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Abstract: The positioning based on Wireless Local Area Networks (WLAN) is one of the most
promising technologies for indoor location-based services, generally using the information carried
by Received Signal Strengths (RSS). One challenge, however, is the huge amount of data in the
radiomap database due to the enormous number of hearable Access Points (AP) that could make
the positioning system very complex. This paper concentrates on WLAN-based indoor location by
comparing fingerprinting, path loss and weighted centroid based positioning approaches in terms
of complexity and performance and studying the effects of grid size and AP reduction with several
choices for appropriate selection criterion. All results are based on real field measurements in three
multi-floor buildings. We validate our earlier findings concerning several different AP selection
criteria and conclude that the best results are obtained with a maximum RSS-based criterion, which
also proved to be the most consistent among the different investigated approaches. We show that the
weighted centroid based low-complexity method is very sensitive to AP reduction, while the path
loss-based method is also very robust to high percentage removals. Indeed, for fingerprinting, 50%
of the APs can be removed safely with a properly chosen removal criterion without increasing the
positioning error much.

Keywords: indoor positioning; access point selection; received signal strength; fingerprinting;
path loss; weighted centroid

1. Introduction

Indoor positioning has gained considerable attention in the last ten years. Global Navigation
Satellite Systems (GNSS) take care of the positioning process successfully outdoors but cannot offer
an accurate location estimate indoors due to multipaths, Non-Line-of-Sight (NLOS) and signal
attenuation [1–3]; and, therefore, many different indoor positioning systems have been proposed.
Wireless Local Area Network (WLAN) infrastructures are widely available in both commercial and
residential buildings, and, therefore, they offer practical and cost-effective possibilities for positioning.
One positioning technology is based on time delays, e.g., Time-Of-Arrival (TOA) or Round-Trip-Time
(RTT) of the received signals. Time-delay based methods, however, require network synchronization
and exact delay measurements. In addition, the underlying physical layer features, such as multiple
access schemes and modulation technologies, vary a lot between the WLANs on the market. Therefore,
time delay-based positioning approaches for WLAN positioning are still not widespread. Another
alternative is to utilize RSS or the Received Signal Strength Indicator (RSSI). The RSS(I) are very
attractive and economical for the Location Service providers because of their availability in almost
every wireless device and because they are easy to access from the Application Programming Interface
(API) layer.
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Typically, RSS-based positioning methods have two stages: in a first stage, an off-line training data
collection is performed, and, in the second stage, the on-line estimation is done [1,4,5]. In the training
phase, models and databases are built based on collected information about indoor environment.
The training data, also called radiomap, can be collected in semi-automatic or automatic modes such as
the crowd-sourcing. In the estimation phase that demands real-time processing, the unknown position
of a mobile station (MS) is estimated based on the measured RSSs of the available APs and the radiomap
information saved in the training phase. The full radiomap contains the (x,y,z)-coordinates of each
fingerprint or grid point in the building, together with the Medium Access Control (MAC)-addresses
for each hearable AP and the corresponding RSS. Now, the RSS radiomap can be used for the
localization purposes via several ways: by matching the measured RSSs by the MS with the
radiomap (fingerprinting method, FP) [6–8], by triangulation approaches, based on mapping the
transmitter-to-receiver distance with information collected from the radiomap (e.g., from estimation
based on path-loss (PL) models or other statistical models) [9,10], or by some low-complexity methods,
like weighted centroid (WeiC) [11–13]. Other possible methods are, e.g., clustering [14–16] and spectral
compression [17] based methods, but the focus in this paper is on the three most widespread methods,
namely FP, PL and WeiC. In FP, the whole radiomap database needs to be transferred to the mobile in
order to be able to calculate the position estimate via pattern matching algorithms. In path-loss-based
positioning approaches, only AP locations and the path-loss model parameters are needed in the
position calculation from the radiomap, and, therefore, we can transfer only a part of the training
database to the mobile. WeiC needs only AP locations for the position estimate, leading to only small
data transfer needs. Thus, PL and WeiC are highly suitable for mobile-centric solutions, while FP is
usually good in network-centric positioning or for small-scale solutions. We remark that each of the
described method demands the radiomap database to be collected and saved in the training phase, as
well as updates to the database, if the building layout or AP infrastructure is changed. The only method
that would not need the radiomap is the WeiC but only if the AP locations were known. This is usually
not the case in reality, and, therefore, AP locations need to be estimated using the complete radiomap [10].

