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Abstract

This paper addresses the problem of redundancy resolution in closed-loop controlled hydraulic manipulators.
The problem is treated at the hydraulic level using proposed cost functions formulated into a dynamic
programming approach of minimum-state representation. Bounds on joint range, actuator velocity and
acceleration were enforced. This approach minimises the hydraulic energy consumption of the widely popular
load-sensing and constant-supply pressure systems. The presented approach can resolve the redundancy
more effectively from the hydraulic side than do actuator velocity or energy optimisation approaches, point-
wise optimal approaches or some standard direct optimisation tools that may lead to inferior solutions, as
shown in simulation results where up to 15–30% greater energy use is seen with some competing approaches.
The results obtained motivate joint trajectory optimisation at the hydraulic level in prospective applications
at construction sites where frequently driven work cycles of hydraulic construction cranes are automated.
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1. Introduction

Hydraulic manipulators are widely used for exca-
vation and lifting applications at construction sites
and for heavy-duty material handling in the forest
industry due to their superior power-density and5

rugged nature. Although the hydraulic construc-
tion cranes are mainly open-loop controlled by hu-
man operators, manufacturers in these industries
are interested in broadening their offerings through
the automation of typical work cycles to improve10

the productivity and safety of their machines. On
a technical level, this automation requires solving
the inverse kinematics problem and realizing closed-
loop control (see [1] for the proposed closed-loop
control algorithm). Because construction cranes15

are typically equipped with redundant joints, the
inverse kinematics problem transforms into a more
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difficult redundancy resolution problem, thus lend-
ing itself to sophisticated machine operation opti-
misation. Here, we resolve the redundancy of the20

construction crane from the standpoint of hydraulic
energy minimisation. This approach of redundancy
resolution entails moving the crane cylinder actua-
tors in an energy-efficient fashion that is also sub-
ject to task-space reference.25

Only a handful of articles discuss the redundancy
resolution of hydraulic manipulators, including [2],
in which point-wise optimal joint trajectories are
given that minimise the energy consumed by hy-
draulic actuators. This point-wise solution is sub-30

optimal over the entire trajectory, and the prob-
lem is not fully considered at the hydraulic sys-
tem level. In [3], some productivity problems in
hydraulic knuckle booms are solved locally using
redundancy to maximise the lifting capacity or ve-35

locity. Dynamic programming is also used to glob-
ally minimise the time required to move between
two points in the workspace. However, no energy-
related objectives were discussed. In [4], the work-
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ing cycle duration of non-redundant excavators is40

reduced locally by maximising its joint velocities.
Although the article was written from a hydraulics
standpoint, energy optimisation was disregarded.

In contrast, much work has been dedicated to
resolving the redundancy of general manipulators45

(e.g. [5], [6]). Many of these papers discuss re-
solved redundancy pertaining to the minimisation
of actuator energy consumption, which can lead
to significant energy savings in manipulators in
general. However, this solution is inevitably sub-50

optimal when dealing with many hydraulic system
types. This generally arises from the pressure losses
encountered in most hydraulic systems when the
actuators are subject to unequal loads. There-
fore, the energy optimisation of hydraulic manip-55

ulators that are mainly powered by load-sensing
or constant-pressure systems calls for effective con-
trol approaches specifically tailored for these hy-
draulic systems and cost functions formulated at
the hydraulic level, instead of the actuator level.60

Furthermore, contemporary articles on redundancy
resolution mostly exemplify highly redundant ma-
nipulators that do not represent typical hydraulic
manipulators, which have less kinematic redun-
dancy. Therefore, the energy savings presented do65

not equal the savings typically achieved with hy-
draulic manipulators. Although the problem is sim-
pler than most in terms of redundancy, the nonlin-
earities and non-convexity make the problem diffi-
cult to solve at the hydraulic level. For example,70

conventional direct optimisation methods yield lo-
cal optimums, and the search for a global optimum
among the local optimums is seen as time consum-
ing.

In this paper, we effectively explore the redun-75

dancy resolution problem using popular hydraulic
systems powered by constant-supply pressure or
load-sensing variable displacement pumps as op-
posed to ineffective sub-optimal approaches. We
focus on a common 3-degree-of-freedom (DOF) hy-80

draulic manipulator design, which is redundant in
one DOF in the typical manner, and propose cost
functions at the hydraulic level to globally to min-
imise the manipulator’s hydraulic energy consump-
tion over prescribed workspace movements. To ef-85

fectively resolve the redundancy, the proposed cost
functions are formulated into a minimum-state dy-
namic programming approach, which ensures ac-
curate tracking of a Cartesian path while mini-
mizing the said cost functions. Bounds on joint90

ranges based on cylinder stroke, cylinder veloci-

ties and cylinder acceleration are enforced. We in-
vestigate popular load-sensing systems and analyse
pump flow rate minimisation, which equally min-
imises the energy consumption of a constant-supply95

pressure hydraulic system. We compare our results
to well-known sub-optimal control strategies. To
the authors’ knowledge, this is the first time joint
trajectories have been globally optimised at the hy-
draulic level in prescribed Cartesian motions in re-100

lation to typical redundant hydraulic manipulators.

This paper is organised as follows. In Section 2,
we introduce a typical hydraulic manipulator with
a redundant degree-of-freedom and define its end-
effector position and velocity. We also discuss the105

use of variable displacement pumps in the conven-
tional constant-supply pressure and load-sensing
systems. In Section 3, we define the optimal control
problems in the continuous and discrete form, and
we introduce the dynamic programming approach110

in Section 4. In Section 5, we propose the cost
functions at the hydraulic level. In Section 6, we
provide numerical simulations to compare and es-
timate the energy conservation attainable with a
typical manipulator. In Section 7, we discuss im-115

portant aspects of the optimal control problem, and
we provide conclusions in Section 8.

2. Hydraulic manipulator with kinematic re-
dundancy

Let us consider the planar 3-DOF hydraulic ma-120

nipulator shown in Fig. 1, which represents the typ-
ical hydraulic manipulator configuration used in a
number of applications for tasks involving heavy
lifting at construction sites. The manipulator has
a prismatic reach actuator that provides an addi-125

tional DOF. Because of this redundancy property,
the manipulator’s end-effector tip can be controlled
in an infinite number of joint trajectories, from an
initial Cartesian point to the desired end point.
This desirable redundancy opens up the possibil-130

ity of finding joint trajectories that globally opti-
mise the energy consumption of the manipulator at
the hydraulic level while the end-effector satisfies
Cartesian reference path constraints. To this end,
the end-effector position and velocity are defined,135

and we discuss the variable displacement pumps
heavily utilised in the manipulator’s hydraulic sys-
tems.

2



L1
L2+q3

ox

oy

q1 
x0

xw

yw

y0

y 1 x 1
,2

z2

x
3

z
3

q2 

Figure 1: Typical 3-DOF kinematically redundant hydraulic
manipulator

2.1. End-effector position and velocity

The joint space vector of the manipulator is writ-140

ten as

q =
[
q1 q2 q3

]T
(1)

where joint coordinate q1 denotes the lift angle,
joint coordinate q2 denotes the tilt angle (transfer
angle) and the redundant joint coordinate q3 de-
notes the extension length of the cylinder (reach).145

The joint coordinates q1 (real positive), q2 (real neg-
ative) and q3 (real positive) are chosen based on
the classical Denavit-Hartenberg (DH) convention
[7]. Coordinate frames are attached to the links and
numbered based on this DH convention. The world150

coordinate frame in the base is denoted with w (see
Fig. 1).

