Methylophilaceae and *Hyphomicrobium* as target taxonomic groups in monitoring the function of methanol-fed denitrification biofilters in municipal wastewater treatment plants

Antti J. Rissanen^{1, 2, *}, Anne Ojala^{3,4}, Tommi Fred⁵, Jyrki Toivonen⁶ & Marja Tiirola²

¹Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, FI-33101, Tampere, Finland
²Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, University of Jyväskylä, Finland
³Department of Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, University of Helsinki, Finland
⁴Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, University of Helsinki, Finland
⁵Helsinki Region Environmental Services Authority HSY, P.O. Box 100, FI-00066 HSY, Finland
⁶Salon Vesi, P.O. Box 77, FI-24101 Salo, Finland

*Corresponding author. email address: antti.rissanen@tut.fi tel. : +358 40 1981145 fax.: +358 3 3641392

Acknowledgements

We thank P. Lindholm, P. Lindell, L. Sundell, K. Murtonen, and M. Heinonen for technical assistance. We thank R. Kettunen for valuable comments on this manuscript. We also thank H. Devlin, B. Thamdrup, and S. Hallin for comments on the earlier version of this manuscript. This study was funded by Maa- ja Vesitekniikan Tuki ry for A.J.R and Academy of Finland (projects 286642 and 140964 to A.J.R and 260797 to M.T.) as well as European Research Council (ERC) Consolidator project 615146 to M.T.

1 Abstract

23	Molecular monitoring of bacterial communities can explain and predict the stability of
4	bioprocesses in varying physicochemical conditions. To study methanol-fed
5	denitrification biofilters of municipal wastewater treatment plants, bacterial
6	communities of two full-scale biofilters were compared through fingerprinting and
7	sequencing of the 16S rRNA genes. Additionally, 16S rRNA gene fingerprinting was
8	used for 10-week temporal monitoring of the bacterial community in one of the
9	biofilters. Combining the data with previous study results, the family Methylophilaceae
10	and genus Hyphomicrobium were determined as suitable target groups for monitoring.
11	An increase in the relative abundance of Hyphomicrobium-related biomarkers occurred
12	simultaneously with increases in water flow, NO_x^- load, and methanol addition, as well
13	as a higher denitrification rate, although the dominating biomarkers linked to
14	Methylophilaceae showed an opposite pattern. The results indicate that during increased
15	loading, stability of the bioprocess is maintained by selection of more efficient
16	denitrifier populations, and this progress can be analyzed using simple molecular
17	fingerprinting.
18	
19 20 21 22 23 24 25 26 27	Keywords Methanol · Denitrification · Biofilter · Hyphomicrobium · Methylophilaceae

- 28 Introduction
- 29

30 Denitrification is an essential biotechnological process in municipal wastewater 31 treatment plants (WWTPs) for reducing the nitrogen (N) load to recipient waters. This 32 step-wise reduction of water-soluble nitrate (NO_3^-) via nitrite (NO_2^-) to gaseous nitric 33 oxide (NO), nitrous oxide (N₂O), and di-nitrogen (N₂) is catalyzed by facultative 34 anaerobic heterotrophic bacteria. Denitrification is a community process, as many 35 denitrifiers perform only a portion of the reduction steps, reducing NO_3^- to NO_2^- or to 36 N₂O, and only some bacterial species are capable of the whole denitrification chain 37 from NO_3^- to N_2 gas [8]. Due to the unfavorably low carbon-to-nitrogen (C:N) ratio of 38 the water in many N removal systems, an additional organic C and energy source, 39 usually methanol, is used in the process. In WWTPs, methanol-fed denitrification is 40 often accomplished by filtration of the wastewater through a support material in 41 biofilters [17].

42 The physicochemical and technical aspects of the methanol-utilizing 43 denitrification processes have been comprehensively characterized [17, 20]. However, 44 the optimal control and operation of the processes would also benefit greatly from 45 microbiological data [22, 39], such as the identity and potential controlling factors of 46 the taxonomic groups crucial for the system function, which could be used in process 47 monitoring [22]. Methylotrophs play a key role in methanol-fed denitrification systems, 48 both by directly utilizing methanol as an electron donor in denitrification as well as by 49 transforming methanol into various organic extracellular compounds, which are utilized 50 by co-occurring non-methylotrophic denitrifiers [22]. Of the known methylotrophic 51 denitrifiers, the genus Hyphomicrobium (Alphaproteobateria) is frequently detected in 52 methanol-fed denitrification systems [2, 6, 21, 27-29, 35, 38] and is thus considered a 53 suitable target for monitoring methanol-fed denitrification [22]. In addition, bacteria

54 within family *Methylophilaceae* (*Betaproteobacteria*) [10, 29, 33, 36] as well as within

55 genera Methyloversatilis (Betaproteobacteria) [2] and Paracoccus

56 (Alphaproteobacteria) [6, 21, 27] can also play a significant role in the process.

57 However, most studies have been done at laboratory scale. Other than the studies of

58 Neef et al. [27] and Lemmer et al. [21], which found *Paracoccus* and *Hyphomicrobium*

59 to be important methylotrophs in a methanol-fed denitrifying sand filter of a WWTP,

60 very little is known about the overall bacterial dynamics or about the identity and

61 community dynamics of methylotrophic denitrifiers in full-scale biofilters. There are

62 ecological differences between methylotrophs and non-methylotrophs [21]. In addition,

63 the ecology of Hyphomicrobium differs from that of Methyloversatilis [2], Paracoccus

64 [21], and *Methylophilaceae* [10]. This indicates that methylotrophs and non-

65 methylotrophs as well as different taxonomic groups of methylotrophs respond

66 differently to the temporal and inter-system variations in the physicochemical

67 conditions confronted by the full-scale biofilters.

68 This study investigated the bacterial communities of two full-scale methanol-fed 69 denitrifying WWTP biofilters by length heterogeneity PCR (LH-PCR) [37] and clone 70 library and 454-pyrosequencing analysis of the 16S rRNA gene sequences. We 71 specifically focused on the taxonomic groups of the methylotrophic bacteria that 72 inhabited both of the biofilters as well as previously studied systems. In addition to 73 comparing the bacterial communities of the two biofilters, we analyzed the temporal 74 variation in the structure of the bacterial communities and linked it with the 75 physicochemical and functional data during a 10-week follow-up period in one of the 76 biofilters. We aimed to determine the following: 1) which methylotrophic taxonomic 77 groups are typical for methanol-fed denitrification systems and could thus be used as 78 target taxonomic groups for monitoring the process function in full-scale WWTP

biofilters; 2) whether variations in physicochemical conditions affect the bacterial
community structure; and 3) whether methylotrophs and non-methylotrophs as well as
4) different taxonomic groups of methylotrophs respond differently to these variations.

82

Materials and methods

83 84

Microbiological sampling

85
86 Samples were collected from the methanol-fed denitrification filters of two municipal
87 wastewater treatment plants: the Viikinmäki wastewater treatment plant in Helsinki,

88 Finland (WWTPA), and the Salo wastewater treatment plant in Salo, Finland

89 (WWTPB) (Table 1). WWTPA is a large plant with one of the largest denitrification

90 filter systems in the world, whereas WWTPB is a small-sized plant (Table 1).

91 Methanol-fed denitrification filters have been functioning since 2004 and 2007 in

92 WWTPA and WWTPB, respectively. In both sites, the denitrification is preceded by an

93 aerobic stage (activated sludge) where nitrification occurs. The samples from the

94 denitrification filter of WWTPA were collected from the same denitrification cell at 5 to

95 9 day intervals during a 10-week follow-up period (27 August 2008 – 28 October 2008).

96 The samples from the denitrification filter of WWTPB were collected once (2 October

97 2008). In addition, samples from the inflow of the denitrification systems were collected

98 once (from WWTPA 10 November 2008 and from WWTPB 2 October 2008).

99 The biofilter samples were taken from the backwash water channel.

100 Backwashing consists of air-sparging and washing, which detaches biomass from the

101 carrier material. Samples of the backwash water (1 sample per sampling date in

102 WWTPA, 2 replicate samples in WWTPB) and polystyrene carrier material beads

103 escaping from the WWTPB biofilter were collected into sterile 50 ml plastic containers.

104 Bacteria in the inflow of the systems were collected by filtering 100–200 ml water using

Sarstedt Filtropur S 0.2 polyethersulfone filters. The samples were stored at -20 °C
before further processing within 1 to 2 months.

