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Abstract—Microfluidic devices are promising tools with which

to create an environment that mimics a cell’s natural
microenvironment more closely than traditional macroscopic cell
culture approaches. In these devices, temperature is one of the
most important environmental factors to monitor and control.
However, direct temperature measurement at the cell area can
disturb cell growth and potentially prevent optical monitoring,
and is typically difficult to implement. On the other hand, indirect
measurement could overcome these challenges. Therefore, using
system identification method, we have developed models to
estimate the cell area temperature from external measurements
without interfering cells. In order to validate the proposed models,
we performed large sets of experiments. The results show that the
models are able to catch the dynamics of temperature in a desired
area with a high level of accuracy, which means that indirect
temperature measurement using the model can be implemented in
future cell culture studies. The usefulness of the model is also
demonstrated by simulations that use estimated temperature as a
feedback signal in a closed-loop system. We also present tuning of
a model-based controller and a noise study, which shows that the
tuned controller is robust for typical ambient room temperature
variations.

Note to Practitioners:
In this paper, we tackle the problem related to temperature
measurement in microfluidic devices, especially but not only
concerning cell culture environments. Even though it would be
desirable to place a temperature sensor as close as possible to
the location of interest, practical limits usually prevent this;
for instance, limited space and requirements for optical
monitoring. To overcome these problems in microfluidic
devices, we present a novel indirect temperature measurement
approach using system identification method. Idea is to create
a model that estimates temperature on the area of interest
using measured outside temperature.  Because it is required to
measure both model input and output signals for the model
development, we first fabricated a temperature sensor plate,
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combined it with our heating system, and measured required
temperatures on several experiments. Then, we developed
third-order discrete state-space models using measured
temperatures and System Identification Toolbox in MATLAB.
Model performances were examined and compared to
measurements. Furthermore, we created a closed-loop
Simulink (from MATLAB) model, and showed how desired
temperature could be controlled using only measured outside
temperature and the developed model. In future research, we
will implement the designed closed-loop system to our cell
culture system to precisely control temperature in the cell area.

Index Terms—Control, microfluidics, numerical
simulation, system identification, thermal analysis

I. INTRODUCTION

sing microfluidic devices as a research tool for biological
cell studies is attractive because of such devices have
lower costs, significantly faster reaction times, and lower

power and reagent consumption than conventional methods [1].
In such studies, it is crucial to properly maintain and control
physiological environmental factors such as oxygen, pH, and
temperature in order to support cell growth and proliferation.
Microfluidic devices provide substantial benefits compared to
macroscopic cell culturing solutions because they offer the
possibility for more precise control of these environmental
factors. In brief, their ability to mimic a cell’s natural
microenvironment is significantly better, which means that
more realistic responses from the cultured cells can be
expected. [2]-[4] The fact that these devices use much smaller
volumes than conventional systems such as cell culturing in
flasks makes it possible to achieve better control of
environmental parameters. [5] For example, temperature
control of the microenvironment of cells in microscopic devices
can be much more precise, requires considerably less power,
and can still provide device performance that is several times
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faster than macroscopic systems. Furthermore, using
microsensors based on micromachining processes achieves
much smaller, lighter, and easier installation and less power-
consuming temperature measurements. [6]
An accurate measurement from a cell area is desirable for
maintaining a physiological temperature for the cells, typically
at 37°C. However, measuring temperature directly from the cell
area has several drawbacks. The measurement can (negatively)
affect cells and might prevent optical monitoring. Another
disadvantage is that a larger cell culture chamber is needed to
implement the temperature sensor inside the chamber close to
cells [7]. Furthermore, in many cases it is significantly more
difficult to place sensors in the region of interest than, for
example, outside the cell culture chamber. Therefore, a non-
destructive indirect temperature measurement is preferable
compared to direct measurement from the cell area. For this
reason, in many studies temperature sensors have been placed
outside the cell area; for example, next to the cell culture device
[8], together with the heating element [9]-[11], in the upstream
and downstream of the center of the culture chamber [12], in
the reference chamber [13]-[15] or on the tubing surface close
to the inlet of the chip [16]. However, the problem in these cases
is that usually the exact temperature on the cell area cannot be
guaranteed. For example, temperature differences up to 2-3°C
between the measured temperature and the temperature on the
culture area have been reported [8]. One approach used for
providing a uniform temperature profile is to build a complex
and large insulated device where a water bath surrounds the
chamber. Unfortunately, this typically leads to a longer
temperature settling time during the heating phase, for example
approximately 60 minutes in [15], or a minimum time of 5 min
to change temperature for one degree [17].
Fluorescent labels have been used for direct temperature
measurement in microfluidic devices. This method based on
fluorescence intensity ratio (FIR) requires for mixing
fluorescent dyes with the working fluid. While the method
typically works well with glass-based materials, it cannot be
used with porous materials, such as poly(dimethylsiloxane)
(PDMS), because adsorption of dye particles increases the
measured fluorescence intensity, thus preventing accurate
temperature measurements. Even though there are methods to
overcome the adsorption problem, they still experience a
decreased device performance [18]. Furthermore, error of this
method is typically approximately 2.5°C at 37°C [19], which
remains typically too large for cell culture studies. For example,
it has been reported that the cardiomyocyte beating
characteristics is altered in temperatures between 37-39°C [20].
To overcome the discussed limitations, we propose here a new
method to estimate temperature in a cell culture device based
on an indirect measurement signal. The idea is to estimate the
temperature in the area of interest using the developed models
and the temperature measured from a more suitable location.
This would enable, for instance, that during cell experiments we
place a temperature sensor in a suitable location outside the cell
area. This prevents placing another sensor in the area where
cells are located which can block optical monitoring, for
example.
The method proposed in this paper is based on a system
identification process. Briefly, the system identification process