In many buildings, the AP infrastructure is very dense, leading to a huge amount of data for the
positioning methods to deal with. The memory requirements for the fingerprint database in large
areas or buildings may become overwhelming, and also data transmission may become a bottleneck
for the positioning system, especially for fingerprinting. In addition, all available information is not
needed for the positioning purposes at all. With such high deployment of APs in many buildings,
it is clear that some APs are more relevant than others, and the unnecessary APs can be simply
seen as noise [1,18]. This holds for, e.g., WLAN transmitters supporting multiple Basic Service Set
Identifiers (BSSID), leading to situations where several MAC addresses can be seen at exactly the same
location. Typically, the deployment of the AP transmitters inside a building is optimized primarily
for communication goals, such as serving many users in the best possible way. This means that the
location of several APs can be close to each other, transmitting more or less correlated information.
Since RSS is dependent on the distance between the mobile and an AP, as well as on the topology of the
environment, closely located APs may have heavily correlated RSSs. Thus, for positioning purposes,
not all APs carry significant information and can be dropped from the estimation process, since
redundant and unnecessary APs increase both the time and space complexity to build a positioning
system [19]. By choosing only a subset of APs to be used in the positioning process, both the storage
requirements and computational complexity can be decreased. In addition, with a properly chosen AP
among the existing ones, we can not only diminish the amount of data to be stored and transferred,
but we can also improve the location accuracy [20,21]. Besides AP reduction, the size of the radiomap
can be cut down by decreasing the number of stored fingerprints. If the gathered measurements are
mapped to fixed grids, the grid size can be a m × a m with a = 1, 5, 10, 20, etc., where bigger grid size
decreases the size of the full database remarkably.

In our earlier work in [22], we studied several AP selection criteria with FP and PL positioning
methods. This paper is an extension of the work in [22], and, in this paper, two main parameters are
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studied, namely the impact of grid size and the impact of AP selection, on three different positioning
algorithms (FP, PL, and WeiC). In particular, when compared to [22], in this paper, all three algorithms
are compared in terms of number of parameters needed to be saved and transmitted to the mobile,
in terms of time consumption of the algorithm, as well as in terms of positioning accuracy, if parts
of the data is removed or if the grid size is increased. Indeed, in this paper, we also investigate a
new selection criterion. The purpose of our paper is to make the choice between different positioning
algorithms and characteristics easier, since this kind of comprehensive studies are missing. AP selection
has been previously studied also in [4,23–30], but grid size has not been addressed before in this
concept. We will also summarize the findings of a suitable AP selection criteria shown in our previous
publications [21,22]. The results are based on new datasets of real field measurements, collected
with a Nexus tablet, in Tampere, Finland and in Berlin, Germany in two multi-floor office buildings
and one multi-floor shopping mall. All three building scenarios include a large amount of gathered
measurements. We have used in our data collection proprietary software solutions and HERE indoor
building maps.