Table 1: Denavit-Hartenberg parameters of the manipulator

Joint i ai αi di θi
1 L1 0 0 q1
2 0 π/2 0 π/2 + q2
3 0 0 L2 + q3 0

The DH homogeneous transformation matrix
Ai−1
i ∈ R4x4, which determines the coordinate

transformation from the link attached frame i to155

frame i− 1, is

Ai−1
i =


cθi −sθicαi

sθisαi
aicθi

sθi cθicαi
−cθisαi

aisθi
0 sαi

cαi
di

0 0 0 1

 (2)

where e.g. sθi denotes sin(θi), cθi denotes cos(θi)
and the matrix elements are obtained using the DH
parameters (see Table 1). Using the DH transfor-
mation matrix in succession, we get160

A0
3 = A0

1A
1
2A

2
3 (3)

where A0
3 is the total coordinate transformation

from the end-effector frame 3 to frame 0. To trans-
form to world frame w, which is located in the ma-
nipulator base, we use a homogeneous transforma-
tion matrix on A0

3165

Tw
3 =

Rw
0 ow

0

0 1

A0
3 (4)

where the rotation matrix Rw
0 is the identity matrix

I3x3 because the orientations of coordinate frames
0 and w are aligned, the translation vector ow

0 is[
ox oy 0

]T
, with its components denoting the off-

sets between the frames w and 0, and Tw
3 yields the170

transformation from frame 3 to w. Finally, we may
determine the end-effector position in the world co-
ordinate frame from Tw

3 to be

xw = L1 cos(q1) + (L2 + q3) cos(q1 + q2) + ox (5)

yw = L1 sin(q1) + (L2 + q3) sin(q1 + q2) + oy (6)

where xw denotes the position of the end-effector in
the direction of the x-axis in the world coordinate175

frame, yw denotes the position of the end-effector
in the direction of the y-axis in the world coordi-
nate frame and because the manipulator operates
in the xy-plane, the position of the end-effector in
the zw coordinate is zero. The manipulator link180

lengths are L1 and L2, and ox and oy are the off-
set of the world coordinate system in the direction
of the x- and y-axes, respectively, from the first
joint. The joints are actuated by hydraulic cylin-
ders. The joints q1 and q2 are rotational joints,185

which rotate around the z-axis. The extension joint
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q3 is a prismatic joint whose length is determined
by the length of the hydraulic cylinder. Because of
the physical limits of the hydraulic cylinders that
actuate the manipulator joints, the joint coordi-190

nates are lower and upper bounded. The maximum
joint velocities in both directions of motion are also
bounded as dictated by the maximum displacement
of the hydraulic pump and cylinder size. System re-
strictions also limit maximum joint accelerations.195

The task-space vector denoting the end-effector
Cartesian position may be written as

xt =
[
xw yw

]T
(7)

Differentiating xt in view of Eqs. (5)–(7) with re-
spect to time yields

ẋt = J(q)q̇ (8)

where the Jacobian matrix J(q) ∈ R2x3 is the par-200

tial derivative of xt with respect to q and q̇ is the
time derivative of q.

To solve the joint velocities q̇ from Eq. (8) we
need to invert the non-square matrix J(q). A
particular inversion is obtained using the weighted205

right-side pseudo-inverse [6]

q̇† = J(q)†ẋt = W−1J(q)T
(
J(q)W−1J(q)T

)−1
ẋt

(9)
where W is a weighting matrix and J(q)† de-
notes the pseudo-inverse of the Jacobian matrix.
This pseudo-inverse minimises the instantaneous
Euclidean norm of joint velocities q̇Tq̇ when the210

weighting matrix W equals the identity matrix I,
thus yielding a least-square solution. Variations
of this weighting approach that are more sophis-
ticated have been presented (e.g. weighting with
the manipulator inertia matrix minimises the in-215

stantaneous kinetic energy). The pseudo-inverses
have also been derived in actuator coordinates [8].
Because these pseudo-inverse approaches lead to
the instantaneous minimisation of the performance
criteria, the minimum over the whole task-space220

trajectory must be found using an optimal control
methodology.

2.2. Control of hydraulic systems by variable dis-
placement pumps

Variable displacement pumps are hydraulic com-225

ponents capable of outputting a variable flow rate
through the hydraulic or electric alteration of the
pump displacement. The pumps predominantly

used in hydraulic manipulators are axial-piston
types in which the output flow is controlled by230

adjusting the angle of the swashplate, which is a
tilted disc usually actuated by pressure-regulated
hydraulic control pistons acting against a spring
load. The dynamic characteristics of common hy-
draulic piston pumps and their control principles235

are widely known and have been thoroughly stud-
ied in the literature (see [9–11]).

These variable displacement pumps are used in
constant-supply pressure (CP) and load-sensing
systems (LS) in hydraulic manipulators. The pres-240

sure and flow are usually regulated through hydro-
mechanical feedback realised with a regulator valve
subject to hydraulic pressure and spring forces,
which control the valve’s position. In the CP sys-
tem, the regulator valve controls the pump displace-245

ment in such a way as to maintain a constant supply
pressure, regardless of changes in the flow demand
or load pressure. The pump flow is simultaneously
matched to the required flow of the actuators. This
desired control action is accomplished by fixing the250

spring tension force acting on the spool of the reg-
ulator valve to a force corresponding to the desired
supply pressure. The hydraulic circuit of the CP
system is shown in Fig. 2. CP systems have been
widely adopted in hydraulic manipulators used in255

feedback control applications because of their en-
hanced stability and simplicity over other systems;
however, these benefits come at the cost of energy
efficiency.

The more complex LS system shown in Fig. 3260

controls the pump displacement through the regula-
tor valve so the supply pressure at the pump outlet
tracks a time-varying reference, which is continu-
ously adjusted to a fixed-pressure delta above the
highest load pressure sensed from the hydraulic pi-265

lot line. Like in the CP system, the pump flow
is matched to the actuator requirement. Abid-
ing by this principle, the pressure losses over the
valves controlling the actuators may be notably re-
duced compared to the CP system, but the poten-270

tial disadvantages are poor energy efficiency with
unequal loading and the increased chance of sta-
bility problems because of the decreased damping
[12]. Variations of the LS systems include the elec-
trical LS systems [13], which eliminate the long275

LS pilot line; and flow control systems [14], which
remove the pressure feedback on the load at the
pump. LS systems are immensely popular in open-
loop-controlled manipulators in which energy must
be distributed to multiple actuators with a single280
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pumping unit; however, they can also be encourag-
ingly stable in feedback control applications [15].

The vast popularity of these systems in applica-
tions and their different operating principles imply
the need for a tailored solution to effectively re-285

solve kinematic redundancy at the hydraulic system
level. The controllability of the hydraulic pump’s
flow rate and supply pressure enables this energy
saving redundancy resolution.

3. Problem formulation290

Let us formulate a dual-objective problem in
which the secondary objective is to minimise a
performance cost function Lp related to the en-
ergy consumption of the hydraulic system (cost
functions presented later) while the manipulator295

end-effector is primarily required to track a time-
dependent planar path r(t) denoted with

r(t) =
[
rx(t) ry(t)

]T
(10)

where t denotes time and the differentiable Carte-
sian x and y-coordinate references are rx(t) and
ry(t), respectively.300

3.1. Continuous-time formulation

The complex optimal control problem with fixed
terminal time is defined as follows:

min
u∈ρρρ

∫ tf

0

Lp

(
x(t),u(t)

)
dt (11)

subject to:

x(0) = x0,

ẋ(t) = f
(
x(t),u(t)

)
,

ge

(
x(t),u(t)

)
= 0,

gi

(
x(t),u(t)

)
≤ 0

(12)

where Lp is the performance cost to be minimised305

(real), tf is the terminal time, x0 ∈ R6 is the ini-
tial system state vector, x ∈ R6 denotes the system
state vector, u ∈ R3 denotes the control vector,
f ∈ R6 denotes the system dynamics, gi ∈ R18 de-
notes the inequality constraints, ge ∈ R2 denotes310

the equality constraints and ρρρ is the control policy
search space of feasible u(t), defined at time indices
from 0 to tf and constrained by joint acceleration
limits at each time index

(
see Eq. (15)

)
.

The system dynamics f
(
x(t),u(t)

)
are defined315

using

ẋ1 = x2

ẋ2 = u1

ẋ3 = x4

ẋ4 = u2

ẋ5 = x6

ẋ6 = u3

(13)

where state vector x = [q1 q̇1 q2 q̇2 q3 q̇3]
T

and con-

trol vector u = [q̈1 q̈2 q̈3]
T

. The time indices were
omitted for brevity.

To ensure satisfactory path tracking in the task320

space, we require that ge contains the time-varying
equality constraint

xt(t)− r(t) = 0 (14)

However, tracking the path could be equiva-
lently forced with a velocity equality constraint
ẋt(t) − ṙ(t) = 0, positional inequality constraint325

|xt(t)− r(t)| ≤ δ with a small constant δ ∈ R+,
or, similarly, a velocity inequality constraint. No-
tice that when using any one of these constraints,
we do not need to find weights for the performance
and tracking objectives.330

The following state and control constrains are
contained in gi

ximin
≤ xi ≤ ximax

uimin
≤ ui ≤ uimax

(15)

where ximin
denotes the minimum feasible value of

state i ∈
{

1, 2, 3, 4, 5, 6
}

(joint position or joint ve-
locity limit), ximax denotes the maximum feasible335

value of state i ∈
{

1, 2, 3, 4, 5, 6
}

(joint position or
joint velocity limit), uimin

is the minimum joint ac-
celeration of joint i ∈

{
1, 2, 3

}
and uimax

is the

maximum joint acceleration of joint i ∈
{

1, 2, 3
}

.
These inequality constraints are based on physical340

bounds on joint ranges, joint velocity and joint ac-
celeration. The constraints can be readily reduced
into the general form denoted with gi in Eq. (12).