107

108 Background data and NO_x⁻ reduction

109

110 Online monitoring data of the WWTPs were used as background data in this study. For

111 WWTPA, water flow (W_f), methanol addition rate (Met_f), inflow and outflow

112 concentrations of $NO_3^-+NO_2^-$ (henceforth $NO_{x in}$ and $NO_{x out}$, respectively) in the studied

113 denitrification cell, as well as inflow temperature (T) and inflow concentrations of O₂

114 (O_{2in}) , suspended solids (SS_{in}), PO₄³⁻ (PO₄³⁻in), total phosphorous (TP_{in}), and outflow

115 concentrations of SS (SS_{out}), PO_4^{3-} (PO_4^{3-} _{out}), and TP (TP_{out}) in the whole denitrification

116 system were measured hourly. Daily averages (for the time period 20 August 2008 – 31

117 October 2008) were then calculated. For WWTPB, daily averages (for the time period 1

118 September 2008 – 31 October 2008) for W_f and Met_f along with T, NO_x⁻in, PO₄³⁻in, SS_{in},

and O_{2in} and NO_{x} out, PO_4^{3} out, and SS_{out} were calculated for the whole denitrification

120 system. The NO_x⁻ load (μ mol s⁻¹) in the inflow ($_LNO_x$ ⁻ in) and outflow ($_LNO_x$ ⁻ out) water

121 was calculated from W_f and NO_x in or NO_x out. Denitrification in the filters was

122 calculated either as relative (%) or actual (μ mol s⁻¹) NO_x⁻ reduction as follows:

123
$$NO_{x} reduction = \frac{(NO_{x} in - NO_{x} out)}{NO_{x} in} \times 100$$

124
$$Actual NO_x$$
 $reduction = LNO_x$ in $-LNO_x$ out

125 Denitrification in this study refers to the conversion of water soluble NO_x^- into gaseous

126 forms, but the proportions of NO, N_2O , and N_2 in the end product are not separated.

127

128 Molecular microbiological analyses

130 DNA extraction of each sample – from 10 mg of freeze-dried backwash sample material 131 from WWTPA and WWTPB, from 5 frozen carrier beads from WWTPB (sample 132 WWTPB_Car), and from the Filtropur filters containing the inflow water samples – was 133 carried out as previously described [32]. 134 For the LH-PCR analysis, PCR was performed using the universal bacterial 135 primers F8 (5'-AGA GTT TGA TCM TGG CTC AG-3') (1:4 ird700-labelled) [41] and 136 PRUN518r (5'-ATT ACC GCG GCT GCT GG-3') [26], with a GeneAmp PCR system 137 9600 (Perkin Elmer), in previously described reaction mixtures [31]. For the PCR 138 reaction, the following program was used: an initial denaturation step at 95°C for 5 min, 139 30 cycles of amplification (94°C for 30 s, 53°C for 1 min, 72°C for 3 min), and final 140 elongation at 72°C for 15 min. The LH-PCR analysis was done as previously described 141 [31]. The relative area (%), that is, the relative abundance of each LH-PCR peak was 142 defined as a ratio of the total peak area (sum of the areas of all peaks) of the sample. 143 PCR for the clone library analyses of 16S rRNA was performed using the 144 universal bacterial primers 27F (5'- AGAGTTTGATCMTGGCTCAG - 3') [19] and 145 907R (5'- CCGTCAATTCMTTTGAGTTT - 3') [13], and cloning and sequencing 146 (Sanger sequencing) of the PCR amplicons was done as in Rissanen et al. [32]. For the 147 clone libraries, PCR products of the samples from WWTPA on all sampling dates 148 (WWTPA - library), PCR products of the replicate samples of backwash water 149 (WWTPB - library), and the carrier materials of WWTPB (WWTPB_Car - library) were 150 pooled separately. 151 The bacterial communities of WWTPA were also studied via 454-152 pyrosequencing. Equal amounts of nucleic acid extracts from each sampling date were 153 pooled before PCR reactions, and the PCR and sequencing was performed as previously

154 described [32].

156 Sequence analysis

- 157
- 158 The analysis of the clone library and 454-pyrosequencing library sequences was done as
- 159 previously described [32]. Putative methylotrophic operational taxonomic units (OTUs)
- 160 (97 % identity threshold) were determined based on the previous literature [1, 2, 5, 10,
- 161 18, 27, 34-35]. Clone library OTUs assigned to the methylotrophic families found from
- 162 both biofilters (Methylophilaceae and Hyphomicrobiaceae) were subjected to

163 phylogenetic tree analyses, as described previously [32]. In addition, phylogenetic

- 164 classification was linked to the LH-PCR peaks *in silico* using the length and
- 165 taxonomical data obtained in the clone library analysis.
- 166 16S rRNA gene sequences of the clone libraries were deposited into the EMBL
- 167 database (accession numbers KP098594 KP098735, KP098971 KP098975, and
- 168 KP098985 KP098988). The 454-pyrosequencing data were deposited into the NCBI
- 169 SRA database (SRX646346).
- 170

171 Statistical analyses

- 173 Bray–Curtis dissimilarities among the samples were calculated from the relative
- abundances of the LH-PCR peaks. Temporal variations in the structure of the bacterial
- 175 communities of WWTPA were then analyzed by non-metric multidimensional scaling
- 176 (NMS) of the LH-PCR peak data. Changes in the WWTPA community structures were
- 177 correlated with variations in the background parameters using Mantel's test. In addition,
- temporal variations in the relative abundances of the LH-PCR peaks affiliated with
- 179 methylotrophs and non-methylotrophs were correlated with variations in the
- 180 background parameters using either Pearson correlation analysis (for normally
- 181 distributed variables, normality tested using the Shapiro–Wilk test) or Spearman's

182	correlation analysis (for non-normally distributed variables). For background
183	parameters, the average daily values for the time period between the two samplings was
184	used in the correlation analyses. Temporal and inter-system variations in the community
185	structures were also analyzed by hierarchical clustering (UPGMA linkage) using the
186	LH-PCR data. The NMS analysis and Mantel's test were performed in PC-ORD 6.0
187	[24], and cluster analysis was done using PAST version 3.09 [11]. The correlation
188	analyses were performed in PASW 18.0 (PASW Statistics 18, Release Version 18.0.0,
189	SPSS, Inc., 2009, Chicago).

190 **Results**

191

192 193

Performance of the denitrification biofilters

As is typical for WWTPs in Northern countries in autumn, W_f increased and T

decreased during the study period in both filter systems (Fig. 1, Online Resource 1).

196 NO_{x⁻in} and O_{2in} were generally higher and more variable in WWTPB (NO_{x⁻in}: 700 –

197 2900 μ mol/L; O_{2in}: 1 to 215 μ mol/L) than in WWTPA (NO_{x in}: 500 – 1000 μ mol/L;

198 O_{2in} : 40 - 110 μ mol/L). In addition, $NO_{x in}$ decreased in WWTPB and O_{2in} in WWTPA

during the study period (Fig. 1, Online Resource 1). The higher NO_{x in} in WWTPB

200 compared to WWTPA could be due to possible differences in the total N concentrations

201 feeding the WWTPs, the nitrification efficiency between WWTPA and WWTPB, or the

202 lack of a pre-denitrification system in WWTPB (Table 1). In the filters, Met_f is

203 controlled by a feedback loop that controls the NO₃-N concentration inside the filter

204 cells [7]. As a result, Met_f followed $_{L}NO_{x in}$ tightly, and they both controlled the actual

205 NO_x⁻ reduction rate (µmol/s) in the systems (Fig. 1, Online Resource 1). This kept the

206 C:N ratio in the inflow (Met_{f:L}NO_{x inflow} ratio), as well as the relative NO_x reduction

- and the NO_{x⁻out} concentration, relatively stable in both systems. However, the relative
- 208 NO_x⁻ reduction and NO_x⁻ out concentration were higher and lower, respectively, and