2. Related Work

In order to solve the challenges caused by a huge amount of available data, AP selection criteria
have gained a lot of interest within the last few years [23–26,28,29]. Some studies choose to compress
AP information via different methods instead of selecting AP subsets, see e.g., [17,23,24]. AP selection
can be done either in the online positioning phase [24,25,27], in the offline training phase [4,26,30], or
to take into account both phases [21,28]. In [28], a discrimination index is calculated for each AP in the
offline phase, but the selection is performed only in the online phase, based both on discrimination
index and RSS. In this study, only offline selection is included. Some older research pertaining to
AP deployment, which is slightly related to our work in here, can be found also in [31,32]. In [31],
location sensors are included to the positioning system, and a novel medium access scheme is proposed
to control the communications between the location sensors and AP. In our study, the positioning
is based only on the existing AP network, and the process is passive; hence, no communication is
needed between the mobile and the AP, and, therefore, the study in [31] is out-of-scope of our research.
The study in [32] focuses on the optimization of the distribution of location sensors that can also be
seen as a new research topic and therefore is not considered in our study.

Youssef et al. [4] present the so-called max-mean method, where APs are sorted in descending
order and only the strongest APs are selected, based on the maximum average RSSs. This method can
be performed both in online and offline phases. In [30], Chen et al. suggest a novel Info Gain-strategy
that is based on some AP-specific power, derived via information entropy. These two methods, often
seen as traditional AP selection strategies, are considered also in our paper. The authors in [26]
propose a new selection algorithm, that is based on Info Gain [30], but takes into account also possible
correlation between APs. The biggest challenge with algorithms that try to minimize the correlation
between selected APs [26,27] is that the correlation has to be calculated for each AP pair, leading to a
huge information matrix to be handled. The correlation minimizing theme is included in our study via
dissimilarity criteria and Multiple Input Multiple Output (MIMO) removal. In [29], Liang et al. propose
a novel localization process for both offline and online phases that also utilizes AP selection based
on the algorithm presented in [26]. Like in [26], the APs are chosen separately for each fingerprint
in [29], and, as a result, one AP may be saved in one fingerprint, but not necessarily in many others.
This leads to problems if the database is later used with some other positioning algorithm that need,
e.g., estimates of the AP location (like PL and WeiC approaches), e.g., with the maxRSS-method, all
APs are checked only once, not separately for each fingerprint. If the AP is not considered as strong
enough, it will be discarded from the entire area (i.e., whole database). The main difference between
our paper and existing studies [4,23–30] is that our paper addresses both the effect of AP selection
and the effect of grid size, with several different removal criteria and for three different positioning
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approaches. Indeed, our study is based on three multi-floor buildings, while many of the studies
published in the literature are limited to one building or even to one floor within a building.

3. Positioning Principles

All position methods included in this paper demand an offline training phase, where the data is
gathered in the building of interest. The collected data samples with known locations are further used
to form the radiomap for the building. Alternative methods involve, e.g., Simultaneous Localization
and Mapping (SLAM) [33,34], but our focus in this paper is on two-stage estimation.

3.1. Offline Training Phase

In the case of the FP approach, the whole database is needed in the positioning phase. For PL and
WeiC, only parts of the radiomap information are needed in the positioning phase, but these methods
also need the full radiomap in order to be able to calculate the needed parameter estimates offline.
If the AP locations were known, the WeiC method would not need the full radiomap at all. Since AP
positions are unknown in most cases as well as in our study, AP locations need to be estimated using
the complete radiomap also for WeiC.

The FPs (also called grid points) in the radiomap are created by using fixed grid resolution [35–37].
This means that the FPs have a grid size that is defined by the designer, typically a square box
a m × a m, with a = 1, 5, 10, etc., and all gathered measurements in this area belong to the same FP.
Several measurements can appear to the same FP, since the measurement collection process can be
performed in different days or even continuously. In our study, when a collected data sample appears
in an FP that already has a saved sample, all the APs in both samples are processed. If a new AP has
been detected in the incoming sample, the AP is saved to the FP data. In that case where an AP is
detected both in the old and incoming measurement, instead of using the old RSS value, we use the
mean or the median between the old and new RSS values.