can be understood as a modeling process in which the model is
selected on the basis of measured input and output data. The
process contains three elements: data, the model, and the
criteria by which the model is chosen. [21] The advantage of
this approach is that the model can be identified without
knowing the precise underlying physical phenomena, and can
still achieve model predictions that fulfill precision
requirements. [22] Therefore, we have created two system
identification-based black-box models between a temperature
measured outside of the device and the temperature in the cell
area. These models estimate the desired temperature, and this
estimated temperature in the cell area can be used as a feedback
signal to a heating system to close the control loop. Simulations
are provided to illustrate the closed-loop system behavior,
demonstrating that the system is able to maintain temperature
in the cell area using only indirect measurement data and the
developed model.
The remainder of this paper is organized as follows. Section II
describes details on the used experimental setup and methods.
Developed models are shown in Section III. Experimental data
and simulation results are presented in Section IV; the
developed models are validated and their performances are
compared, before closed-loop system simulations using these
models are presented. Also in Section IV, a temperature
controller is tuned and a noise study is performed using
simulations. Conclusions and discussion of the future work are
provided in Section V.

II. EXPERIMENTAL

This section describes the measurements required for
developing and validating the identification-based temperature
models. First, the experimental setup is presented, including
design of a temperature measurement system and calibration of
the sensors. The measurements and the models developed are
also described.

A. Design and fabrication
The experimental setup was composed of three main
components: (1) a heating system, (2) a temperature sensor
plate,  and  (3)  a  house-made  six-well  PDMS  chamber  [23],
referred to henceforth as a PDMS device. These components
are shown in Fig. 1. As the heating system, we applied a
commercial signal amplifier that is typically used for recording
cell signaling on microelectrode array (MEA) plates. Instead of
a MEA plate, we used a custom-made temperature sensor plate
(TSP) to detect temperatures inside (T_Ri) and outside (T_Ro)
the PDMS device, which is placed on the top of the TSP. The
components are described in more detail below.