209	temporally more stable, and $Met_f: NO_x inflow$ was lower in WWTPA ($Met_f: NO_x inflow$
210	ratio: 0.90–1.13; relative NO _x ⁻ reduction: 82–93 %; NO _x ⁻ _{out} : 66–99 μ mol/L) than in
211	WWTPB (Met _f : _L NO _{x⁻inflow} ratio: 0.98–1.18; relative NO _{x⁻} reduction: 64–90 %; NO _{x⁻out} :
212	128–870 μ mol/L, when the exceptional values of 25 October were excluded) (Fig. 1,
213	Online Resource 1). When estimated per carrier volume, the load of NO_x^- , O_2 and
214	methanol feeding as well as the actual NO_x^- reduction rate were on average lower in
215	WWTPA (NO _x ⁻ : 570 μ mol/m ³ /s; O ₂ : 50 μ mol/m ³ /s; methanol: 590 μ mol/m ³ /s; actual
216	NO_x^- reduction: 510 μ mol/m ³ /s) than in WWTPB (NO_x^- : 890 μ mol/m ³ /s; O ₂ : 60
217	μ mol/m ³ /s; methanol: 930 μ mol/m ³ /s; actual NO _x ⁻ reduction: 730 μ mol/m ³ /s). The
218	higher O ₂ load increases the requirement for electron donors for O ₂ reduction (to allow
219	anaerobic conditions for denitrification), which explains the higher Metf: $_LNO_x$ -inflow
220	ratio in WWTPB than in WWTPA. Furthermore, the average surface load was higher
221	and the average hydraulic retention time (HRT) lower in the biofilter of WWTPA
222	(Table 1).
222 223 224 225	(Table 1). Differences in the bacterial community structures between the biofilters
223 224	
223 224 225	Differences in the bacterial community structures between the biofilters
223 224 225 226	Differences in the bacterial community structures between the biofilters Based on the UPGMA clustering of the LH-PCR data, conditions within the biofilters
223 224 225 226 227	Differences in the bacterial community structures between the biofilters Based on the UPGMA clustering of the LH-PCR data, conditions within the biofilters shaped the original bacterial communities (communities of the inflow water) in both
223 224 225 226 227 228	Differences in the bacterial community structures between the biofilters Based on the UPGMA clustering of the LH-PCR data, conditions within the biofilters shaped the original bacterial communities (communities of the inflow water) in both WWTPA and WWTPB (Online Resource 2 & 3). The bacterial communities of the
223 224 225 226 227 228 229	Differences in the bacterial community structures between the biofilters Based on the UPGMA clustering of the LH-PCR data, conditions within the biofilters shaped the original bacterial communities (communities of the inflow water) in both WWTPA and WWTPB (Online Resource 2 & 3). The bacterial communities of the WWTPA and WWTPB samples clustered separately (Table 2, Online Resource 2 & 3),
223 224 225 226 227 228 229 230	Differences in the bacterial community structures between the biofilters Based on the UPGMA clustering of the LH-PCR data, conditions within the biofilters shaped the original bacterial communities (communities of the inflow water) in both WWTPA and WWTPB (Online Resource 2 & 3). The bacterial communities of the WWTPA and WWTPB samples clustered separately (Table 2, Online Resource 2 & 3), except for the carrier material of WWTPB, which more resembled the backwash water
223 224 225 226 227 228 229 230 231	Differences in the bacterial community structures between the biofilters Based on the UPGMA clustering of the LH-PCR data, conditions within the biofilters shaped the original bacterial communities (communities of the inflow water) in both WWTPA and WWTPB (Online Resource 2 & 3). The bacterial communities of the WWTPA and WWTPB samples clustered separately (Table 2, Online Resource 2 & 3), except for the carrier material of WWTPB, which more resembled the backwash water of WWTPA than that of WWTPB (Table 2, Online Resource 2).

235 (Table 2). Methylophilaceae and Hyphomicrobiaceae were the dominant 236 methylotrophic families that were found in both biofilters, whereas Paracoccus 237 (Rhodobacteraceae) and Methyloversatilis (Rhodocyclaceae) were found only in 238 WWTPB (Table 2, Figs. 2-3). According to the clone library analyses, 239 Hyphomicrobiaceae had a much higher relative abundance in WWTPA than in 240 WWTPB, whereas the opposite was observed for *Methylophilaceae* (Table 2). In 241 contrast to the backwash sample, the carrier material of WWTPB did not harbor 242 Paracoccus or Methyloversatilis but rather Bradyrhizobium. The carrier material of 243 WWTPB also had a higher and lower relative abundance of Hyphomicrobiacea and 244 Methylophilacea, respectively, than the backwash material of WWTPB (Table 2). 245 Hyphomicrobiaceae was represented by only 2 OTUs in the clone libraries. 246 These OTUs belonged to Hyphomicrobium cluster II [30] (Table 2, Fig. 2). OTU 16 was 247 shared between WWTPA and WWTPB. The other OTU, OTU 22, likely representing a 248 different Hyphomicrobium species, was only found in the carrier material of WWTPB 249 (Fig. 2), where it was more abundant than OTU 16. 454-pyrosequencing had a lower 250 resolution for detecting *Hyphomicrobiaceae* than the clone library analysis (Table 2), but it showed 7 Hyphomicrobiaceae OTUs in WWTPA, of which the dominant one, 251 252 harboring almost all (91 %) of the Hyphomicrobiaceae sequences in the 454-253 pyrosequencing library, was identical to OTU 16 in the clone library (Fig. 2). 254 Bacteria within Methylophilaceae, consisting of 10 OTUs, were divided into four 255 groups (Table 2, Fig. 3). Three of the groups, that is, clusters Met I, Methylotenera I, 256 and Methylotenera II (clustering according to this study), included 8 OTUs covering the 257 majority of the observed Methylophilaceae sequences (Table 2, Fig. 3). Methylotenera I 258 and Methylotenera II were closely related to the cultured members of the genus 259 Methylotenera (Fig. 3), while the Met I cluster probably represented a novel species of

260	Methylotenera with no cultured representatives so far. The fourth group included two
261	rare OTUs that were not closely affiliated to known Methylophilaceae genera (Table 2,
262	Fig. 3). Strikingly, despite the high relative abundance of Methylophilaceae, the
263	backwash material of WWTPB had only one Methylophilaceae OTU, and it belonged to
264	cluster Met I (Fig. 3). Cluster Met I was also the most abundant group of
265	Methylophilacea in the carrier material of WWTPB, whereas it was absent in WWTPA
266	(Table 2, Fig. 3). In contrast, clusters Methylotenera I and II were found in the
267	backwash material of WWTPA and also in the carrier material of WWTPB (Table 2,
268	Fig. 3). Methylotenera I was much more abundant than Methylotenera II in WWTPA,
269	but it was only slightly less abundant than Methylotenera II in the carrier material of
270	WWTPB (Table 2). 454-pyrosequencing found 6 Methylophilaceae OTUs in WWTPA,
271	of which the dominant OTU, harboring almost all (99 %) of the Methylophilaceae
272	sequences in the 454-pyrosequncing library, was identical to Methylotenera OTU 6
273	(within cluster Methylotenera I) in the clone library analyses (Fig. 3). Furthermore, 454-
274	pyrosequencing of 16S rRNA gene amplicons revealed a marginal abundance (≤ 1 % of
275	16S rRNA sequences) of the following putative methylotrophs: Methylocystaceae,
276	Methylococcaceae, Acinetobacter, and Flavobacterium in WWTPA (Table 2). 454-
277	pyrosequencing also resulted in a higher proportion of unclassified bacterial sequences
278	than the clone library analysis (Table 2).
279	The abundant non-methylotrophic bacterial groups (\geq 5 % of 16S rRNA
280	sequences in any of the libraries) included Acidobacteria, Actinobacteria, Bacteroidetes
281	(other than Flavobacterium), Chloroflexi, Comamonadaceae, Deltaproteobacteria,
282	Planctomycetes, and Rhodocyclaceae (other than Methyloversatilis) (Table 2).
283 284 285	Temporal variation in the bacterial community in the WWTPA biofilter

The bacterial community structure changed over time (non-metric multidimensional scaling analysis, Fig. 1), along with a temporal change in several operational parameters (Fig. 1). The fluctuations in the community structure were correlated with variations in W_f (Mantel's test, r = 0.36, p < 0.05, n = 10), $_LNO_x^{-}in$ (r = 0.61, p < 0.05, n = 10), Met_f (r= 0.55, p < 0.05, n = 10), and T (r = 0.59, p < 0.05, n = 10). In addition, the community structure correlated with the actual NO_x^{-} reduction rate (r = 0.62, p < 0.05).

292 To study the variation of the methylotrophic taxa in WWTPA, the phylogenetic 293 classification was linked to the LH-PCR peaks in silico using the length and taxonomic 294 data obtained from the clone library analyses (Online Resource 3). All the clone library 295 sequences with a size of 466 bp in the area amplifiable by LH-PCR primers belonged to 296 OTU 16 within the Hyphomicrobium II cluster, and all the sequences of genus 297 Hyphomicrobium had the size of this peak (see Fig. 2). The sequences assigned to 298 Methylophilaceae were found only within peaks 521 bp and 524 bp, and they dominated 299 only within peak 521 bp (73 %), which was also the largest peak in the LH-PCR profiles of WWTPA (Online Resource 3). Peak 521 bp consisted mostly of OTU 6 300 301 within the Methylotenera I cluster (67 %) and for the smaller part of the unclassified 302 Methylophilaceae OTU 137 (6 %) (see Fig. 3), Burkholderiales (13 %), Rhodocyclales 303 (7%, not Methyloversatilis), and Bacteroidetes (7%, not Flavobacterium). Thus, LH-304 PCR peaks 466 bp and 521 bp were chosen as biomarkers of Hyphomicrobium and 305 Methylophilaceae, respectively. Furthermore, the sum of LH-PCR peaks 466 bp and 306 521 bp were used as a general biomarker for methylotrophs, whereas the sum of all 307 peaks excluding methylotrophic peaks 466 bp, 521 bp, and 524 bp (see above) were 308 used as a biomarker for non-methylotrophs. 309 During the study period, there was a negative correlation between the relative

abundances of *Hyphomicrobium* and *Methylophilaceae* (r = -0.91, p < 0.001) (Fig. 4).