3.2. Discrete-time formulation

The discrete-time problem may be formulated as345

follows. Firstly, let the continuous time from 0 to tf
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Figure 2: Hydraulic circuit of a constant pressure system

Bias 

piston

Control 

piston

Separate meter-

in and separate 

meter-out 

configuration

Variable 

displacement pump

Regulator 

valve

Pressure 

compensator Highest actuator 

pressure from 

load-sensing line

P-A

A-T

P-B

B-T

P-A

A-T

P-B

B-T

P-A

A-T

P-B

B-T

...

Figure 3: Hydraulic circuit of a load-sensing system

be discretised into N intervals of equivalent length
tf/N . Then the discrete version of the cost func-
tional from Eq. (11) may be written as

min
u∈ρρρ

{
Ts

N−1∑
k=0

[
Lp,k

(
xk,uk

)
+ `k

(
xk,uk

)]}
(16)

where Ts is the integration step, k denotes the dis-350

crete time index (stage), xk denotes the discrete
state vector, uk denotes the discrete control vec-
tor, Lp,k is the discrete performance cost at time
stage k, `k

(
xk,uk

)
is the additive term at time

stage k that penalises the violation of joint limits355

(joint ranges, joint velocity and joint acceleration)
and ρρρ is the control policy search space of feasi-
ble uk, defined for time indices from 0 to N − 1.
When the joint limits are violated

(
based on the

limits defined in Eq. (15)
)
, a substantial constant360

much higher than the normally highest cost func-
tion value is added to term `k to ensure that con-
trols that lead to exceeding joint limits are avoided.
The final cost at N , which is independent of the
control, is omitted.365

The state dynamics may be discretised by using
the well-known explicit, forward Euler method

xk+1 = Fk
(
xk,uk

)
= xk + Tsf

(
xk,uk

)
(17)

where Fk
(
xk,uk

)
denotes the discretised system

dynamics and Ts is the integration step.
The main problems with the continuous and370

derived discrete formulation are their high-
dimensionality and complexity. The high-
dimensionality implies that dynamic programming
as such is impractical, whereas, for example, the
complexity and non-convexity of some of the con-375

straints and cost functions we shall introduce sig-
nify that conventional direct optimisation methods
would yield locally optimal solutions, depending on
the initial guess of the control. The global solution
could, however, be searched by iterating through380

the vast number of solutions generated from differ-
ent initial guesses; however, this process is ad hoc
and time consuming. Nevertheless, because we are
searching for a global solution, dynamic program-
ming is a viable candidate, but only with the mod-385

ified modelling approach suggested in the following
section.

4. Dynamic programming solution

Dynamic programming (DP) is a powerful
discrete-time method that has one remarkable prop-390

erty in that it can provide a global solution to non-
convex optimal control problems. The main disad-
vantage of DP is its computational complexity: as
the number of system states or controls increase,
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the computational complexity increases exponen-395

tially [16]. Hence, dynamic programming can be
considered a practical approach only when dealing
with low-dimensional problems. DP is based on
the well-known principle of optimality defined by
Richard Bellman in 1957 [17]:400

An optimal policy has the property that
whatever the initial state and initial de-
cision are, the remaining decisions must
constitute an optimal policy with regard
to the state resulting from the first deci-405

sion.

In practice, the discretisation of states and con-
trols is required, which yields a grid where the vari-
ables involved can take only a finite number of dis-
crete values. The cost-to-go is evaluated only at410

these discrete points. The finer the discretisation,
the closer to the global optimum the solution ob-
tained will be. With the discretisation in place,
the solution to our optimal control problem may
be obtained using the recursive Bellman equation415

(principle of optimality):

Jk
(
xk
)

= min
uk∈UUU

{
Lp,k

(
xk,uk

)
+ `k

(
xk,uk

)
+ Jk+1

(
Fk(xk,uk)

)} (18)

where Jk
(
xk
)

is the optimal cost-to-go from stage

k ∈
{

0, 1, . . . , N − 1
}

to the final stage N − 1 de-
fined for each state vector combination at stage k
such that xk ∈ XXX =

{
X1 × X2 × · · · × XNx

}
(Nx420

is the number of states) and computed over all
control vector combinations at stage k such that
uk ∈ UUU =

{
U1×U2×· · ·×UNu

}
(Nu is the number

of controls). Here, Xi =
{
x
(1)
i , x

(2)
i , . . . , x

(Nxi
)

i

}
and

Ui =
{
u
(1)
i , u

(2)
i , . . . , u

(Nui
)

i

}
denote the discrete425

sets of the state and control i, respectively. The
joint limits defined in Eq. (15) determine the max-
imum and minimum values in these discrete sets of
feasible state and control values. The variables Nxi

and Nui , denote the number of discretised states430

and controls, respectively. The sum Lp,k + `k rep-
resents the running cost and Fk

(
xk,uk

)
is the dis-

cretised version of system dynamics f
(
x(t),u(t)

)
. It

should be emphasised that we search for the optimal
control policy (an optimal control at each discrete435

time stage k) producing the minimum cost-to-go
over the entire trajectory from the initial to the fi-
nal stage, and this minimum should be the smallest

attainable one (i.e. the global minimum instead of
the local minimum).440

The main implication from the principle of opti-
mality is that the controls we find optimal from
stage k to N are also optimal at a later stage,
e.g. from stage k + 1 to N . It also indicates
that the problem is naturally approached in a back-445

wards fashion from the last to the initial stage. For
demonstration purposes, consider a simple problem
whose solution map is shown in Fig. 4. The system
has a single state x, which can take on seven values;
the control u can take on three values denoted with450

the marker coding (circle, star and triangle); and
we deal with an N -stage problem of which we show
the last three stages and the computed optimal con-
trols corresponding to each state. In the last stage
N , we have no optimal controls to compute.455

N-2 N-1 N

x

k

x
(7)

x
(6)

x
(5)

x
(4)

x
(3)

x
(2)

x
(1)

...

u
(1)

u
(2)

u
(3)

Figure 4: Example map of marker-coded optimal controls to
illustrate the dynamic programming method

The procedure of computing the optimal controls
at stages N − 2 and N − 1 of the example map is
described in the following. First, let us define the
running cost ck

(
xk, uk

)
as Lp,k

(
xk, uk

)
+`k

(
xk, uk

)
.

Because the final cost is omitted, we begin the pro-460

cedure at stage N − 1. In view of Eq. (18), we
evaluate the optimal cost-to-go JN−1 at a particu-

lar state x
(1)
N−1 over the plausible controls uN−1 ∈
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{
u(1), u(2), u(3)

}
as

JN−1(x
(1)
N−1) = min

{
cN−1

(
x
(1)
N−1, u

(1)
)
,

cN−1
(
x
(1)
N−1, u

(2)
)
,

cN−1
(
x
(1)
N−1, u

(3)
)}

= u(2)

(19)

where u(2) is the example optimal control, which465

minimises the optimal cost-to-go JN−1 at the par-
ticular state. We store this control and the optimal
cost-to-go in the map and repeat this procedure for
all of the states.

As we step backwards into stage N − 2, we uti-470

lize the optimal controls and optimal cost-to-go ob-
tained at stage N − 1 to evaluate the optimal cost-
to-go JN−2 at each state; for example, for the par-

ticular state x
(3)
N−2 we may obtain

JN−2(x
(3)
N−2) = min

{
cN−1

(
x
(3)
N−2, u

(1)
)

+

JN−1
(
Fk(x

(3)
N−2, u

(1))
)
,

cN−1
(
x
(3)
N−2, u

(2)
)

+

JN−1
(
Fk(x

(3)
N−2, u

(2))
)
, . . .

}
= u(3)

(20)

where u(3) is the optimal control, which minimises475

the optimal cost-to-go JN−2 at the particular state.
In the computation, for example, the solution to

JN−1 at state Fk(x
(3)
N−2, u

(1)) is known from com-
putations performed at the previous time stage and
we utilise this to evaluate the cost JN−2 at state480

x
(3)
N−2. As we continue with the procedure in this

recursive manner to the initial stage, we may re-
solve the optimal policy of any length between 1
and N stages. The frequently occurring problem is
that the next state derived from the state dynam-485

ics Fk
(
xk, uk

)
with some particular control leads to

a state unspecified in the state grid and hence the
cost-to-go is not evaluated at this state; this prob-
lem is solved through the linear interpolation of the
cost-to-go.490

The DP method can easily deal with those dis-
continuities arising in hydraulic circuits and help
solve optimisation problems arising in complicated
hydraulic systems. DP was, for example, used to

parametrise hydraulic excavator hybrids in [18]. For495

more details on the DP method, see [16], [17] and
[19].