Heating system
An MEA1060-Inv amplifier system (Multi Channel Systems
MCS GmbH, Germany), typically used for in vitro cell
experiments to record electrophysiological signals and
stimulate cells, was used as a platform for the temperature
experiments. The heating system includes a heating element, a
proportional-integral (PI) controller (Temperature Controller
TC02), a temperature sensor (Pt-100, measures T_heater as
shown in Fig. 1(b)), and contact pads for the sensor plates. It
should be noted that since passive cooling is used, the ambient
room temperature is always the minimum achievable
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temperature. For microscopic inspection, there is a hole (8 mm
in diameter) in the center of the heating element. In this study,
we by-passed pre-amplifiers of MEA1060-Inv, and used it only
for warming the device and to provide good and stable
mechanical and electrical connections between measurement
electronics and TSP. During experiments, we manually changed
the set-point temperature of the heating element (marked as
T_set in Fig. 1(b)). Furthermore, the maximum heating power
for the heating element was always kept at the recommended
12 W. [24], [25]

Temperature sensor plate
Fig. 2 shows the design of the TSP and the measurement
electronics. A sensor layout including 14 resistors, each using a
four-wire measurement, was implemented. In this paper, only
two resistors fabricated from copper, marked as Ri and Ro in
Fig. 2(a), are used for measuring T_Ri and T_Ro, respectively.
The layout was designed so that it can be used together with
connection pins in MEA1060-Inv. In TSP, both of the used
resistors (Ri and Ro) have the following dimensions: a thickness
of 275 nm, a line-width of 20 µm, a total length of
approximately 25.7 mm, and a total area of approximately 0.51
mm2. The width of the tracks from the sensors to the contact
pads shown in Fig. 2(a) is 100 µm. The plate was fabricated as
follows: first, a custom-sized (49 mm ´ 49 mm ´ 1 mm)
microscope slide (Menzel GmbH, Germany) was cleaned with
acetone, isopropanol, and oxygen plasma (Vision 320 Mk II
RIE, Advanced Vacuum Scandinavia AB, Sweden) before
applying NR9-3000PY photoresist (Futurrex, USA) and
patterning it with µPG501 maskless exposure system
(Heidelberg Instruments, Germany). 275 nm of copper was e-
beam evaporated 5 Å/s with a Meissner trap equipped with an
Orion Series BC-3000 e-beam coater (System Control
Technologies, USA) followed by a lift-off with acetone in an
ultrasonic bath. The metal thickness was verified by Dektak XT
contact profilometer (Bruker, USA). Next, approximately 500
nm Si3N4 insulator layer was deposited using Plasmalab 80+
PECVD (Oxford Instruments, UK). PR1-2000A photoresist
(Futurrex, USA) was used as an etching mask when the Si3N4
was removed above the contact pads. Finally, the copper contact
pads were polished by gently wiping them with a piece of

cleanroom wipe moistened with isopropanol. An image of the
fabricated plate is shown in Fig. 3.

In order to measure and log the resistances of the chosen
sensors, a dual-channel four-wire resistance meter was built. In
this measurement circuit, shown in Fig. 2(c), 0.59 mA constant
current sources were used for sensor excitation, such that the
power dissipation, and thus the heating of the actual sensing
elements, were independent of the wiring resistances. However,
instead of relying on the accuracy and stability of the current
sources and the sensor voltage measurements, additional highly
precise and stable reference resistors (PCF0805 series, TT
electronics, USA) were connected in series with the sensor
resistors and the current sources. A multiplexing arrangement
was used to measure both the sensor resistor voltages and the
reference resistor voltages using the same voltage measurement
hardware. Thus, in this arrangement, the measured resistance
was the ratio of the two voltages multiplied by the reference
resistor’s resistance. The actual voltage measurements were
performed using a 24-bit A/D-converter (LTC2445, Linear
Technology, USA). An additional switching arrangement was
included to reverse the excitation current direction periodically
so that synchronous detection could be used to remove the
effects of offset voltages, noise pick-up by sensor wiring and
other similar sources of error. The chosen 20.8 Hz excitation
frequency was a compromise between noise rejection and ease
of implementation. Next, the resistance results of 21 excitation
frequency cycles were averaged, providing a measurement
frequency of approximately 1 Hz. The raw measurement data
were transmitted to a computer using a USB connection and
stored for further processing. Initial measurements using 100Ω
dummy sensors (RNC90Y series, Vishay, USA) showed 0.11

(a)

(b)
Fig. 1.  Experimental setup: (a) a photograph of the whole system, and (b) a
block diagram of the measurement process.