- 311 The relative abundance of *Hyphomicrobium* increased as Met_f , W_f , and LNO_x in
- 312 increased (Met_f: r = 0.74, p < 0.05; W_f , $\rho = 0.67$, p < 0.05; LNO_x in, r = 0.80, p < 0.05, n
- 313 = 10 (Figs. 1 & 4), while the opposite took place with *Methylophilaceae* (Met_f: r = -
- 314 0.74, p < 0.05; W_f, ρ = -0.66, p < 0.05; LNO_{x in}, r = -0.77, p < 0.05, n = 10). The relative
- abundance of *Methylophilaceae* also increased as T increased (r = 0.67, p < 0.05, n =
- 316 10), while there was no correlation between T and *Hyphomicrobium* (r = -0.62, p =
- 0.06, n = 10) (Fig. 4). The relative abundance of total methylotrophs decreased as Met_f
- 318 and $_{L}NO_{x in}$ increased (Met_f: r = -0.73, p < 0.05; $_{L}NO_{x in}$, r = -0.77, p < 0.05, n = 10) and
- 319 T decreased (r = 0.67, p < 0.05), while the opposite took place with non-methylotrophs
- 320 (Met_f: r = 0.79, p < 0.05; $_{L}NO_{x in}$: r = 0.80, p < 0.05; T: r = -0.72, p < 0.05, n = 10) (Fig.
- 4). An increase in the relative abundance of *Hyphomicrobium* (r = 0.77, p < 0.05, n = 0.05
- 322 10) and non-methylotrophs (r = 0.80, p < 0.05, n = 10) and a decrease in
- 323 *Methylophilaceae* (r = -0.77, p < 0.05, n = 10) and total methylotrophs (r = -0.76, p < -0.76
- 324 0.05, n = 10) also occurred with the increase in the actual NO_x^- reduction rate (Figs. 1 & 325 4).

327 Discussion

328 Bacteria belonging to genus *Hyphomicrobium* inhabited both WWTP biofilters. This

329 agrees with the results from many previous studies [e.g. 2, 27, 29] indicating that

330 bacteria in *Hyphomicrobium* are crucial for the function of methanol-utilizing

denitrification processes. Moreover, this further confirms that *Hyphomicrobium* is a

332 suitable target genus for monitoring denitrification in full-scale methanol-fed WWTP

biofilters [23].

334 *Methylophilaceae* were also important components of the bacterial communities 335 in both biofilters, which is in accordance with results from laboratory-scale methanol336 fed denitrification systems [10, 29, 36]. In addition, Methylophilaceae were abundant in 337 pilot-scale activated sludge reactors during a period of high nitrate and methanol 338 concentration [12] and in a full-scale, methanol-fed, activated sludge plant [33]. Since 339 the first indication of the methylotrophic denitrification capability of *Methylophilaceae* 340 was shown in 2004 [10], Methylophilaceae were not even targeted (Methylophilaceae-341 specific fluorescence *in situ* hybridized [FISH] probes were not used) in a previous 342 study of a full-scale WWTP biofilter (a sand filter) [21, 27]. However, the addition of 343 methanol led to enrichment of *Betaproteobacteria* in the biofilter [27], and it can be 344 suggested that this was at least partially due to the growth of *Methylophilaceae*. 345 Together, these results suggest that, besides *Hyphomicrobium*, bacteria belonging to 346 Methylophilaceae are crucial for the function of methanol-utilizing denitrification processes. Furthermore, the results from the WWTPA and WWTPB biofilters and 347 348 methanol-affected activated sludge systems [12, 33] indicate that, of the family 349 Methylophilaceae, the bacteria belonging to genus Methylotenera, which includes 350 species that couple methylotrophs to denitrification [16], can be important components 351 of methanol-fed denitrification systems. In addition, many yet uncultivated species of 352 Methylotenera probably also exist, as exemplified by the abundant Cluster Met I 353 detected in WWTPB. However, Methylobacillus [29, 36] and Methylophilus [29] as 354 well as another, thus far uncultivated Methylophilaceae genus [10] (Fig. 3) were 355 determined to be the primary methanol-consuming Methylophilaceae in previous 356 laboratory-scale studies of methanol-utilizing denitrification. Thus, Methylophilaceae 357 can be used as a target family for monitoring denitrification in full-scale methanol-fed 358 WWTP biofilters, although there can be variation in the genera and species mediating 359 the process between different systems.

360 The considerable differences between the bacterial communities within the 361 biofilters and in the water feeding the biofilters indicate that prevailing physicochemical 362 conditions are very strong determinants of the bacterial community structure inside the 363 biofilters. A change in the primary C source from multicarbon sources (present in the 364 feed water) to methanol can exert an especially strong structuring force on the bacterial 365 communities [36]. We suggest that differences in the biofilter communities between 366 WWTPA and WWTPB are mostly due to variations in physicochemical conditions, but 367 the effect of variations in the original inocula (bacteria from preceding activated sludge 368 stage) cannot be completely ruled out.

369 Many possible physicochemical factors might have affected the differences 370 between the filters. The higher abundance of methylotrophs in WWTPB than in 371 WWTPA could be explained by the higher availability of methanol (higher $Met_{f:I}NO_x^{-1}$ 372 inflow and higher Metf estimated per carrier volume). As a higher O₂ load caused the 373 higher Met_{f:L}NO_{x inflow} in WWTPB, the higher abundance of methylotrophs could be 374 due to a higher contribution of aerobic methylotrophs and methylotrophs performing 375 aerobic denitrification in WWTPB. Analogous to aerobic methane oxidation coupled 376 with denitrification (AME-D) [43], these methylotrophs could have contributed to the 377 overall denitrification performance by consuming O_2 and by converting methanol to 378 substrates utilizable by non-methylotrophic denitrifiers. However, higher HRT and 379 lower surface load, which act through decreasing the input of bacteria (mostly non-380 methylotrophic) from the preceding activated sludge stage and through lowering the 381 physical force exerted on the carrier material, might have also favored the growth and 382 development of methylotrophs over non-methylotrophs in WWTPB. 383 Capable of aerobic denitrification, *Paracoccus* tolerates O₂ better than

384 Hyphomicrobium, which thrive in anoxic conditions, and thus Paracoccus were favored

385 in the surface zones of the biofilm in a previously studied full-scale biofilter (a sand 386 filter) [21]. This is in accordance with our results on the higher and lower relative 387 abundance of Paracoccus and Hyphomicrobium, respectively, in the sheared biomass of 388 the backwash water (representing more aerobic surface biofilm) than in the carrier 389 material (representing deeper anoxic biofilm) in WWTPB. Similarly, the lower O₂ load 390 (as expressed per carrier volume) could explain the higher abundance of 391 Hyphomicrobium and the absence of Paracoccus in WWTPA. Since some 392 Methylotenera strains are aerobic [3, 14] or perform aerobic denitrification [25], the 393 higher abundance of Methylophilaceae in the sheared biomass than in the carrier 394 material could also be due to differences in O₂ availability. However, it could also be 395 due to differences in NO_x^- and methanol availability, which is expected to be higher in 396 the biofilm surface. The results indicate that Cluster Met I, which was the sole 397 Methylophilaceae group in the sheared biomass of WWTPB, was especially favored by 398 the higher availability of O_2 , NO_x^- , and/or methanol. Therefore, the lower O_2 , NO_x^- , and 399 methanol load (as expressed per carrier volume) could both explain the lower 400 abundance of Methylophilacea and the absence of Cluster Met I in WWTPA. However, 401 as discussed below for the temporal variation in the bacterial community in WWTPA, 402 the lower abundance of *Methylophilacea* and higher abundance of *Hyphomicrobium* in 403 WWTPA could also be due to a lower HRT and higher surface load, which could favor 404 Hyphomicrobium over Methylophilacea. In addition, as there are variations in the 405 response of different *Hyphomicrobium* species to varying NO₃⁻ [23], the differential 406 distribution of the two Hyphomicrobium species (OTUs) between the sheared biomass 407 and carrier material in WWTPB was probably due to the decreased availability of NO_3^{-1} 408 deeper in the biofilm. Finally, *Methyloversatilis* and *Paracoccus* gain an ecological 409 advantage by shifting between using C1-carbon and multicarbon substrates [2, 4, 34].

Their presence in WWTPB but not in WWTPA might also reflect higher temporal
variation in the availability of methanol or higher and temporally more variable
availability of other C sources (present in feed water or produced from methanol) in
WWTPB.