We form the database of FPs via: (xi, yi, zi, Pi,k). In here, the 3D coordinates of the FP i
(i = 1, ..., N f p) are denoted by xi, yi, zi, the total number of FPs is denoted by N f p, and the measured RSS
from the i-th FP to the ap-th AP is denoted by Pi,ap. An AP means one MAC address, and thus, several
APs can transmit from exactly the same location (e.g., as it is in the situation of a WLAN transmitter
supporting several BSSIDs). These kinds of WLAN transmitters with multiple MAC addresses are
here called MIMO WLANs. The MIMO terminology comes from the 802.11n standard that supports
MIMO transmissions. PL and WeiC methods use this same radiomap as the FP method to estimate the
AP positions xap, yap, zap (needed for both PL and WeiC approaches) and the PL modeling parameters
transmit power PTap and path loss coefficient nap for the ap-th AP (needed for PL based positioning).

As already mentioned, PL and WeiC approaches do not need the full radiomap but only a few
parameters per AP in the estimation phase. The needed parameters are calculated in the offline training
phase utilizing the full radiomap, and transferred to the mobile when needed. The most common
path-loss model is the one-slope model [9]:

Pi,ap = PTap − 10 nap log10 di,ap + ηi,ap (1)

Above, nap stands for the path loss coefficient for the apth AP, di,ap
stands for the distance between the ap-th AP and the i-th measurement point (i.e.,

di,ap =
√
(xi − xap)2 + (yi − yap)2 + (zi − zap)2), Pi,ap represents the observed RSS of the ap-th

AP in the ith measurement point, PTap denotes the transmit power for the ap-th AP, and ηi,ap is a noise
factor with Gaussian distribution and standard deviation σ and zero mean. The one-slope PL model in
Equation (1) in matrix form is [10]

Pap = Hap ΘT
ap + n (2)
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where Θap contains the unknown PL parameters excluding the coordinates (i.e., Θap = [nap PTap ]),

T is the transpose operator, n is a noise vector with Gaussian distribution and with size N f px1, Pap

includes the RSSs of apth AP in vector form (i.e., Pap = [P1,ap P2,ap . . . PN f p,ap ,ap]), and

Hap=


1 −10log10d1,ap

...

1 −10log10dNf p,ap ,ap

 (3)

Equation (3) can be solved through classical deconvolution approaches, such as Least Squares [9,10].
Further on, AP positions that are needed for both PL and WeiC approaches, are calculated as

a weighted average over the FP positions where each AP is heard, weighted by the RSS saved in
each fingerprint:

xap =
∑

N f p,ap
i=1 ri,apxi

∑
N f p,ap
i=1 ri,ap

(4)

Here, N f p,ap is the number of FPs where the apth AP is heard and ri,ap is the RSS in linear scale,

i.e., ri,ap = 10
Pi,ap
10

3.2. Online Estimation Phase

3.2.1. Fingerprinting

Fingerprinting is a map matching localization approach, where the user location is estimated via
some pattern matching algorithm using only the radiomap information together with the real-time
observed RSS levels [8]. When comparing the RSSs (Oap) observed by the user with the RSSs saved in
the radiomap FPs, Bayesian estimation with Gaussian likelihood Li gives an estimate of user location [38]:

LFP,i =
N

∑
ap=1

log

(
1√

2πσ2
ap

exp

(
−

(Oap − Pi,ap)
2

2σ2
ap

))
(5)

Here, σap is noise variance, which includes a shadowing component and a measurement error
component and N is the number of APs which are heard both in the FP and in the current measurement.
If no prior knowledge about σ2

ap is known, a fixed value can be used for all APs. Examples of typical
values can be found, e.g., in [39,40]. The use of nearest neighbor (NN) averaging is also possible: Nn

FPs în with the maximum value of the Gaussian likelihoods Lîn are selected, and the location of the
MS is computed by taking the mean over the positions of Nn nearest neighbors.