(a)   (b)

(c)

Fig. 2.  Temperature sensor plate: (a) designed layout. Resistors used in this
paper as temperature sensors are marked with a red circle (Ri) and a blue square
(Ro). ( b) A zoomed image of the used resistor (dimensions in mm), and (c) a
schematic of a four-wire resistance measurement circuit.
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mΩ root-mean-square noise and 1.4 mΩ initial warm-up drift.
Measured resistance values of the fabricated resistors were
approximately 110 Ω at the room temperature. This resistance
was larger than we expected based on our simulations
(approximately 80 Ω) using typical electric properties of
copper. Therefore, the resistivity of the fabricated copper layer
was approximately 1.4 times larger than the typically reported
bulk resistivity of copper (16.7 nΩ·m in [26]).

PDMS device
The  PDMS  device,  shown  in  Fig.  3,  was  composed  of  two
PDMS parts and a glass plate as a lid. PDMS was chosen
because of its suitability for rapid prototyping, biocompatibility
and optical transparency [27], [28]. The fabrication process of
the similar six-well PDMS chamber was presented earlier [23].
Briefly, the device was fabricated from two PDMS parts by
mixing PDMS prepolymer and curing agent (Sylgard 184, Dow
Corning, USA) in a standard 10:1 ratio. The top part, which
provided the walls of the containers, was punched from a bulk
(thickness 6 mm) PDMS sheet using a 32 mm diameter custom-
made punch. Thereafter, three 6 mm ∅ holes and three 8 mm ∅
holes,  8.45  mm  distance  from  the  middle  of  the  disk,  were
punched through the disk for the medium reservoirs using
custom-made punches. The bottom part was punched from a
bulk (thickness 1 mm) PDMS sheet with the same 32 mm
diameter punch. The two parts were bonded irreversibly using
an oxygen plasma treatment (Vision 320 Mk II RIE, Advanced
Vacuum Scandinavia AB, Sweden). The six openings for the
cell cultivation areas (diameter: 3 mm) were punched through
the membrane using a biopsy punch. After fabrication, the
device was stored in a closed Petri dish at normal room
temperature and humidity. The lid of the device, a 1-mm-thick
glass plate (diameter: 32 mm), was pressed to reversibly close
the system before experiments, resulting in the final PDMS
device diameter and the total height being 32 mm and 8 mm,
respectively.

B. Sensor calibration
Calibration of the chosen resistors was performed in a
temperature-controlled oven (UN 55, Memmert GmbH,
Germany). Six different temperature (T) points between room
temperature (approximately 24°C) and 37°C were chosen. A
calibrated digital thermometer (VWR 620-2000, VWR
Internatiol, Belgium) was used as a reference measurement
device and was placed close to the resistors. First, the
temperature measurement plate was placed inside the oven.
When the reference thermometer showed that the temperature
was saturated, a 20-second-long resistance measurement was
recorded and an average resistance (R) value in that temperature
was calculated. When all the data points were gathered, a first-
order line fitting was implemented using MATLAB (version
R2015a, The MathWorks, Natick, Massachusetts, USA). A
maximum difference smaller than 0.2°C and an average
difference of 0.085°C between measured and fitted values were
observed. Therefore, a linear calibration curve was verified to
be accurate enough in the used temperature range and was used
in the measurements to convert measured resistances to
temperatures. The calibration results are shown in Fig. 4. The
given equations are used to convert Ri and Ro to T_Ri and to
T_Ro, respectively.