414 In accordance with the results from the comparison of the biofilters, many 415 possible physicochemical factors might have affected the temporal variation in the 416 bacterial community structure within the WWTPA biofilter. The overall bacterial 417 community structure changed due to variations in the availability of electron acceptors 418 (NO_x⁻) and donors (methanol) as well as in temperature, which has also previously been 419 shown to affect denitrifying communities [9, 40]. In addition, changes in the water flow, 420 which act through changing the HRT and surface load, possibly affected the community 421 structure. However, due to the covariation among these factors (Fig. 1) and the 422 relatively small sample size, it is impossible to specify the effects of each variable. In 423 contrast to explaining differences between the biofilters, the availability of O₂ (the O₂ 424 concentration and the O_2 flow [µmol s⁻¹] [data not shown]) did not affect the temporal 425 variation in the community structure in WWTPA.

426 Assigning taxonomies to the LH-PCR peaks allowed for analysis of the 427 relationship between the physicochemical factors and bacterial communities at the level 428 of major functional and methylotrophic groups. Methylotrophs and non-methylotrophs 429 as well as the key methylotrophic groups, *Methylophilaceae* and *Hyphomicrobium*, 430 responded differently to variations in the physicochemical factors. Since the bulk of 431 methylotrophs consisted of Methylophilacea in every sampling occasion, the variation 432 in the relative abundance of methylotrophs tightly followed that of *Methylophilaceae*. 433 The decrease in Methylophilaceae (and total methylotrophs) and increase in 434 *Hyphomicrobium* and non-methylotrophs with increasing NO_x⁻ and methanol loads

435 contrasts with the above comparison between WWTPA and WWTPB. This discrepancy 436 could be due to the dominant Methylophilaceae group in WWTPA, Methylotenera I, 437 having a slower growth rate and a lesser response to increases in NO_x^- and methanol 438 than the dominant group in WWTPB, Cluster Met I. However, differences in the water 439 flow acting through changes in the HRT and surface load provide a more unifying 440 explanation for the community variations both between the biofilters and within 441 WWTPA. With an increased water flow (lowered HRT and increased surface load), the 442 input of non-methylotrophic bacteria from the preceding activated sludge stage was 443 increased, which could have lowered the relative abundance of Methylophilaceae (and 444 total methylotrophs). Furthermore, increased physical disturbance due to increased 445 water flow could have caused the selective removal of Methylophilaceae, which would 446 further contribute to the decrease in methylotrophs as well as to the increase in 447 Hyphomicrobium. Prosthecae and buds of Hyphomicrobium [42] might have provided 448 firmer attachment to the carrier material than the flagellum and 'prostheca-like' 449 structures of Methylotenera [15]. In addition, decreased temperature could have 450 decreased the growth rate of *Methylophilaceae* (and total methylotrophs), which could 451 have also contributed to the observed community variations. 452 Physicochemical factors can control microbial process rates both directly by

affecting the short-term cell function and indirectly by affecting the microbial community structure in the longer term [40]. The correlation between the community structure and function (actual NO_x^- reduction rate) in the WWTPA biofilter suggests that physicochemical factors controlled the denitrification rate of the biofilter indirectly by modifying the community composition. However, this study cannot rule out the importance of direct control of physicochemical factors on cell function. The decrease in *Methylophilaceae* and total methylotrophs and increase in *Hyphomicrobium* and non-

460 methylotrophs with an increasing actual NO_x^- reduction rate is surprising and contrasts 461 with the results from a laboratory reactor in which the relative abundance of 462 Methylophilaceae increased and that of Hyphomicrobium did not change with 463 increasing denitrification rate [10]. However, this discrepancy is probably due to 464 differing expressions of the process rate, expressed as per biofilter or per volume of 465 carrier material in our study and as per mass of biomass (mixed liquor volatile 466 suspended solids [MLVSS]) in Ginige et al. [10]. Unfortunately, MLVSS was not 467 analyzed in this study. However, the higher actual NO_x^{-1} reduction rate with an 468 increasing relative abundance of non-methylotrophs suggests that non-methylotrophs 469 can efficiently support the N removal of methanol-fed denitrification systems, 470 especially during periods of high N load. In those conditions, methylotrophs might have 471 increasingly allocated more of the methanol C into extracellular substances than into 472 biomass and thus supported the activity of non-methylotrophs.

473

474 Conclusions

475 Combining the results of the two WWTP biofilters with those of previous studies 476 confirms that bacteria in genus Hyphomicrobium and family Methylophilaceae are 477 crucial components of methanol-utilizing denitrification. Thus, Hyphomicrobium and 478 Methylophilaceae can be used as target taxonomic groups to monitor the function of 479 full-scale methanol-fed denitrification biofilters of WWTPs. Although Methylotenera 480 was the major *Methylophilaceae* genus in the studied WWTP biofilters, other genera 481 (Methylophilus and Methylobacillus) may be more important in other systems. There 482 were differences in the bacterial communities between the biofilters. In addition, 10-483 week monitoring of one of the biofilters showed temporal variation in the bacterial 484 community. Variation in the loads of NO_x^- and O_2 as well as in the methanol addition

485	rate, water flow rate (acting through changing HRT and surface load), and temperature
486	were all potential candidates affecting the structure of the bacterial communities.
487	Methylotrophs and non-methylotrophs as well as Hyphomicrobium and
488	Methylophilaceae responded differently to these variations. Furthermore, the correlation
489	of the bacterial community structure with the process function (actual NO_x^- reduction
490	rate) in the temporally monitored biofilter indicates that fluctuating physicochemical
491	conditions affected the denitrification rate indirectly by affecting the community
492	composition. Further temporal monitoring and/or experimental studies combined with
493	modern sophisticated culture-independent (stable isotope probing of DNA/RNA,
494	metatranscriptomics, metagenomics) as well as culture-dependent (high-throughput
495	culturing) techniques are needed to resolve the exact mechanisms underlying the
496	observed relationship among the physicochemical factors, bacterial communities
497	(methylotrophs, non-methylotrophs, Hyphomicrobium, and Methylophilaceae), and
498	process function.
499	
500	
501	
502 503	

Conflict of interest The authors declare that they have no conflict of interest.

505	Refer	rences
506		
507	1.	Bamforth CW, Quayle JR (1978) Aerobic and anaerobic growth of Paracoccus
508		denitrificans on methanol. Arch Microbiol 119:91-97
509	2.	Baytshtok V, Lu H, Park H, Kim S, Yu R, Khandran K (2009) Impact of varying
510		electron donors on the molecular microbial ecology and biokinetics of
511		methylotrophic denitrifying bacteria. Biotechnol Bioeng 102:1527-1536
512	3.	Beck DAC, McTaggart TL, Setboonsarng U, Vorobev A, Kalyuzhnaya MG,
513		Ivanova N, Goodwin L, Woyke T, Lidstrom ME, Chistoserdova L (2014) The
514		expanded diversity of Methylophilaceae from Lake Washington through
515		cultivation and genomic sequencing of novel ecotypes. PLoS ONE 9:e102458
516	4.	Blaszczyk M (1993) Effect of medium composition on the denitrification of
517		nitrate by Paracoccus denitrificans. Appl Environ Microbiol 59:3951-3953
518	5.	Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world
519		of methylotrophic organisms. Annu Rev Microbiol 63:477-499
520	6.	Claus G, Kutzner HJ (1985) Denitrification of nitrate and nitric acid with
521		methanol as carbon source. Appl Microbiol Biotechnol 22:378-381
522	7.	Corona F, Mulas M, Haimi H, Sundell L, Heinonen M, Vahala R (2013)
523		Monitoring nitrate concentrations in the denitrifying post-filtration unit of a
524		municipal wastewater treatment plant. J Process Contr 23:158-170
525	8.	Gentile ME, Nyman JL, Criddle CS (2007) Correlation of patterns of
526		denitrification instability in replicated bioreactor communities with shifts in the
527		relative abundance and the denitrification patterns of specific populations. ISME
528		J. 1:714-728
529	9.	Gentile M, Yan T, Tiquia SM, Fields MW, Nyman J, Zhou J, Criddle CS (2006)
530		Stability in a denitrifying fluidized bed reactor. Microb Ecol 52:311-321
531	10	. Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL (2004) Use
532		of stable isotope-probing, full-cycle rRNA analysis, and fluorescence in situ
533		hybridization-microautoradiography to study a methanol-fed denitrifying
534		microbial community. Appl Environ Microbiol 70:588-596
535	11	Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics
536		software package for education and data analysis. Palaeontol Electron 4(1):9pp
537	12	Isazadeh S, Ozcer PO, Frigon D (2014) Microbial community structure of
538		wastewater treatment subjected to high mortality rate due to ozonation of return
539	10	activated sludge. J Appl Microbiol 117:587-596
540	13	. Johnson JL (1994) Similarity analysis of DNAs. In: Gerhardt P, Murray RGE,
541 542		Wood WA, Krieg NR (eds.) Methods for general and molecular bacteriology.
542	1.4	American Society for Microbiology, Washington, DC, pp 655–682
543	14	. Kalyuzhnaya MG, Beck DA, Vorobev A, Smalley N, Kunkel DD, Lidstrom ME,
544		Chistoserdova L (2012) Novel methylotrophic isolates from lake sediment,
545		description of <i>Methylotenera versatilis</i> sp. nov. and emended description of the
546	1 7	genus Methylotenera. Int J Syst Evol Micr 62:106-111 Kalanaharan MC, Banaman S, Lans JC, Lidataan ME, Chistopandana L (2006)
547 549	15	. Kalyuzhnaya MG, Boverman S, Lara JC, Lidstrom ME, Chistoserdova L (2006)
548		<i>Methylotenera mobilis</i> gen. nov., sp. nov., an obligately methylamine-utilizing
549	1.0	bacterium within the family <i>Methylophilaceae</i> . Int J Syst Evol Micr 56:2819-2823
550	16	. Kalyuzhnaya MG, Martens-Habbena W, Wang T, Hackett M, Stolyar SM, Stahl
551 552		DA, Lidstrom ME, Chistoserdova L (2009) <i>Methylophilaceae</i> link methanol ovidation to denirification in freshwater lake acdiment as suggested by stehle
552 553		oxidation to denitrification in freshwater lake sediment as suggested by stable
553		isotope probing and pure culture analysis. Environ Microbiol Reports 1:385-392