3.2.2. Path Loss-Based Positioning

In the estimation phase of the PL method, the MS location is calculated using the current RSS
observation Oap by the MS and the PL parameter estimates saved for every AP detected in the training
phase (i.e., AP location coordinates xap, yap, zap, path loss coefficient nap and transmit power PTap ).
One approach for positioning using the path loss parameters is trilateration [41,42], where range
estimates between the transmitter and the mobile are employed to estimate the position of the user.
Another possible approach that is also used in this paper is to re-generate the radiomap by calculating
approximate RSS levels for each heard AP for every fingerprint based on the path loss parameters sent
to the MS. Further on, the position estimate can be calculated using this re-generated grid via Bayesian
estimation with Gaussian likelihood, similarly as in fingerprinting:
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LPL,i =
N

∑
ap=1

log

(
1√

2πσ2
ap

exp

(
−

(Oap − P̂i,ap)
2

2σ2
ap

))
(6)

where P̂i,ap presents the re-generated approximated RSS level for AP ap in fingerprint i.

3.2.3. Weighted Centroid-Based Positioning

In the WeiC-based positioning, all that is needed in the estimation phase is the measured RSS Oap

by the mobile and the estimated AP positions xap that are calculated in the training phase. Further
on, the user position is calculated as an average with certain weighting factors of the positions of the
heard APs in the current user measurement, weighted by their RSS [11,12]:

xMS =
∑

Nap,h
k=1 Oapxap

∑
NAP,h
k=1 wap

(7)

where Nap,h is the number of heard APs and wap is the measured RSS of AP ap by the MS Oap in linear

scale (i.e., wap = 10 Oap
10 ).

4. AP Selection Criteria

In what follows, we study seven AP selection criteria in the offline training phase for all three
positioning algorithms. Six out of seven have been also studied in [22], Fast Fourier transform (FFT) is
a new criterion added in the comparison. Both traditional methods, max-mean [4] and InfoGain [30]
are taken into account. In addition, the impact of the grid size is also studied in here. The criteria are:

• No Selection. In this criterion, no selection is performed, but all APs are kept in the position
calculation. The criterion offers the benchmark results to understand better the effect of AP selection.

• Maximum RSS (maxRSS). In this criterion, APs with maximum RSS value are selected to the
AP subset. This method is basically the same as max-mean of Youssef et al. in [4], but the
difference is that we consider only the maximum RSS instead of the average RSS when sorting
the APs. The reason for this is that it has been noticed that maxRSS has similar or slightly better
performance than the max-mean algorithm [21].

• Entropy/InfoGain. In this criterion, the so-called entropy of RSS is calculated for each AP, and the
APs with maximum entropy are chosen for the AP subset. This criterion is based on InfoGain
in [30], with only slight modifications. The entropy used in this paper is defined in the following
manner, by using an analogy with the definition of the classical entropy [43]:

Eap = max (Pap × log2 (Pap)) (8)

where Pap includes the RSSs of apth AP in vector form (i.e., Pap = [P1,ap P2,ap . . . PN f p,ap ,ap])
and × represents the point multiplication.

• MIMO/Multiple BSSID Selection. As already discussed, several BSSIDs per one WLAN AP (i.e.,
transmissions with multiple MACs coming from the same physical location), are possible today.
The purpose of this selection criterion is to avoid to use correlated data that the similar or closely
located APs may offer. These kind of MIMO APs (or any other APs containing several MACs) are
in our research identified only based on their estimated position: if more than one AP seem to
be located within maximum one meter range, only one among them is chosen. The unknown
AP locations are estimated as in Equation (4). Since AP infrastructure is optimized primarily
for communication purposes, it is possible that two or more independent APs are really located
close to each other. However, since the range-based position estimation is the only possibility
in our research to define the APs that are located to each other, these kind of situations are not
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considered. Three different selection options are studied here: only one (with the maximum
average RSS), two or three APs among the closely located ones will be kept, removal percentage
being naturally the highest in the first case, where only one AP is selected. We remark that the
total number of APs located at the same place (i.e., MIMO APs) depends on the AP infrastructure
of the building.