C. Measurements and developed models
In this paper, we designed three system identification-based
models,  as  shown  in  Fig.  5.  The  first  two  models  were
developed for the indirect temperature measurement. The
difference between these two models is the measured input
signal that is used to estimate desired temperature. As our final
goal is to implement this estimated temperature to a control-
loop, and thus to be able to perform closed-loop simulations,
we developed the third model. This model estimates
temperature change of the heating element based on the
controller output power.
We performed several measurements to estimate, validate, and
test models that we had developed in this study. The entire
experimental setup (see Fig. 1) was initially at room
temperature and 200 µl de-ionized (DI) water was added to
three 8 mm medium chambers in the PDMS device After
approximately 30 s, a step change between 30°C and 40°C was
manually set to the heating element using TC02. Unless
otherwise stated, the recommended settings P = 6 W/K, and I =
0.9 W/(K·s) were used as the parameters of the PI temperature
controller of the heating element [25].
Models 1 and 2 aim to estimate the temperature inside the
PDMS device, T_Ri, based either on the measured heater

   (a)

(b)
Fig. 3.  (a) Schematic of the PDMS device and (b) an image of the fabricated
PDMS device on the top of the TSP. Resistors used in the experiments are
marked with a red circle (Ri) and a blue square (Ro).

Fig. 4.  Calibration curves for the selected resistors Ri and Ro: resistances as a
function of temperature and their linear regression lines.
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temperature T_heater or the temperature measured outside the
PDMS device, T_Ro. Therefore, the input and output signals are
T_heater and T_Ri for Model 1 and T_Ro and T_Ri for Model
2. Estimation and four validation measurements were
performed to identify Model 1, while the same estimation
measurement and two validation measurements were used to
identify Model 2.
Model 3 estimates how much the PI controller’s output power
(W) heats the heating element, marked as T_heat. A sum of this
and an ambient room temperature, T_room, provides T_heater,
as shown in Fig. 5. By including Model 3 in closed-loop
simulations, we were able to investigate, for example, how
much T_Ri fluctuated when measured ambient room
temperature variations were included in the simulation.
Furthermore, implementation of Model 3 enabled us to improve
the system performance; for instance, by accelerating the
system response by PI controller tuning. Only a proportional
controller (P = 1 W/K, I = 0 W/(K·s)) was used when collecting
the estimation data for Model 3, and the default PI controller
values were used in the validation measurement.

To compare Models 1 and 2, an additional measurement was
performed. The aim of this measurement was to mimic a
temperature drop during visual inspection of cells, which is a
routine step in cell culturing. During microscopic inspection,
the TSP, together with the cells, needs to be placed from the
heating system to a microscope and back after the inspection.
This changes the temperature in the TSP and naturally the
temperature of the cells. Therefore, we performed a test where
the TSP and the PDMS device were moved from the room
temperature to the pre-heated heating system. We also studied
the sensitivity of Model 1 to changes in the liquid volume level
in medium chambers

III. DEVELOPED MODEL PARAMETERS

We used the System Identification Toolbox in MATLAB [29]
to identify the models presented in Section II-C. Our objective
was to estimate the system parameters using measured input
and output data [30], and fit the model to the measured data
regardless of the physical system; therefore, we used a black-
box modeling technique. A prediction error method (PEM) was

implemented to estimate the three models. This method selects
models that make a prediction that is as close as possible to the
true system if it was known. [21] The models were compared
using a fit number, which is based on a Normalized Root Mean
Square (NRMSE) criterion and can be calculated (as a
percentage) using the following equation [29]:

= 100 1−
‖ − ‖
‖ − ‖ (1)

where y, and ŷ are the measured and estimated output, and ȳ is
the  mean  of y. Commonly used discrete-time state-space
models include state variable vector x(k), input variable vector
u(k), and output variable vector y(k). The structure of the state-
space models with three state variables used in this paper is as
follows [29]:

( + 1) = ( ) + ( )
( ) = ( ) + ( )

(2)

where matrixes A, B, C, and D are state matrix, input-to-state
matrix, state-to-output matrix, and feedthrough matrix,
respectively. First, we tested second order state-space models
and noticed that results compared to measured temperatures
were not acceptable. Therefore, we chose third-order models as
they provided good overall temperature estimation. Developed
discrete-time models in this paper have the following form:

=
11 12 13
21 0 0
0 32 0

, =
1

0
0

, =
1
2
3

, = 1 (3)

The values of constants a11, a12, a13, a21, a32, b1, c1, c2, c3,
and d1 in the three models are provided in Section IV-A. We
estimated initial state values x(0) from the first ten seconds of
each measurement data using MATLAB.