554	17.	Koch G, Siegrist H (1997) Denitrification with methanol in tertiary filtration.
555	10	Water Res 31:3029-3038
556 557	18.	Kolb S (2009) Aerobic methanol-oxidizing <i>Bacteria</i> in soil. FEMS Microbiol Lett 300:1-10
558	19.	Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M
559		(eds.) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–
560		175
561	20.	Lemmer H, Zaglauer A, Metzner G (1997) Denitrification in a methanol-fed
562		fixed-bed reactor. Part 1: Physico-chemical and biological characterization. Water
563		Res 31:1897-1902
564	21.	Lemmer H, Zaglauer A, Neef A, Meier H, Amann R (1997) Denitrification in a
565		methanol-fed fixed-bed reactor. Part 2: Composition and ecology of the bacterial
566		community in the biofilms. Water Res 31:1903-1908
567	22.	Lu H, Chandran K, Stensel D (2014) Microbial ecology of denitrification in
568		biological wastewater treatment. Water Res 64:237-254
569	23.	Martineau C, Mauffrey F, Villemur R (2015) Comparative analysis of denitrifying
570		activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans and
571		Hyphomicrobium zavarzinii. Appl Environ Microbiol 81:5003-5014
572	24.	McCune B, Mefford MJ (2011) PC-ORD. Multivariate Analysis of Ecological
573		Data. Version 6. MjM Software, Gleneden Beach, Oregon, USA
574	25.	Mustakhimov I, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2013)
575		Insights into denitrification in Methylotenera mobilis from denitrification
576		pathway and methanol metabolism mutants. J Bacteriol 195:2207-2211
577	26.	Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial
578		populations by denaturating gel electrophoresis of polymerase chain reaction
579		amplified genes coding for 16S ribosomal RNA. Appl Environ Microbiol 59:695–
580		700
581	27.	Neef A, Zaglauer A, Meier H, Amann R, Lemmer H, Schleifer K-H (1996)
582		Population analysis in a denitrifying sand filer: Conventional and in situ
583		identification of Paracoccus spp. in methanol-fed biofilms. Appl Environ
584		Microbiol 62:4329-4339
585	28.	Nurse GR (1980) Denitrification with methanol: microbiology and biochemistry.
586		Water Res 14:531-537
587	29.	Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006)
588		Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing
589		conditions by stable-isotope probing. Microb Ecol 52:253-266
590	30.	Rainey FA, Ward-Rainey N, Gliesche CG, Stackebrandt E (1998) Phylogenetic
591		analysis and intrageneric structure of the genus and the related genus
592		Filomicrobium. Int J Syst Bacteriol 48:635-639
593	31.	Rissanen AJ, Kurhela E, Aho T, Oittinen T, Tiirola M (2010) Storage of
594		environmental samples for guaranteeing nucleic acid yields for molecular
595		microbiological studies. Appl Microbiol Biotechnol 88:977-984
596	32.	Rissanen AJ, Ojala A, Dernjatin M, Jaakkola J, Tiirola M (2016) Methylophaga
597		and Hyphomicrobium can be used as target genera in monitoring saline water
598		methanol-utilizing denitrification. J Ind Microbiol Biot. doi:10.1007/s10295-016-
599		1839-2
600	33.	Saunders AM, Albertsen M, Vollertsen J, Nielsen PH (2016) The activated sludge
601		ecosystem contains a core community of abundant organisms. ISME J 10:11-20
602	34.	Smalley NE, Taipale S, De Marco P, Doronina NV, Kyrpides N, Shapiro N,
603		Woyke T, Kalyuzhnaya MG (2015) Functional and genomic diversity of

604	methylotrophic Rhodocyclaceae: description of Methyloversatilis discipulorum
605	sp. nov. Int J Syst Evol Microbiol 65:2227-2233
606	35. Sperl GT, Hoare DS (1971) Denitrification with methanol: a selective enrichment
607	for Hyphomicrobium species. J Bacteriol 108:733-736
608	36. Srinandan CS, D´souza G, Srivastava N, Nayak BB, Nerurkar AS (2012) Carbon
609	sources influence the nitrate removal activity, community structure and biofilm
610	architecture. Bioresour Technol 117:292-299
611	37. Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal
612	picoplankton community structure obtained by measurements of small-subunit
613	rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol
614	64:4522-4529
615	38. Timmermans P, Van Heute A (1983) Denitrification with methanol: Fundamental
616	study of the growth and denitrification capacity of Hyphomicrobium sp. Water
617	Res 17:1249-1255
618	39. Wagner M, Loy A, Nogueira R, Purkhold U, Lee N, Daims H (2002) Microbial
619	community composition and function in wastewater treatment plants. Antonie van
620	Leeuwenhoek 81:665–680
621	40. Wallenstein MD, Myrold DD, Firestone M, Voytek M (2006) Environmental
622	controls on denitrifying communities and denitrification rates: insights from
623	molecular methods. Ecol Appl 16:2143-2152
624	41. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA
625	amplification for phylogenetic study. J Bacteriol 173:697-703
626	42. Wu X-L, Yu S-L, Gu J, Zhao G-F, Chi C-Q (2009) Filomicrobium insigne sp.
627	nov., isolated from an oil-polluted saline soil. Int J Syst Evol Micr 59:300-305
628	43. Zhu J, Wang Q, Yuan M, Tan GYA, Sun F, Wang C, Wu W, Lee PH (2016)
629	Microbiology and potential applications of aerobic methane oxidation coupled to
630	denitrification (AME-D) process: a review. Water Res 90:203-215
631	
632	
633	
634	
635	
636	
637	
638	
639	
640	

- **Figure captions:**

644	Fig. 1 NO_x^{-} reduction, operating conditions, and microbial community dynamics in the
645	denitrification filter of WWTPA (the 10-week follow-up period of microbial communities [27
646	August 2008 – 28 October 2008] is framed). (a) Temperature and the concentration of NO_x^- and O_2
647	in the inflow, concentration of NO_x^- in the outflow, and the relative NO_x^- reduction. (b) NO_x^- load
648	in the inflow and outflow, actual NO_x^- reduction rate, water flow, methanol addition rate, and
649	methanol: NO_x^- ratio in the inflow. (c) Results of non-metric multidimensional scaling analysis of
650	LH-PCR peak abundance data (1. axis shown, explaining 90 % of the variability in community
651	structure) and relative abundance of methylotrophs, Hyphomicrobium (peak 466 bp) and
652	Methylophilaceae (peak 521 bp), as well as their sum as a biomarker of methylotrophs and the
653	relative abundance of non-methylotrophs (sum of all peaks except 466 bp, 521 bp and 524 bp)
654	based on the LH-PCR peak data
655	
656	Fig. 2 Phylogenetic tree (neighbor joining method) of the16S rRNA gene clone libraries of the
657	Hyphomicrobiaceae assigned operational taxonomic units (OTUs) (at 97 % sequence similarity) in
658	the studied denitrification filters. Hyphomicrobium clusters were previously defined by Rainey et
659	al. [30]. The numbers in brackets after the OTU number indicate the number of sequences within
660	that OTU. The numbers at the nodes indicate the percentages of occurrence in 1000 bootstrapped
661	trees (bootstrap values > 50% are shown)
662	
663	Fig. 3 Phylogenetic tree (neighbor joining method) of the16S rRNA gene clone libraries of the
664	Methylophilaceae assigned OTUs. Methylophilaceae clusters were defined in this study (see tree
665	details in the legend of Fig. 2)
666	
667	