4.1. Proposed modelling approach

DP is a particularly complex approach when
dealing with high-dimensional problems such as500

ours. Indeed, the discrete optimal control prob-
lem formulated in Eqs. (16) and (17) is too high-
dimensional to solve using the DP algorithm dis-
cussed in the previous section. Here we present an
improved modelling approach based upon the fact505

that we should only optimise the movement of re-
dundant DOFs. This reduces our problem dimen-
sion from six to a maximum of two states and from
three to one control, which enables effective use of
the DP algorithm. Considering our emphasis on510

a typical hydraulic manipulator with three joints,
from which one is redundant (Fig. 1), we optimise
the movement of this redundant joint. The motion
of the other joints can be effectively solved using in-
verse matrix computations since the remaining sys-515

tem is non-singular.

Let us optimise the motion of the extension joint
q3 of the manipulator. At the velocity level, the
simplified system dynamics are hence

q3,k+1 = q3,k + Tsu3,k (21)

where q3,k is the extension joint position at stage520

k, the control input u3,k at stage k is q̇3,k and Ts
is the integration time step. At the acceleration
level, a two-dimensional, double-integrator system
could be written similarly with the acceleration of
the redundant joint q̈3,k as input. By substituting525

the optimised position of the redundant joint q3,k
into the algebraic solution of the position of the
other joints q2,k and q3,k, we obtain [7] (see the
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atan2 version also therein)

q2,k = −acos

(
n1

2L1 (L2 + q3,k)

)
q1,k = asin

(
n2
n3

)
where

n1 = (rx,k − ox)2 + (ry,k − oy)2 − L2
1

− (L2 + q3,k)2

n2 =
(
L1 + (L2 + q3,k) cos(q2,k)

)(
ry,k − oy

)
−
(
L2 + q3,k

)
sin(q2,k)

(
rx,k − ox

)
n3 = L2

1 + (L2 + q3,k)
2

+ 2L1 (L2 + q3,k) cos (q2,k)

(22)

and rx,k and ry,k, respectively, are the desired530

Cartesian task-space position samples in the x and
y coordinates at time stage k. That is, we also have
available discrete samples from the desired Carte-
sian velocity ẋt defined in Eq. (8) at each time
stage k. Then we may use Jacobian column vec-535

tors Ji ∈ R2 to rewrite Eq. (8) in discretised form
as

ẋt,k = J(qk)q̇k

= J1(qk)q̇1,k + J2(qk)q̇2,k + J3(qk)u3,k
(23)

where the control u3,k is the joint velocity of the
extension joint coordinate q̇3,k. From Eq. (23), we
solve the desired Cartesian velocity with the con-540

tribution of the optimised extension joint included
so

ẋtr,k = ẋt,k − J3(qk)u3,k

= J1(qk)q̇1,k + J2(qk)q̇2,k
(24)

where ẋtr,k contains the Cartesian velocity required
from joints q1 and q2 to maintain the desired Carte-
sian trajectory ẋt,k. Because the remaining system545

is non-singular, we solve the angular joint velocities
q̇1,k and q̇2,k in a straight forward manner using ma-
trix inversion:[

q̇1,k
q̇2,k

]
=
[
J1(qk) J2(qk)

]−1
ẋtr,k (25)

where the Jacobian inverse matrix[
J1(qk) J2(qk)

]−1
is symbolically computed550

in advance.

Extending the formulation to the acceleration
level, we replace Eq. (21) with a standard two-
dimensional double-integrator system with q̈3,k as
the control u3,k. Then, as before, we solve the un-555

known joint positions and velocities with Eqs. (22)–
(25) and solve the non-singular system to obtain the
joint accelerations

[
q̈1,k
q̈2,k

]
=
[
J1(qk) J2(qk)

]−1
×
(
ẍt,k − J̇(qk, q̇k)q̇k − J3(qk)u3,k

)
(26)

where the subtraction on the right-hand side in
parenthesis contains the Cartesian acceleration re-560

quired from joints q1 and q2 to maintain the de-
sired Cartesian trajectory ẍt,k and the Jacobian

time derivative J̇(q, q̇) is symbolically computed
in advance using the well-known chain rule of dif-
ferentiation. In the above, we assumed that the565

desired Cartesian trajectory is twice-differentiable
and sampled.

A similar approach formulated with torque in-
put can be found in [20], but the approach here
presents a simpler and more general system. In570

[21], the solution obtained in [20] was criticised
for being a complex formulation of the accelera-
tion, whereas our velocity level one-dimensional ap-
proach is merely a function of the joint positions
and velocities. This considerably simplifies the re-575

dundancy resolution and yields the global solution
for the CP system with relative ease. Further-
more, our two-dimensional acceleration level ap-
proach, which is not formulated from the perspec-
tive of manipulator dynamics, preserves simplicity580

over [20] and facilitates the introduction of general
cost functions dependent on the manipulator mo-
tion state. The major benefit of the acceleration
level solution over the velocity level solution is that
the acceleration level solution satisfies physical joint585

acceleration limits. For simplicity, the highly com-
plex pump equations and actuator pressure dynam-
ics are omitted from the system dynamics, which
means that we assume the pump can respond to the
flow required by the actuators and the hydraulic590

fluid is incompressible. The problem formulation
presented here means that a standard DP solution
is feasible with the proposed approach.
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5. Proposed cost functions

In hydraulic manipulators, the energy consump-595

tion of the actuators does not equal the energy con-
sumed by the hydraulic components because of the
pressure losses over the control valves when the ac-
tuators are subject to unequal loads. Thus, to effec-
tively solve the redundancy resolution problem, we600

propose cost functions formulated from the stand-
point of the hydraulic system instead of the manip-
ulator dynamics or actuators.

5.1. Pump flow rate

Minimizing the pump flow rate over the Carte-605

sian trajectory decreases pumping effort and min-
imises the hydraulic energy consumption of the
CP system. The minimisation is plausible because
of the controllability of the variable displacement
pump. This minimisation has particular relevance610

when the hydraulic cylinders have different sizes,
thus leading to varying cylinder flow requirements.
Due to the high variability of cylinder sizes in prac-
tice, the problem of finding joint trajectories of
the least pump flow over the Cartesian path is615

tractable. The different piston and piston rod ar-
eas in single-rod cylinders extend the optimisation
potential.

The discontinuity and nonlinearity of the pump
flow cost function, which occurs because of the vari-620

ation of displaced area as a function of the direction
of motion, is not a problem in standard DP. In view
of Eq. (16), the pump flow rate cost function such
that Qp,k ≥ 0 may be written at time stage k by

Lp,k = Qp,k

=

3∑
i=1

{
QAi,k −QBi,k

}

=

3∑
i=1

{
vi,k
[
AAiH(vi,k)−ABiH(−vi,k)

]}

=

3∑
i=1

{
q̇i,krni,k

[
AAiH(q̇i,k)−ABiH(−q̇i,k)

]}
(27)

where QAi,k is the flow rate to the piston side of625

the cylinder i, QBi,k is the flow rate to the piston
rod-side of the cylinder i, H(q̇i,k) is the piecewise
Heaviside step function, vi,k denotes the cylinder
velocity of actuator i, the discontinuous cylinder
area is denoted with AAiH(q̇i,k)−ABiH(−q̇i,k), in630

which AAi is the piston area and ABi is the piston
rod-side area of cylinder i, and rni,k is the torque
arm of cylinder i. For simplicity, the hydraulic fluid
is assumed to be incompressible. Using a cylinder
differential connection would change the piston side635

area AAi to AAi − ABi in the case of cylinder ex-
tension. This change would mean that the pump
flow rate requirement for this particular movement
reduces to vi,k(AAi − ABi) or vi,kAri, where Ari is
the circular area of the piston rod of cylinder i.640

The Heaviside step function is defined by

H
(
q̇i,k
)

=


0 if q̇i,k < 0
1
2 if q̇i,k = 0

1 if q̇i,k > 0

(28)

where the intermediate value at zero joint velocity
is defined as half for convenience. This discontin-
uous Heaviside step function may be rewritten in
differentiable form after some mathematical manip-645

ulations:

H
(
q̇i,k
)
≈ Ĥ

(
q̇i,k
)

=
1

1 + e−2sq̇i,k
(29)

where s is a real positive number. By using this ap-
proximation, the flow rate objective is differentiable
for all real q̇i,k and may be convenient in practice.