IV. SIMULATION AND EXPERIMENTAL RESULTS

A. Validation of Models
Three different models were identified in this paper using the
System Identification Toolbox, as described in Section III.
Parameter values for the developed models are given in Table I.
These state-space representations were used in simulations to
compare the measured and modeled outputs. Each set of data
was simulated in Simulink (The MathWorks, Inc., Natick, MA,
USA) using the identified discrete state-space model with a
sample time of one second.

TABLE I
MODEL PARAMETERS

Model # a11 a12 a13 a21 a32 b1 c1 c2 c3 d1
Model 1 1.99 -0.99 0.00 1 1 2.0 0.29 -0.58 0.29 0.00
Model 2 1.99 -0.99 0.00 1 1 2.0 0.37 -0.74 0.37 0.00
Model 3 2.97 -1.47 0.48 2 1 0.5 0.15 -0.15 0.08 0.04

Model 1 was developed and validated with measurements
shown in Fig. 6(a). The first measurement was used as the
model estimation data, whereas four other measurements were
used to study how well the model performed with different
heating signals. For Model 2, we used three same experiments
as for Model 1; the same estimation measurement and the first
two validation measurements. The difference was that for
Model 2 the measured T_Ro was used for the model input, as

Fig. 5.  Block diagrams of models.
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shown in Fig. 5. Measured and simulated T_Ri are compared in
Fig. 6(b). Analysis of the results is provided in the next section.

Model 3 was identified with two measurements, as reported in
Section II-C. In the estimation measurement, a proportional
controller (P = 1 W/K) was used because the input signal
required for Model 3 was easier to obtain when using a P-
controller (error signal is simply multiplied by value of P), thus
enabling a simpler identification process. In both
measurements, T_set was first set to 37°C and, after a while
(approximately five to 15 minutes), heating was switched off
and the system was passively cooled down. The resulting
responses of the discrete state-space model compared to the
measurement data are shown in Fig. 7.

As shown in Fig. 7(a), the error between the measured heater
temperature and Model 3 output was negligible when
proportional control was used. On the other hand, when the PI
controller was implemented, Model 3 slightly overestimated the
heating phase; modeled and measured rise times (time between
10% and 90% of the rise) were approximately 11 seconds and
14 seconds, respectively. However, this difference was still
relatively low and insignificant compared to the response in the
experiment overall, which means that the model could be used.
In conclusion, based on the results reported in this section, it is
clear that each of the developed models was able to estimate
desired temperatures and could be used in closed-loop system
simulations.

B. Performance analysis of Model 1 and Model 2
As Model 1 and Model 2 estimate T_Ri, their performance was
compared. For this, two validation measurements presented in
the previous section were used. The models were compared by
calculating fit% (1), and average and maximum temperature
differences between measured and modeled T_Ri, ΔTavg and
ΔTmax, respectively. The results are presented in Table II and in
Fig. 8.

TABLE II
COMPARISON OF MODEL 1 AND MODEL 2 TO EXPERIMENTAL DATA

Model Model 1 Model 2
Measurement Validation 1 Validation 2 Validation 1 Validation 2
Fit (%) 96.2 96.7 95.2 97.2
ΔTavg (°C) 0.08 0.07 0.10 0.06
ΔTmax (°C) 0.52 0.44 0.69 0.27

Based on the performance analysis, Model 1 performs slightly
better. Therefore, it was chosen for closed-loop simulations in
Section IV-D. However, Model 2 provides clear benefits in
some cases, for instance, when a cooled TSP is placed on a pre-
heated heating system. This is the case while moving the TSP
from the heater to a microscope and back, a routine procedure
performed during cell culturing. Fig. 9 shows the results of a
study, where the device (at ~26.3°C) was placed on the heating

(a)

(b)
Fig.  6.  Measurement and modeled data from (a) Model 1, where the input
signal is T_heater, and (b) Model 2, where T_Ro is used as an input signal.

