorem 1. �

APPENDIX B
PROOF FOR LEMMA 5

It follows from Definition 5, (14), (16), (19), (21), (30),
(31), NT

c Nc = I2×2 and the diagonal positive-definite property3

of matrices ΛΛΛχ , ΛΛΛ f , Dd and Kd that

pG = (GVr−GV )T (GFr−GF)

= [(χ̇χχd− χ̇χχ)+ΛΛΛχ(χχχd−χχχ)+ΛΛΛ f (
G fff d−G fff )]T NT

c

×Nc(
G fff d−G fff )

= (χ̇χχd− χ̇χχ)T (G fff d−G fff )+(χχχd−χχχ)T
ΛΛΛ

T
χ (

G fff d−G fff )

+(G fff d−G fff )T
ΛΛΛ

T
f (

G fff d−G fff )

=−(χ̇χχd− χ̇χχ)T [Dd(χ̇χχd− χ̇χχ)+Kd(χχχd−χχχ)]

− (χχχd−χχχ)T
ΛΛΛ

T
χ [Dd(χ̇χχd− χ̇χχ)+Kd(χχχd−χχχ)]

+ [Dd(χ̇χχd− χ̇χχ)+Kd(χχχd−χχχ)]TΛΛΛ
T
f

× [Dd(χ̇χχd− χ̇χχ)+Kd(χχχd−χχχ)]

= (χ̇χχd− χ̇χχ)T (DdΛΛΛ f Dd−Dd)(χ̇χχd− χ̇χχ)

+(χχχd−χχχ)T (KdΛΛΛ f Kd−ΛΛΛχ Kd)(χχχd−χχχ)

+(χχχd−χχχ)T (2DdΛΛΛ f Kd−ΛΛΛχ Dd−Kd)(χ̇χχd− χ̇χχ) (45)

holds, which validates Lemma 5. �

3The diagonal property of matrices ΛΛΛχ , ΛΛΛ f , Dd and Kd yields ΛΛΛT
χ = ΛΛΛχ ,

ΛΛΛT
f =ΛΛΛ f , DT

d = Dd and KT
d = Kd.

APPENDIX C
PROOF FOR LEMMA 6

Let ΛΛΛ f >D−1
d and ΛΛΛχ 6KdΛΛΛ f hold, as defined in (35) and

(36). Then, it follows from (45) that

pG > (χχχd−χχχ)T A1(χ̇χχd− χ̇χχ) (46)

holds, where A1 = (2DdΛΛΛ f Kd −ΛΛΛχ Dd −Kd) > 0 holds, in
view of (35) and (36).

Integrating (46) over time yields that∫ t

0
pG(τ)dτ >

1
2
(χχχd(t)−χχχ(t))T A1(χχχd(t)−χχχ(t))

−1
2
(χχχd(0)−χχχ(0))T A1(χχχd(0)−χχχ(0))

> −1
2
(χχχd(0)−χχχ(0))T A1(χχχd(0)−χχχ(0))

= −γG (47)

holds with 06 γG < ∞, which validates Lemma 6. �

APPENDIX D
PROOF FOR THEOREM 3

Let the remaining subsystem, shown with dashed lines
in Fig. 1(b)–(c), be addressed with (38) and (39), and let
Assumption 1 and Condition 1 hold. Then, in view of (27)
and (38), the non-negative accompanying function νtot for the
entire manipulator can be chosen as

νtot = νR +νO2

>
1
2
(O2Vr−O2V )T MO2(

O2Vr−O2V )

+
1
2

13

∑
i=1

(θO2i− θ̂O2i)
2

ρO2i
. (48)

Then, in view of (28) and (39), the time derivative of (48) can
be written as

ν̇tot 6 −(O2Vr−O2V )T KO2(
O2Vr−O2V )− pTO2 + pTO2 − pG

= −(O2Vr−O2V )T KO2(
O2Vr−O2V )− pG (49)

where, in view of Lemma 6,∫ t

0
pG(τ)dτ >−γG (50)

holds with 06 γG < ∞.
It follows directly from Lemma 1 and (48)–(50) that

O2Vr−O2V ∈ L2
⋂

L∞ (51)

holds. Using (14), (15), (19), (20) and (51) yields

χ̇χχ r− χ̇χχ ∈ L2
⋂

L∞. (52)

Then, subtracting χ̇χχ from both sides of (31) and using (52)
yields

ΛΛΛ
−1
f (χ̇χχd− χ̇χχ)+ΛΛΛ

−1
f ΛΛΛχ(χχχd−χχχ)+(G fff d−G fff ) ∈ L2

⋂
L∞. (53)

Let (G fff d− G fff ) = 0 hold. Subtracting χ̇χχ from both sides
of (31) yields

χ̇χχ r− χ̇χχ = (χ̇χχd− χ̇χχ)+ΛΛΛχ(χχχd−χχχ). (54)
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Then, it follows directly from Lemma 2, (52) and (54) that

χ̇χχd− χ̇χχ ∈ L2
⋂

L∞ (55)

χχχd−χχχ ∈ L2
⋂

L∞ (56)

hold. Then, Lemma 3 yields lim
t→∞

[
χχχd(t)−χχχ(t)

]
= 0. �
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