In Eq. (27), the ABi area is negatively signed650

to enforce positive QB,k when the joint velocities
are negative. We used the properties of tangential
velocity, which states that vi,k can be written as
q̇i,krni,k, and also the property, which states that
H(vi,k) can be rewritten as H(q̇i,k) since rni,k is655

positive. The torque arm rni,k at time stage k is
defined by

rni,k =
Li1Li2 sin

(
qi,k + q

(0)
i

)√
Li1 + Li2 − 2Li1Li2 cos

(
qi,k + q

(0)
i

)
(30)

if qi,k is rotational, otherwise rni,k is one. The dis-
tances Li1 and Li2 are the constant distances be-
tween the center of rotation and lower and upper660

cylinder joints, respectively. The initial value on
the torque arm corresponds to a fully retracted pis-
ton when the joint coordinate qi,k is at its minimum

value qimin . Hence, q
(0)
i is denoted by qic−qimin . The

quantity qic is the angle of the triangle opposite a665

fully retracted cylinder. The triangle is formed by
the upper cylinder joint, lower cylinder joint and
rotational joint qi,k.
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5.2. Constant supply pressure system: Energy con-
sumption670

By optimizing the movement of the redundant
joint to minimise the flow delivered to the actu-
ators, the energy consumption of the CP system
is minimised. We see this from the hydraulically
produced power of the constant pressure system,675

written in view of Eq. (16)

Lp,k =
psQp,k

ηt,k
(31)

where ps is the constant supply pressure, Qp,k is
the pump generated flow rate defined in Eq. (27)
at time stage k and ηt,k is the total energy effi-
ciency of the hydraulic pump and driving motor680

at time stage k. Because weighting Lp,k with 1/ps
yields the pump flow rate cost, the objectives are
ideally equal. This holds the assumption that the
constant pressure has been fixed pre-optimisation.
Moreover, based on our assumption that the hy-685

draulic energy cannot be reused, the energy con-
sumed maintains positivity. The simplified one-
dimensional system model previously presented can
be used with this cost function, but the joint accel-
eration limits may not be obeyed. The total energy690

efficiency depends on the prevalent operating point,
i.e. the supply pressure, displacement and rotation
speed of the pump, but to showcase the basic ca-
pability of the redundancy resolution and due to a
lack of realistic efficiency data, we assume a con-695

stant energy efficiency in our investigations.

5.3. Load-sensing system: Energy consumption

Systems based on LS architecture generate pres-
sure losses over the control valves whenever the
loading between actuators is unequal because of the700

system’s nature, in which the highest actuator pres-
sure is demanded at the pump level. Because the
supply pressure varies depending on the load, in-
stead of minimizing flow, we must specifically min-
imise the hydraulic power produced by the LS sys-705

tem

Lp,k =
ps,kQp,k

ηt,k
(32)

where ps,k is the supply pressure at time stage k,
Qp,k is the pump flow rate at time stage k defined
by Eq. (27) and ηt,k is the total efficiency of the
hydraulic pump and driving motor at time stage k.710

Omitting the dynamics of the variable displace-
ment pump, the supply pressure ps,k varies in uni-
son with the highest actuator pressure

ps,k = max

{
p1,k, p2,k, p3,k

}
+ ∆pLS (33)

where p1,k denotes the chamber pressure of the lift
cylinder, p2,k denotes the chamber pressure of the715

tilt cylinder, p3,k denotes the chamber pressure of
the extension cylinder and ∆pLS is the LS pres-
sure margin, which is conventionally set to approx-
imately 2 MPa. The cylinder chamber pressure of
actuator i is solved from720

pi,k =

(
|Fi,k|
Ai,k

+ pBP,i,k

)
H
(
Fi,kvi,k

)
(34)

where the actuator force Fi,k at time stage k can
be computed using Ti,k/rni,k, with rni,k defined
by Eq. (30), pBP,i,k is the positive cylinder back-
pressure at time stage k and piston area Ai,k is de-
noted with AAiH(q̇i,k)+ABiH(−q̇i,k), which varies725

as a function of the direction of motion. We see that
H
(
Fi,kvi,k

)
sets the required actuator pressure to

zero when dealing with negative energy, and the
absolute value on Fi,k satisfies the requirement for
non-negative actuator pressure.730

The actuator forces Fi,k and torques Ti,k are
solved from manipulator dynamics, which can be
formulated based on well-known Lagrangian or
robotic conventions. Centers of the mass positions
of the links ri and the link masses mi in Fig. 5 are735

provided in Appendix A. Using these parameters,
we obtain the inertia matrix and gravitational com-
ponent using the procedure described in [7].

The back-pressure of cylinder i can be written as

pBP,i =
AB,i

AA,i
pBP,B,iH(vi) +

AA,i

AB,i
pBP,A,iH(−vi)

(35)
where time indices are omitted for clarity. Back-740

pressure is taken from the rod-side when the cylin-
der extends by using the Heaviside function. Sim-
ilarly, back-pressure is taken from the piston-side
when the cylinder retracts. The cylinder area ra-
tios scale the back-pressure from rod to piston-745

side and vice versa. In the case of a pressure-
compensated hydraulic valve, the back-pressures of
cylinder chambers A and B, i.e. pBP,A,i and pBP,B,i,
respectively, can be estimated in the steady-states
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Figure 5: Positions of the center of masses of the links

by the multiplication of the valve’s constant pres-750

sure difference with a certain coefficient [22]. When
the back-pressures are insignificant, like in our
closed-loop controlled separate meter-in and sep-
arate meter-out orifice configuration, these steady-
state back-pressure functions can be omitted.755

The maximum function in Eq. (33) is discontinu-
ous but could be approximated with a differentiable
expression for the sake of practical implementation
after some mathematical manipulations:

max
{
p1,k, p2,k, p3,k

}
= np/4 (36)

where np is given by p1,k + p2,k + |p1,k − p2,k| +760

2p3,k +
∣∣p1,k + p2,k + |p1,k − p2,k| − 2p3,k

∣∣ and the
absolute values |pi,k| should be approximated with√
pi,k2 + ε. This approximation originates from the

well-known definition of the maximum function of
two variables via absolute values. The accuracy of765

this approximation improves when we decrease the
value of the real positive ε (e.g. to class 10−6).

6. Numerical examples

The purpose of these numerical examples is to
compare the global and local solutions in relation770

to typical hydraulic manipulator applications and
to showcase the superior performance of the global
approach, which is due to the properties of the op-
timal control problem. We are particularly inter-
ested in showing how much energy can be saved in775

relation to the cost functions. We perform a com-
parison and discuss some parameters’ effect on the
solutions.

6.1. Setting up the numerical examples

Let us define our manipulator using the parame-780

ters supplied in Appendix A. By applying these, we
obtain the workspace shown in Fig. 6. The reach-
able workspace without the extension joint (q3 = 0)
is shown with a circular marker. The load mass was
fixed at 475 kg, which is a reasonable choice con-785

sidering the heavy-duty lifting carried out at con-
struction sites. This load mass was also close to
the load capacity of the system. The same weight
was employed to closed-loop control tests in [1].
We setup our comparison so a variety of optimi-790

sation methods complete a fictitious task cycle in
which the end-effector is driven through triangular
paths comprising diagonal, vertical and horizontal
path, completed in this order. Throughout the ex-
periments, the Cartesian paths between two points795

are generated with a quintic rest-to-rest polynomial
trajectory, which provides smooth positional refer-
ences for deriving the desired velocity and acceler-
ation trajectories [23].
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Figure 6: Test cycles for analyzing attainable energy-saving
in the manipulator workspace

On the hydraulic side, the joint-actuating cylin-800

ders were sized as follows: �80/45−0.545, �80/45−
0.545 and �50/30− 1.04, respectively, for the first
(lift function), second (tilt) and third (extension)
joints. These parameters were derived from a com-
mercial construction crane. The cylinder velocities805

and accelerations were conservatively limited to the
values shown in Appendix A. In addition, we briefly
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investigate the parameter sensitivity’s effect on the
redundancy resolution.