668	Fig. 4 Correlation between the relative abundance of the peaks assigned to (a) <i>Hyphomicrobium</i>
669	(peak 466 bp) and <i>Methylophilaceae</i> (peak 521 bp) and (b) methylotrophs (sum of 466 bp and 521
670	bp) and non-methylotrophs (sum of all peaks except 466bp, 521bp, and 524 bp) in the length
671	heterogeneity-PCR (LH-PCR) analysis of WWTPA samples during the 10-week monitoring
672	period. Physicochemical and process variables correlating ($p < 0.05$) with the relative abundance
673	of both groups in either (a) or (b); the sign of the correlations are shown with black-colored text
674	and dashed-line arrow, whereas those correlating only with one of the groups are shown as gray-
675	colored text and dashed-line arrow
676	
677	Online Resource figure captions
678	
679	Online Resource 1 Operating conditions and functional performance in the denitrification
680	biofilter of WWTPB. (a) Temperature and concentration of NO_x^- and O_2 in the inflow,
681	concentration of NO_x^- in the outflow, and the relative NO_x^- reduction. (b) NO_x^- load in the inflow
682	and outflow, actual NO_x^- reduction rate, water flow, methanol addition rate, and the methanol: NO_x^-
683	ratio in the inflow. The date of sampling for microbial studies (2 October 2008) is indicated with
684	an arrow
685	
686	Online Resource 2 Hierarchical clustering analysis (UPGMA) of the relative abundance of peaks
687	in the length heterogeneity-PCR (LH-PCR) analysis of the 16S rRNA genes of the inflow water
688	and backwash water of the denitrification biofilters of WWTPA and WWTPB and the carrier
689	material from WWTPB
690	
691	Online Resource 3 Electropherograms of the length heterogeneity PCR (LH-PCR) analysis of the
692	16S rRNA genes in samples of the denitrification biofilters of WWTPA and WWTPB (backwash
693	water from both systems and carrier material from WWTPB) and the inflow water (feed water).
694	The peaks assigned to <i>Hyphomicrobium</i> and <i>Methylophilaceae</i> at WWTPA are marked by arrows

Table 1 Characteristics of the municipal wastewater treatment plants (WWTPA and WWTPB) and the studied methanol-fed denitrification biofilters

697		WWTPA	WWTPB
	Type/N removal	Biol.chem./pre- & postdenitr.	Biol.chem/postdenitr.
	Population equivalent	740000	31000
	Aver. flow rate (m^3/d)	280000	14000
	Annual aver. N-reduction (%) ^a	90	75
	Annual T range (°C)	9 - 18	2 - 20
	Number of denitr. filter cells	10	6
	Bed volume (m ³ /filter cell)	432	56
	Carrier material in filter cells	Polystyrene beads	Polystyrene beads
	Aver. NO_x^- red. $(mol/m^3/d)^b$	44	63
	Aver. NO _x ⁻ red. (%) ^b	89	81
	Aver. surface load (m/h) ^b	8.1	3.4
	Aver. hydraulic retent. time (h) ^b	0.4	0.6
698		N-reduction for the whole treatmen	
699		expressed per carrier material volu	
700		load, and average hydraulic retent	
701		riod 20 August 2008 – 31 October	
702	biofilter system in WWTF	PB (study period 1 September 2008	– 31 October 2008)
703			
704			
705			
706			
707			
707			
708			
709			
107			
710			
711			
712			
713			
714			
715			
716			
717			
718			
719			
11)			

720 Table 2 Bacterial community composition (% of the 16S rRNA gene sequences) in the

721 denitrifying biofilters of municipal wastewater treatment plants (WWTPA and WWTPB) based on

722 clone library and 454-pyrosequencing analyses of the sheared biomass in backwash water and the

723 biomass on carrier material (only in WWTPB). Putative methylotrophic taxa are marked with Meth

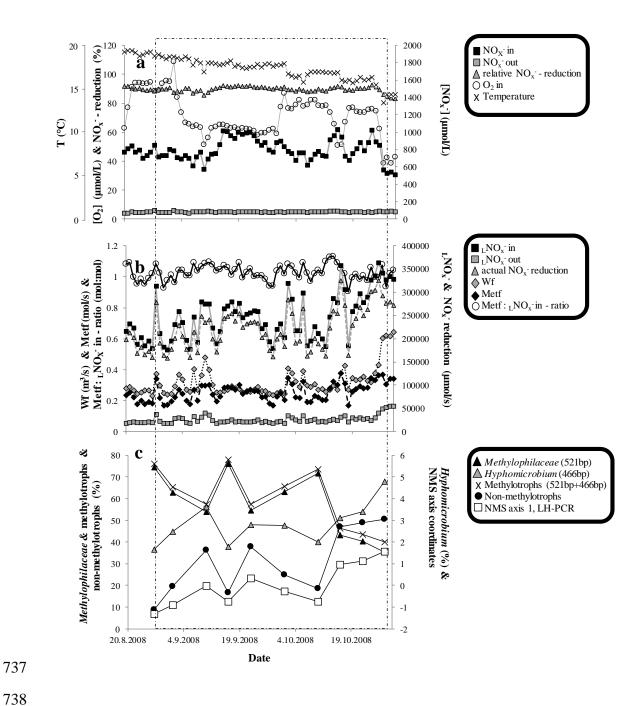
724

		WWTPA	WWTPA (454) ^a	WWTPB	WWTPB_Car (carrier mat.)
Number of sequences:		45	3643	58	48
Frequency (%): ^b					
Total methylotrophs		33	28	74	38
Alphaproteobacteria		7	3	5	15
Hyphomicrobiaceae		7	2	2	10
Hyphomicrobium II ^c	Meth	7	2	2	10
Methylocystaceae	Meth	-	< 0.1	-	-
Rhodobacteraceae		-	< 0.2	3	-
Paracoccus	Meth	-	-	3	-
Bradyrhizobiaceae		-	< 0.1	-	2
Bradyrhizobium	Meth	-	-	-	2
Betaproteobacteria		47	41	74	33
Methylophilaceae	Meth	26	25	66	26
Cluster Met I ^d	Meth	-	-	66	10
<i>Methylotenera</i> I ^d	Meth	22	25	-	6
Methylotenera II ^d	Meth	2	-	-	8
unclassified ^d	Meth	2	-	-	2
Rhodocyclaceae		9	4	3	2
Methyloversatilis	Meth	-	-	3	-
Comamonadaceae		9	4	2	2
Deltaproteobacteria		9	10	3	-
Epsilonproteobacteria		-	< 0.5	-	-
Gammaproteobacteria		-	3	2	2
Moraxellaceae		-	1	-	-
Acinetobacter	Meth	-	< 0.1	-	-
Methylococcaceae	Meth	-	< 0.2	-	-
Acidobacteria		-	1	-	15
Actinobacteria		-	1	2	8
Bacteroidetes		9	8	7	6
Flavobacteriaceae		-	1	-	-
Flavobacterium	Meth	-	1	-	-
Chloroflexi		11	2	2	-
Deinococcus-Thermus		2	< 0.1	-	4
Nitrospirae		-	-	-	4
Planctomycetes		-	< 0.5	-	8
unclassified bacteria+others		15	30	5	5