(a)

(b)
Fig.  7.  Experimental and Model 3 comparison: (a) an experiment with only
proportional control P =  1  W/K, and (b) an experiment with default PI
controller values P = 6 W/K, and I = 0.9 W/(K·s).

(a)

(b)

(c)
Fig.  8.  Difference between measured and simulated temperatures when
experiment is (a) Estimation, (b) Validation 1, and (c) Validation 2.
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system  (pre-heated  to  37°C)  at  time  30  seconds,  and
temperature T_Ri was  recorded  and  estimated  using  the  two
models.

In the pre-heated heater case, Model 2 estimated the output
significantly more accurately than Model 1; fit% improved
from 87.8% with Model 1 to 96.4% using Model 2. The reason
was that now the heater and the TSP were initially in totally
different temperatures, which meant that Model 1
overestimated T_Ri in the beginning of the measurement. To
conclude, it is preferable to use Model 2 in cases where the
heater and the TSP need to be separated during the study.

C. Sensitivity to liquid volume changes
Because the sensitivity of the model to environmental changes
(disturbances) should be as small as possible, robustness of
Model 1 to the volume in the system was studied next. The DI
water volume in the three 8 mm chambers was changed ± 25%
(from 200 µl to 250 µl or 150 µl). In Fig. 10 below,
measurements with 250 µl and 150 µl volumes are compared to
the model developed with 200 µl volume.

As  the  results  show,  Model  1  was  able  to  predict T_Ri well,
which enables us to conclude that the model was not sensitive
to volume changes. The difference between measurements and
model predictions, ΔTavg and ΔTmax,  were  now  0.14°C  and
0.85°C for the liquid volume of 250 µl, and 0.11°C and 1.04°C

for the liquid volume of 150 µl, respectively. It should be
emphasized that reported ΔTmax last only very short period
times, typically less than 10 seconds. One minute after the set
point change, the errors are below 0.25°C in every
measurement. Therefore, these results can be considered
satisfactory in the planned applications, as a temperature
variation of ± 0.3 to 1°C is generally still acceptable during cell
cultivation [7], [14], [15], [17], [31]-[34]. As Model 1 was
robust to volume changes, it is a useful temperature estimation
tool in experiments with varying liquid volumes.

D. Closed-loop system simulations
The purpose of this section is to illustrate a method that can
regulate T_Ri in the desired temperature using an indirect
measurement signal. In this case, we would not need the inside
sensor (Ri) at all. To demonstrate this approach, we present
closed-loop simulations using the estimated temperature as a
feedback signal by combining Models 1 and 3. First, to validate
the performance of the developed closed-loop system,
simulated T_heater was used as a feedback signal, as illustrated
in Fig. 11(a). To regulate the temperature in the cell area, but
not in the heater, we used T_Ri in the feedback loop, as shown
in Fig. 11(b). Next, the performance of the default PI controller
was analyzed and tuned, and a closed-loop system response
with a tuned PI controller was then studied. Because of the
limits of the real system (heating element power between 0 and
12 W [24]), saturation limits were also implemented in the PI
controller in the model. For this reason, an integrator anti-
windup design using clamping method [35] was implemented
in the PI controller to stop integration when the output from the
controller exceeds these saturation limits.

Closed-loop system validation
To validate the entire closed-loop system, shown in Fig. 11(a),
Models 1 and 3 were implemented and simulated in Simulink.
The same two measurements used for developing Model 3 (see
Section IV-A) were also utilized here. The first measurement
used proportional control (P = 1 W/K) and the second
experiment was performed with the default PI controller (P = 6
W/K, and I = 0.9 W/(K·s)). Both the measurement and the
simulation used T_heater as a feedback signal, as shown in Fig.
11(a). Modeled T_heater and T_Ri are in good agreement with
the experimental data, as shown in Fig. 12; less than 0.5°C
difference between the measured and modeled T_Ri was
obtained from both experiments. This verified that a
combination of Models 1 and 3 was able to estimate the desired
temperature. With this control approach, the temperature in the
cell area remains below the set point of 37°C.