The DP approaches with various cost functions810

are compared with non-conventional pseudo-inverse
approaches formulated in actuator coordinates, and
the fmincon function from the Optimization tool-
box in Matlab and the DIDO application package
[24, 25] are compared with the application to the815

described manipulator. The pseudo-inverse applied
was the joint-limited (joint ranges and joint veloc-
ity limits satisfied) null-space projection method in-
troduced by Flacco et al. [26], but we extended
it to the actuator space so norm vTAv as the820

weighted or norm vTv as the unweighted version
are minimised instead of the standard norm q̇Tq̇.
The joint ranges (cylinder strokes) and velocity lim-
its as well as the reference trajectory were satis-
fied. The weighting matrix is a diagonal matrix825

A ∈ R3x3 in which the diagonal terms Aii are
given by AAiH(vi)+ABiH(−vi). The Matlab func-
tion fmincon (ver. 2013b) was set up with the de-
fault interior-point method; the system used was
Eqs. (11)–(15) integrated with a fixed-step Runge-830

Kutta solver. For the fmincon algorithm, we used
the high-dimensional system because the solution
resulting from the proposed low-dimensional sys-
tem more frequently failed to converge while satisfy-
ing the constraints; whereas for the DIDO software,835

we successfully used the low-dimensional system. It
is a well-known fact that pseudospectral methods
(that is implemented for example in DIDO soft-
ware) can yield satisfactory trajectories with rel-
atively few discretisation nodes, albeit the value of840

the cost may then be imprecise. To improve the
cost of the DIDO solution and smoothness of DIDO
trajectories, the DIDO solver was run with higher
nodes via a bootstrapping approach. In this ap-
proach, regarding the CP case, the solver was first845

run with a 20 discretisation node solution that was
inputted as a guess for a 30 node solution that, in
turn, was inputted as a guess for a 60 node solution
that was finally inputted as a guess for a 90 node
solution. The LS case was treated similarly, but850

using a higher number of nodes. We noticed that a
DIDO solution is obtained significantly faster when
using a continuous form of the flow rate cost func-
tion. Thus, we employed the continuous Heaviside
approximation. The position of the extension joint855

was initialised with the smallest feasible value sat-
isfying the other joint ranges, and the remaining
joint positions were solved using Eq. (22) in all of
the methods. The initial and final joint velocities

were set to zero in the optimal control methods.860

Energy savings were firstly computed using a sim-
plified model which did not possess actuator pres-
sure dynamics, friction effects or LS pump pressure
dynamics. Energy savings were secondly computed
using a full-scale, closed-loop simulation of the hy-865

draulic system to demonstrate that our simplified
problem formulation is pragmatic and the neglected
hydraulic aspects of the problem could be omit-
ted. Actuator pressure dynamics, friction effects
and pump pressure dynamics were included in the870

full simulation model. Energy saving results are
presented for both the simplified and full simulation
case in the following sections. In the closed-loop
simulation case, hydraulic cylinder chamber pres-
sures were controlled independently using pressure-875

compensated valves, which were set-up in a sepa-
rate meter-in and separate meter-out orifice con-
figuration. The separate meter-in and meter-out
valves were controlled so that valve notch connec-
tions P-A & B-T and P-B & A-T were simulta-880

neously opened
(
see Figs. 2 and 3

)
. The notches’

magnitude of opening was of course otherwise con-
trolled independently. Hydraulic system parame-
ters were set to the same values in each closed-loop
simulation to yield comparable results. The adap-885

tive robust control approach [27, 28] was used as
the motion controller; however, the cross-port valve
was excluded. The adaptive robust controller was
implemented for each manipulator function, allow-
ing the controller’s robustness to modelling uncer-890

tainties to dominate neglected joint coupling terms.
To avoid cavitation, the so-called offside cylinder
chamber pressures during the motion were regu-
lated to a constant 1 MPa.

6.2. Constant-pressure system895

The cost function used for the comparison in Ta-
ble 2 is Eq. (16), into which the pump flow cost
from Eq. (27) is substituted. Therefore, the cost
function is the sum of the pump flow rate over the
Cartesian trajectory in which the largest triangular900

path is driven with 10 seconds spent on each edge.
The cost function values are scaled with the mini-
mum, i.e. best, result. We searched for the global
solution from the infinite space of solutions without
any restriction apart from the constraints on joint905

ranges, joint velocity limits and joint acceleration
limits set in Appendix A. The maximum supply
pressure level was not restricted in any way. We
obtained closed-loop tracking performances compa-
rable to [27, 28] when using the optimised joint910

13



motion trajectories as the motion controller’s ref-
erences, i.e. the position tracking errors were gen-
erally less than 0.01 rad or 0.01 m.

The energy savings predicted by the simplified
model, which neglected conventional hydraulic sys-915

tem dynamics, and the more accurate closed-loop
simulation prediction, which included these effects,
are mostly comparable, showing that the degree of
model simplification in the problem formulation is
justified. The DP approach with the CP cost func-920

tion yields the lowest cost in both cases, although
the DIDO approach set to minimise Eq. (27) has
an almost identical cost to the DP approach. Still,
keeping that DP approach as our baseline, a com-
parison shows that the DP methods written to min-925

imise the LS cost in view of Eq. (32), the posi-
tive actuator energy cost or the actuator velocity
cost vTv yield sub-optimal joint trajectories that
require a somewhat higher flow to perform the test
cycle. The fmincon function yields a very poor local930

optimum that is significantly inferior to the global
optimum. The weighted pseudo-inverse yields the
worst solution, in which the pump flow over the
test cycle was over 30% greater. Surprisingly, the
unweighted pseudo-inverse written in the cylinder935

coordinates yields a decent result. All of the re-
sults concern the largest triangle path in Fig. 6 com-
pleted in 30 seconds, or 10 seconds per edge, which
amounts to a Cartesian velocity of the end-effector
of roughly 0.5 m/s on the diagonal path.940

In reference to the smaller triangular paths, we
saw the energy-saving potential clearly decreasing
because of the smaller area covered, i.e. optimi-
sation potential is lost with a decreasing range of
motion. The DP solutions owing to the discreti-945

sation are prone to having slightly jagged edges,
but proper filtering smooths these out. The cost
function values in the tables throughout this paper
were computed after this low-pass filtering. The
low-pass filtered (cutoff frequency 5 Hz) cylinder950

velocity trajectories are in Figs. 7a–7c, which show
the largest test cycle.

The proposed simplified first-order DP approach
was parametrised by state and control grid size,
with the state being divided into 200 discrete val-955

ues and the control being divided into 101 discrete
values. In addition, the algorithm was highly com-
putationally efficient and the modelling accuracy
(with its discretisation) was more than adequate.
The time was discretised into 0.05 second steps.960

Surprisingly, this enabled a significantly faster so-
lution and lower system memory consumption than

the fmincon method, which uses the interior-point
algorithm. As seen, the fmincon can very easily
yield a local minimum to our problem. Therefore,965

global optimal control is seen as a highly attractive
solution.

The second-order model, however, allows the in-
clusion of joint acceleration limits we applied to
our comparison. DP with the joint acceleration970

constraints intuitively yields a cost that is always
higher or the same as the cost obtained from DP
without joint acceleration constraints. In terms of
discretisation, the state space of the extension cylin-
der position was divided into 125 discrete values,975

the extension cylinder velocity into 101 values and
the extension cylinder acceleration into 201 values.
DP with the second-order model is still faster than
the fmincon algorithm even though the increase in
the number of states leads to an exponential in-980

crease in the computational burden. Decreasing
the grid sizes in this case reduces the computa-
tional effort without any significant sacrifice in per-
formance. Halving the state grid size halves the
requirement on system memory and computation985

time, and the same applies for the control grid. The
second-order approach was clearly not as compu-
tationally efficient as the first-order approach, but
decreasing the grid sizes even more is plausible if
faster execution is desired, albeit at the expense of990

inferior trajectories. The DIDO approach possessed
a lower computational complexity than the DP ap-
proach and a somewhat lower memory requirement.