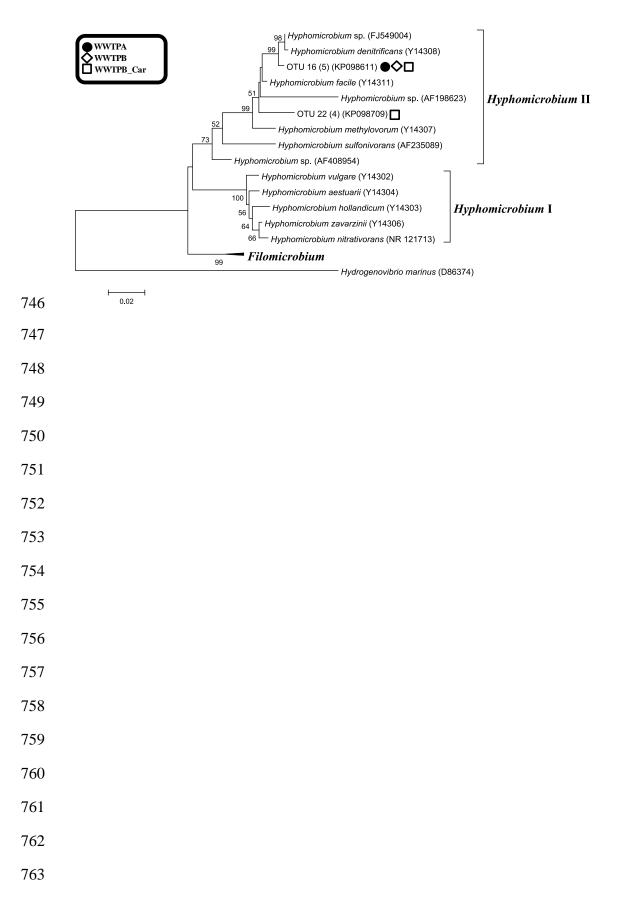
730

731

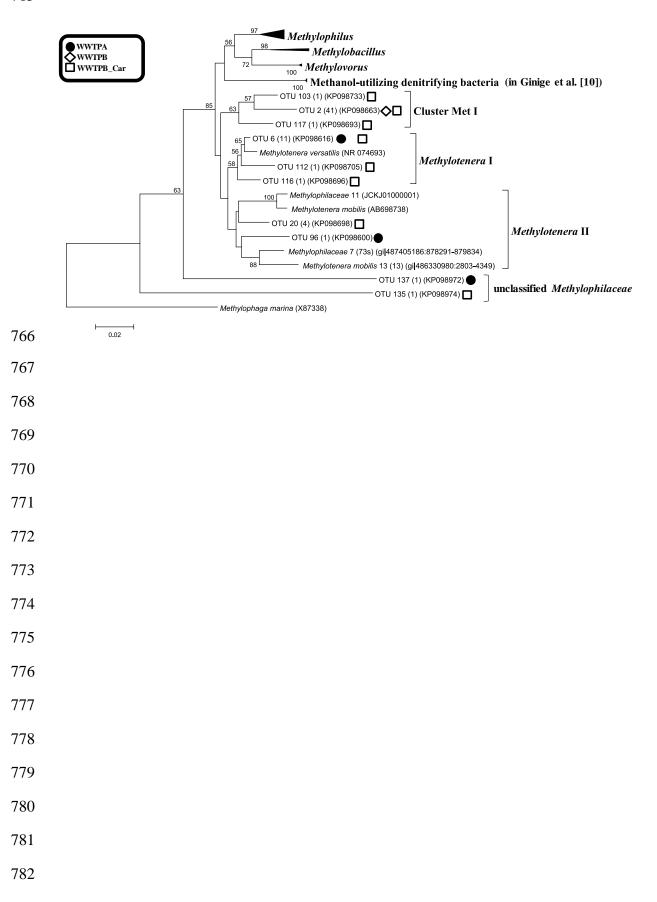
^a Library generated using 454 – pyrosequencing

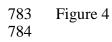

^b Classification was made using RDP database in Mothur and by phylogenetic tree analysis (Figs. 2 & 3). Assignment to methylotrophic function was based on previous literature. Frequencies are given as percentages (%) of total number of sequences in a sample.

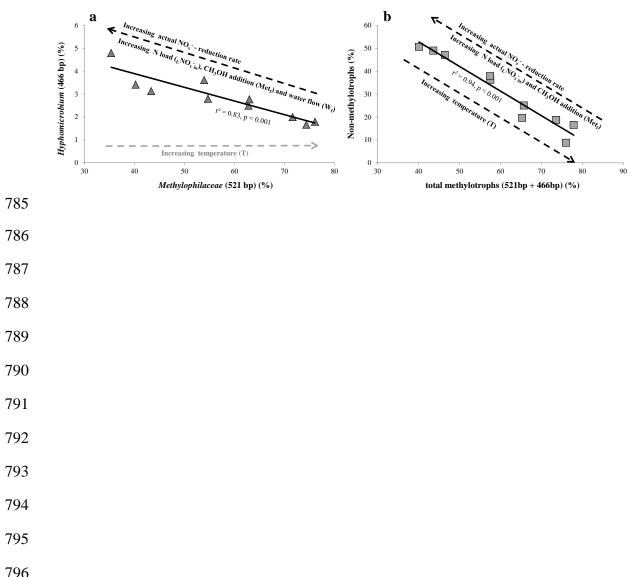
^c Clustering (clusters I and II) of *Hyphomicrobium* according to Rainey et al. [30]. See also Fig. 2.


^d Clustering based on Fig. 3.

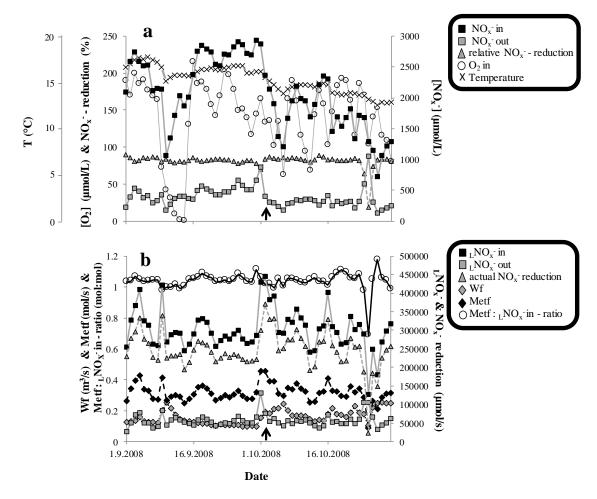
732 733







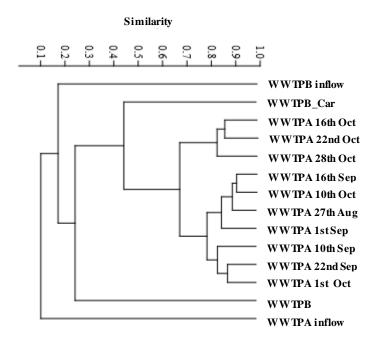
764 Figure 3



806	Online Resources (1-3)
807	
808	Journal: J Ind Microbiol Biotechnol
809	Titles Mathedard illustration him of tonget tongeneric groups in monitoring
810	Title: <i>Methylophilaceae</i> and <i>Hyphomicrobium</i> as target taxonomic groups in monitoring
811	the function of methanol-fed denitrification biofilters in municipal wastewater treatment
812	plants
813	
814	Authors: Antti J. Rissanen ^{1, 2, *} , Anne Ojala, Tommi Fred, Jyrki Toivonen & Marja Tiirola
815	
816	
817	¹ Department of Chemistry and Bioengineering, Tampere University of Technology, P.O.
818	Box 541, FI-33101 Tampere, Finland
819	² Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box
820	35, FI-40014 University of Jyväskylä, Finland
821	*~
822	*Corresponding author
823	email-address: antti.rissanen@tut.fi
824	
825	
823	
826	
827	
828	
000	
829	
830	
850	
831	
001	
832	
833	
834	
025	
835	
836	
050	
837	
838	
839	
040	
840	
841	

844

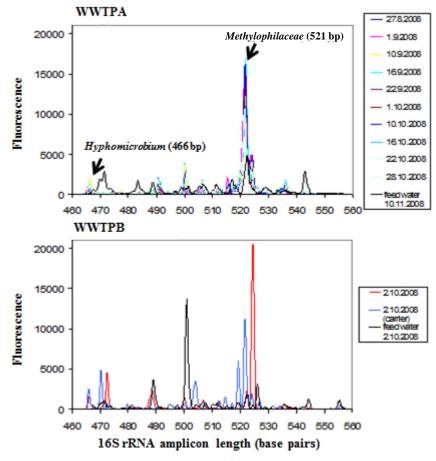
845 **Online Resource 1** Operating conditions and functional performance in the denitrification


biofilter of WWTPB. (a) Temperature and concentration of NO_x^- and O_2 in the inflow,

847 concentration of NO_x^- in the outflow, and the relative NO_x^- reduction. (b) NO_x^- load in the inflow

848 and outflow, actual NO_x^- reduction rate, water flow, methanol addition rate, and the methanol: NO_x^-

ratio in the inflow. The date of sampling for microbial studies (2 October 2008) is indicated with


- an arrow
- 851
- 852
- 853
- 854
- 855

Online Resource 2 Hierarchical clustering analysis (UPGMA) of the relative abundance of peaks in the length heterogeneity-PCR (LH-PCR) analysis of the 16S rRNA genes of the inflow water and backwash water of the denitrification biofilters of WWTPA and WWTPB and the carrier material from WWTPB

875 **Online Resource 3** Electropherograms of the length heterogeneity PCR (LH-PCR) analysis of the

876 16S rRNA genes in samples of the denitrification biofilters of WWTPA and WWTPB (backwash

- 877 water from both systems and carrier material from WWTPB) and the inflow water (feed water).
- 878 The peaks assigned to *Hyphomicrobium* and *Methylophilaceae* at WWTPA are marked by arrows