Fig. 9.  Measured and simulated T_Ri when cooled temperature plate is brought
to pre-heated heater.

(a) (b)

(c) (d)
Fig. 10. Model 1 sensitivity tests for liquid volume change: (a) measurement
and modeled data, (b) their difference when liquid volume is 250 µl, (c)
measurement and modeled data and, (d) their difference when liquid volume is
150 µl.
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Controller tuning
As stated, our goal is to develop a system that is able to control
T_Ri using an indirect measurement signal and the developed
models. Therefore, in contrast to the previous section, where we
used T_heater as a feedback signal (Fig. 11 (a)), we first
developed a model that used an output from Model 1 (T_Ri) as
a feedback signal, as shown in Fig. 11 (b). We tuned the PI
controller to improve the response of desired temperature T_Ri.
The initial PI controller (P = 6 W/K, and I = 0.9 W/(K·s)) was
simulated first and the controller parameters were then adjusted
for a better performance. Our tuning goal was to decrease the
overshoot and the settling time; therefore, we first increased the
integral part. When an insignificant overshoot was achieved, we
also increased the proportional part to accelerate the response
until satisfying control results were achieved. A comparison of
the system response with the default and the tuned PI (P = 9
W/K, and I = 1.2 W/(K·s)) controller is shown in Fig. 13.

The comparison of the system responses with the default and
tuned controller showed a small but improved response after
tuning: overshoot was decreased from 0.22°C to a negligible
0.02°C with the same rise time of 21 seconds. The settling time
(that is, the time it takes for the temperature to stay within ±
0.05°C of the set temperature 37°C) was decreased from 45
seconds to 32 seconds. To conclude, a better response with a
smaller overshoot was achieved with the tuned controller.

Noise study
In the previous simulations, the ambient room temperature was
approximated and was assumed to be constant. However, a
more realistic situation should include temperature variations.
For this reason, the developed model response with non-
constant ambient room temperature was studied in this section.
First, the ambient room temperature was recorded for 10
minutes, and the obtained signal was used as T_room value in
the simulation. The measured ambient air temperature varied
between 22.7°C and 22.9°C, as shown in Fig. 14.

The ambient room temperature variation was included in the
model and the system outcome was simulated. The results,
presented in Fig. 14, showed that the controller was still able to
keep T_Ri temperature at an acceptable level (± 0.03°C of the
desired temperature of 37°C), which means that the controller
is well suited for real applications where room temperature
variations do exist.

V. CONCLUSION

This paper has presented a novel indirect temperature
measurement method for microfluidic cell culture devices. The
method is based on a system identification technique. The

(a)

(b)
Fig. 11.  Block diagram of a developed system when (a) T_heater, and (b) T_Ri
is used as a feedback signal.

(a)

(b)
Fig. 12.  Comparison of closed-loop system responses of measurement and
simulation when (a) a proportional controller with P =  1  W/K,  and  (b)  a  PI
controller (P = 6 W/K, and I = 0.9 W/(K·s)) was used.

Fig. 13.  Comparison of T_Ri with the initial (P = 6 W/K, and I = 0.9 W/(K·s))
and tuned (P = 9 W/K, and I = 1.2 W/(K·s)) controllers.

Fig. 14.  Ambient air temperature variation study.
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developed mathematical models make it possible to indirectly
measure and control temperature in desired locations.
Therefore, this method can be used as a measurement and
control tool in cell culture systems without interfering cultured
cells. The proposed models were validated with several
measurements and we have shown that estimated temperatures
correlated well with experimental results. Results also
demonstrated that the developed models were capable of
catching the dynamics of the system temperature. Furthermore,
the models were reasonably robust to environmental changes,
such as remarkably large liquid volume changes, and measured
ambient air temperature variations. Finally, the parameters of
the controller used were tuned using simulations and a better
system response was achieved. Our future work will include
implementing the proposed identification-based closed-loop
system to the cell culture experiments. To conclude, we believe
that the presented method can be further extended not only to
other applications in biological cell studies, but also to different
areas, such as microfluidic environmental monitoring and
chemical engineering.
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