Figure 8 demonstrates the convergence properties
of the dynamic programming algorithm in the CP995

case. It shows that even the coarser state and con-
trol grids are capable of producing solutions that
are in reasonably close agreement with the global
optimum. The anticipated difference between the
coarser and denser grid solutions is the smoother1000

motion profiles of the denser solutions. The dis-
cretisation used corresponds to the second to last
marker in Fig. 8. Finally, as a major convenience,
the problem concerning the CP system may be
solved without any knowledge about the manipu-1005

lator dynamics.
The energy saved can be increased by decreas-

ing the cylinder areas since the actuator flows are
reduced. In some cases, however, the decrease
in cylinder area leads to an intolerable increase1010

in the supply pressure level. Even minor realis-
tic cylinder area changes can increase the energy
savings and therefore extend the optimisation po-
tential. Consider our numerical example in which
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Table 2: Constant pressure system: Comparison of optimal and sub-optimal approaches (with joint limits) based on energy
savings predicted by the simplified model and closed-loop simulated full-scale model

Method (minimised cost) Simplified rel. cost function Full rel. cost function
DP (CP) 1.000 1.000

DIDO (CP) 1.003 1.002
DP (LS) 1.062 1.060

DP (Act. velocity) 1.087 1.086
DP (Pos. actuator) 1.098 1.098

Act. p-inv. (Unweighted) 1.127 1.124
fmincon (CP) 1.166 1.163

Act. p-inv. (Weighted) 1.308 1.308
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(a) Lift cylinder velocity v1 (m/s) over time (s)
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(b) Tilt cylinder velocity v2 (m/s) over time (s)
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(c) Ext. cylinder velocity v3 (m/s) over time (s)

Figure 7: CP optimal dynamic programming trajectory ( ), suboptimal fmincon trajectory ( ) and pseudo-inverse trajectory
( )

the sizes of the tilt and lift actuators are the same.1015

If we changed the tilt cylinder size (joint 2) from
�80/45 − 0.545 to �80/56 − 0.545, the flow re-
quirement on the pump decreased by 5% over the
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Figure 8: Convergence of the dynamic programming algo-
rithm in the constant-pressure case; the scale for the x-axis is
logarithmic to improve readability, and the y-axis cost func-
tion value is scaled with the cost obtained using the densest
grid size

largest triangular path. The reduction was 4% in
the medium and small triangular paths with this1020

moderate change. But since the maximum supply
pressure in the cycle increased by well over 5%, the
change was clearly not advisable. If we changed
the extension cylinder size from �50/30 − 1.04 to
�45/30− 1.04, the energy saved on the largest tri-1025

angular path was 4%, with negligible effect on the
supply pressure level. It may be that the exten-
sion cylinder of the typical hydraulic manipulator
has the most potential for size optimisation. Com-
ponent size optimisation is, however, not the main1030

focus of this paper, but even this example demon-
strates the energy savings obtained by sizing the
hydraulic cylinders used in a work cycle.

6.3. Load-sensing system

As before, the cost function used for the compar-1035

ison in Table 3 is Eq. (16), into which the LS cost
from Eq. (32) is substituted. Therefore, the cost
function is the sum of consumed LS energy over
the Cartesian trajectory in which the largest trian-
gular path is driven, with 10 seconds spent on each1040

edge. The cost function values are scaled with the
minimum result. The same state and control grids
were applied as in the CP case, and the second-
order model with joint ranges, cylinder velocity and
acceleration limits were used. The closed-loop con-1045

trol performances in the simulations, in which the
LS pump’s time constant was set to 0.20 seconds
[29], were similar to the CP case.

The energy savings predicted by the simplified
model and closed-loop simulation are somewhat dif-1050

ferent compared to the CP case. The results im-
ply that the energy savings obtainable in an ac-
tual LS system are lower than predicted. Still, the
DP approach minimising the LS energy consumed
yielded the best solution. We kept this as our base-1055

line for comparison. The weighted pseudo-inverse
formulated in the actuator coordinates produces a
cost function value, which was almost 30% higher
than that of the best DP solution in the simula-
tions. The fmincon also produces a decent result,1060

particularly in the simulated case. The computa-
tional demand of the fmincon algorithm is notably
high. The pseudo-inverses produce inferior results,
because they are only point-wise optimal and do
not satisfy joint acceleration limits. The DP meth-1065

ods produce significantly better trajectories than
the point-wise methods considering the moderate
optimisation potential for the manipulator with one
redundant joint. The DP approach minimising the
CP energy consumed yields a cost which is reason-1070

ably close to the global optimum in the closed-loop
simulation. As before, the DIDO solver produces a
satisfactory trajectory, particularly for closed-loop
simulation.

The DP method which penalises positive actua-1075

tor work is nearly optimal even from the LS per-
spective. The numerical discrepancy in closed-loop
simulation is minor, but the desired trajectories dif-
fer, as shown in the cylinder velocity trajectories be-
low in Figs. 9a–9c. This discrepancy originates from1080

the LS pressure losses which arise from the require-
ment of highest actuator pressure at the pump level.
When these optimised joint trajectories are driven
in closed-loop and compared, some of the optimisa-
tion potential of the LS system is lost because of the1085

pump’s non-ideal pressure dynamics. As before, the
energy-saving potential decreased when the size of
triangular path was reduced because of the smaller
area covered.

The desired pump supply pressure (LS pressure)1090

based on the simplified model is shown in Fig. 9d
as the joints were driven through the optimal joint
trajectories. This figure illustrates what the LS
pressure would be with the other DP solutions for
a comparison. The LS optimal solution clearly1095

searches for a lower supply pressure than does the
CP optimal solution. The actuator energy optimal
solution also has a higher LS pressure demand in
general than did the LS solution. The maximum
actuator pressure at the pump in LS systems af-1100

fects the consumption of all the actuators, which is
why the LS solution must search for a path of lower
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Table 3: Load-sensing system: Comparison of optimal and sub-optimal approaches (With inertial and gravitational effects and
joint limits) based on energy savings predicted by the simplified model and closed-loop simulated full-scale model

Method (minimised cost) Simplified rel. cost function Full rel. cost function
DP (LS) 1.000 1.000

DIDO (LS) 1.087 1.012
DP (Pos. actuator) 1.109 1.027

fmincon (LS) 1.154 1.050
DP (CP) 1.201 1.083

DP (Act. velocity) 1.247 1.135
Act. p-inv. (Unweighted) 1.259 1.154
Act. p-inv. (Weighted) 1.413 1.293
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(b) Tilt cylinder velocity v2 (m/s) over time (s)

0 5 10 15 20 25 30

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

t [s]

v
3
 [
m

/s
]

(c) Ext. cylinder velocity v3 (m/s) over time (s)
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(d) Estimated LS pressure ps (MPa) over time (s)

Figure 9: LS optimal dynamic programming trajectory ( ), CP optimal dynamic programming trajectory ( ) and positive
actuator energy optimal dynamic programming trajectory ( )

pressure.

Figure 10 demonstrates the convergence proper-

ties of the dynamic programming algorithm in the1105

LS case. Compared to the CP case, the coarser
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state and control grids produce solutions that are
further from the global optimum. True global op-
timality requires a reasonably dense grid size. The
discretisation we used corresponds to the second to1110

last marker in Fig. 10.
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Figure 10: Convergence of the dynamic programming algo-
rithm in the load-sensing case; the scale for the x-axis is
logarithmic to improve readability, and the y-axis cost func-
tion value is scaled with the cost obtained using the densest
grid size

Changing the tilt cylinder size (joint 2) from
�80/45 − 0.545 to �80/56 − 0.545 increased the
LS energy required over the largest triangle tra-
jectory by almost 6%, even though the flow re-1115

quired by the actuators was reduced. A signifi-
cant increase in LS pressure explains this. Chang-
ing the extension cylinder size from �50/30− 1.04
to �45/30 − 1.04 was more favorable because the
pump flow was reduced while the highest actuator1120

pressure was mostly unaffected. The modification
in area decreased the LS energy required by 4%. It
is essential to note that while the extension cylin-
der pressure increased, the LS pressure for the most
part did not.1125

Finally, the simplified and the more complete
closed-loop simulation model are compared in
Figs. 11a–11b. The pump flow rate predictions of
the models are consistent, although fluid compress-
ibility was only included in the closed-loop simula-1130

tion model. The supply pressure predictions are un-
derstandably less consistent because approximately
1 MPa of the supply pressure offset is due to the
cylinder back-pressures omitted from the simplified
model. Pump pressure dynamics and closed-loop1135

control behaviour account for the remaining offset
seen in the supply pressure comparison.

7. Discussion

In the literature and research papers thus far, the
redundancy resolution problem has been resolved1140

at the actuator level. Our results have shown this
could be a suboptimal approach at the hydraulic
system level. Moreover, the hydraulic redundancy
resolution problem is a complex problem that can-
not necessarily be resolved to global optimality us-1145

ing standard direct optimisation tools. Our results
show that the local optimums obtained can be very
poor and are close to point-wise optimal trajecto-
ries at times.

Moreover, the energy saved, as demonstrated us-1150

ing the DP and DIDO approaches, can be very sig-
nificant (e.g. 30% compared to some point-wise op-
timal methods). These results demonstrate the re-
duction attainable in the energy consumption of a
typical hydraulic manipulator which has one redun-1155

dant joint. Therefore, the energy savings obtained
cannot be exceptionally high. The numerical ex-
amples presented here are formulated using real-
istic parameters, so the results can be considered
practically plausible. The extra reach by the exten-1160

sion cylinder in the numerical example was roughly
one meter, where as in some other applications the
reach may be over two meters. This could have
some significance when determining the optimisa-
tion potential in other similar manipulators.1165

Some simplifications have been made in the prob-
lem formulation to ease the computational burden:
(1) the ideal hydraulic fluid was assumed to be in-
compressible and (2) the pump dynamics were ne-
glected. The first assumption seems reasonable be-1170

cause the amount of compressed fluid delivered by
the pump should be relatively low compared to the
incompressed fluid leaving the pump. This observa-
tion was verified because energy savings predicted
by the simplified model had results comparable to1175

the closed-loop simulations in the CP case. The
second assumption means that we assumed that the
pump responds to the commanded supply pressure
within the discretised time interval of 0.05 seconds.
This simplification, which was made for computa-1180

tional convenience, affects the validity of the results
from a real manipulator because an actual pump
cannot respond this fast. Particularly, we saw that
including pump dynamics in a closed-loop simula-
tion of the optimum joint trajectories, some energy1185

saving potential in the LS case is lost. However,
the simplification could still be justified because it
decreases computational complexity. Moreover, the
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(b) CP case: Pump flow rate Qp (dm3/s) over time (s)

Figure 11: Model comparison: Simplified model used in optimisation ( ) and full model used in closed-loop simulations ( )

DP approach minimising the CP energy consumed,
formulated without the knowledge of manipulator1190

dynamics, was reasonably accurate in decreasing
the LS case cost.

In this study we assumed a separate meter-in and
separate meter-out valve configuration (SMISMO).
This SMISMO configuration could allow for ad-1195

ditional savings from differential connection uti-
lization, but we decided to omit valve level opti-
mization from this paper and focus on the redun-
dancy resolution through cylinder motion optimi-
sation that is the core of the paper. A differen-1200

tial connection to the hydraulic cylinder was thus
not utilised in the simulations. At the moment this
pump flow rate reducing connection has also not
been used in the real hydraulic manipulator, which
was the basis for the simulations. Cylinder back-1205

pressures were also omitted from the optimization
because the back-pressures could be regulated to a
minor 1 MPa value in the closed-loop simulations
using the SMISMO valve configuration. Further-
more, a fixed hydraulic pump efficiency was as-1210

sumed in the simulations. Considering a variable
pump efficiency could have influenced the simula-
tion results and changed the outcome of this study.

Our approach is intended for offline optimisation,
and the results are seen to motivate energy opti-1215

mal redundancy resolution at the hydraulic level in
future applications aiming to automate some con-
struction crane work cycles. When the automa-
tion comes to fruition, the optimal joint trajecto-
ries could computed beforehand and retrieved from1220

a database when needed. Online application of our

solution is not possible when the workspace trajec-
tory is unknown. To enable online application, one
would need to predict the future trajectory over
a short time horizon or design an improved point-1225

wise optimal approach: the pseudo-inverse one used
for comparison in this paper is clearly suboptimal.
We assume that a point-wise optimal solution with
appropriate adaptive weights could yield a satisfac-
tory result, but finding the weights would be diffi-1230

cult.

Cylinder optimisation has some significance be-
cause it can further improve the redundancy reso-
lution at the hydraulic level. In CP systems, this
cylinder optimisation is as simple as decreasing the1235

cylinder areas, which improves the energy savings
if the pump supply pressure does not need to be
boosted. In LS systems, we found the extension
cylinder area to be most often reducible without
increasing the LS pressure level, which leads to de-1240

creased LS energy requirement. However, on an LS
system, cylinder area optimisation has intricate ties
to the load mass and geometry of the manipulator.
The effect of varying load mass was not evaluated,
but it may be assumed that the load affects the1245

energy savings obtained via redundancy resolution.

In our work, we did not consider energy recu-
peration because the energy recuperation and hy-
brid systems linked to these cases are still in their
infancy on an application level. In addition, we1250

focused on traditional systems because the energy
optimisation at the hydraulic level had not yet been
studied. In view of systems with energy recupera-
tion, the pump flow rate cost function should be
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written, omitting time indices, as1255

Qp = q̇1rn1
(AA1 −AB1) + q̇2rn2

(AA2 −AB2)

+ q̇3(AA3 −AB3)
(37)

where rni denotes the torque arms, AAi denotes the
piston-side area of the cylinder and ABi is the rod-
side area. Minimizing this cost gives the flexibil-
ity to maximally tap into the returning flow from
the cylinder. For example, as cylinder one extends,1260

the returning flow from the meter-out side can be
used for simultaneously extending actuators. Mak-
ing full use of this in real-time would require a hard-
ware overhaul in conventional systems and possibly
a type of model predictive control. However, with1265

regard to the goal of automating some construction
crane work cycles, the globally optimal joint trajec-
tories could be computed beforehand with the of-
fline approach presented using Eq. (37) as the cost
function.1270

Although we focused on traditional hydraulic sys-
tems, the proposed hydraulic energy minimisation
strategy has practical relevance in some other hy-
draulic systems. For example, the flow rate deliv-
ered by the dedicated pumps in valveless systems1275

may be minimised using the analysed approach
to decrease the pumping effort. In addition, the
results naturally extend to some hydraulic trans-
former or multi-chamber cylinder systems operat-
ing on a single constant pressure source. For exam-1280

ple, these multi-chamber systems’ energy efficiency
is better compared to traditional systems because
the displaced cylinder area can be discretely con-
trolled to reduce the pressure losses over the control
valve. Using the efficient flow-reducing strategy,1285

the inputted hydraulic energy of the multi-chamber
system can be minimised effectively because ma-
nipulator dynamics are not required. However, the
minimised flow objective is complicated in this case
by the variety of choices for the cylinder areas in1290

the multi-chamber cylinders. Overall, these cases
imply that the flow-reducing optimal control pre-
sented should be practically relevant in future ap-
plications. Finally, the extension of the DP ap-
proach to non-planar manipulators with a redun-1295

dant extension joint and a base-rotating actuator is
possible in future work.

8. Conclusions

Because conventional methods can be insufficient
when it comes to resolving kinematic redundancy at1300

the hydraulic level, we proposed cost functions for-
mulated into an effective, globally optimal approach
to resolve the redundancy problem at the hydraulic
level. The popular load-sensing and constant-
pressure system architectures were treated. Due to1305

the complex problem formulation required at the
hydraulic level, the solutions obtained using partic-
ularly the point-wise optimal methods yielded sig-
nificantly poorer results compared with the global
approach, up to 15–30% greater energy use as seen1310

in numerical examples. Furthermore, we found that
a bootstrapped pseudospectral solution may pro-
duce practically comparable results to dynamic pro-
gramming in terms of hydraulic energy minimisa-
tion. The results obtained are relevant to the typi-1315

cal planar feedback-controlled hydraulic construc-
tion crane, whose redundancy is founded on the
prismatic reach function. However, extending the
results to typical non-planar cranes is possible. Fur-
thermore, we assumed a separate meter-in and sep-1320

arate meter-out valve configuration, which allowed
negligible cylinder back-pressures in the closed-loop
simulations presented. A differential connection to
the hydraulic cylinder was not considered and we
also assumed a fixed pump efficiency in the sim-1325

ulations. Considering a variable hydraulic pump
efficiency could have influenced the simulation re-
sults and changed the outcome of this study. A
variable pump efficiency, regular valve configura-
tion and differential connection are to be considered1330

in future work. Overall, the results obtained moti-
vate a need and provide an efficient way to optimise
the joint trajectories on prospective applications in
which frequently driven work cycles for hydraulic
construction cranes are automated.1335
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Appendix A. Parameters

Table A.1: Workspace and dynamics parameters of the ma-
nipulator

Parameter Value
L1 1.60 [m]
L2 1.562 [m]
ox -0.225 [m]
oy 0.957 [m]
r1 0.771 [m]
r2 0.663 [m]
r3 1.856 [m]
m1 80.11 [kg]
m2 33.93 [kg]
m3 570.19 [kg]

q1min : q1max -0.212 : 1.517 [rad]
q2min

: q2max
-2.545 : -0.321 [rad]

q3min
: q3max

0 : 1.04 [m]
vimax

: ∀i ∈
{

1, 2, 3
}

0.2 [m/s]
vimin

: ∀i ∈
{

1, 2, 3
}

-0.2 [m/s]
aimax : ∀i ∈

{
1, 2, 3

}
0.5

[
m/s2

]
aimin : ∀i ∈

{
1, 2, 3

}
-0.5

[
m/s2

]
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