• FFT. In an FFT-based criterion, we first sort the APs in a descending order, based on the spectral
information computed in the FFT domain. The FFT is calculated over a matrix that contains
the RSS information of each AP in every fingerprint (i.e., size of the matrix is Nap × N f p). If an
AP is heard in a fingerprint i, the RSS input is Pi,ap + Pth. Pth is a threshold chosen according
to an assumption that the lowest expected RSS is −100 dB, and thus, Pth = 100. If an AP is
not heard in the particular fingerprint, the RSS input is set to 0. After the FFT is performed
over the information matrix, the APs are sorted decreasingly, based on the maximum value in
the FFT-matrix.

• KL. In this criterion, a divergence value is calculated for every AP. This is done
using the Kullback–Leibler (KL) criterion for divergence. By KL analogy, we define
DKL = [dapi ,apj ]api ,apj=1..Nap , where

dapi ,apj = ∑
i

∑
j
|Papi − Papj | log(|Papi − Papj |) (9)

The APs with highest KL divergence value are selected to the AP subset.
• Dissimilarities. Another possible criterion is based on dissimilarities between APs. First, a

dissimilarity matrix is built based on the RSS differences between any pair of APs, as below:

DDiss=


0 |P̄1−P̄2| ... |P̄1−P̄Nap |

|P̄2−P̄1| 0 ... |P̄2−P̄Nap |

... ...

|P̄Nap−P̄1| |P̄Nap−P̄2| ... 0

 (10)

where P̄a p is the mean RSS heard from ap-th AP. Further on, an independent dissimilarity value
is calculated for every AP as a sum over the dissimilarities between the AP and other APs. AP
subset is then chosen according to their maximum dissimilarity value.

With all selection criteria excluding MIMO selection, any removal percentage can be used: e.g.,
10%, 15%, or 60% out of all APs can be removed from the radiomap database, i.e., the removal
percentage can be flexibly chosen by the user. In MIMO selection, however, the number of co-located
APs depends on the building: the Authors use the AP infrastructure as it is, and, therefore, it varies
according to the building how many APs are located close to each other. Therefore, the choice of how
many APs are also removed in a MIMO removal criterion depends on the building.

5. Measurement Analysis

5.1. Measurement Scenarios

We collected the measurements in two multi-storey office buildings (building A located in
Tampere, Finland and building B one in Berlin, Germany and one multi-floor shopping mall (i.e.,
building C located in Tampere, Finland). Figure 1 shows the FPs for building A with 1 m horizontal
grid size. Measurement samples for both positioning phases (i.e., training and estimation phases) were
gathered manually using a tablet Asus Nexus 7 with Android 4.3.1 Operating system in Tampere,
Finland and in Berlin, Germany. The tablet included detailed building maps. After the training
data was collected, the estimation tracks (i.e., the user tracks for the estimation phase) were gathered
separately during different days. The measurement tracks include 250 measurements and cover all
floors in all buildings. All three measurement scenarios, including building descriptions and main
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characteristics, are described in Table 1, showing the building location, the number of floors N f loors, the
total number of detected APs saved in the radio map NAP, number of FPs N f p in the radiomap with
different horizontal grid resolution (here, 20 m, 10 m, 5 m and 1 m), and the number of data samples
in the used user track Nu. We remark that the number of FPs N f p is not the same as the number of
gathered measurements in the building of interest, but the number of FPs with fixed grid resolution
(thus, N f p is dependent on the chosen resolution). The number of APs shows the amount of individual
MAC addresses detected during the measurements, but, since some WLAN transmitters may have
several MAC addresses due to the multiple BSSID support, some APs here may be physically at the
same location.

0
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x [m]

z 
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Figure 1. The grid of collected measurements for building A. Fixed grid resolution of 1 m ×1 m.

Table 1. Measurement scenarios. N f p corresponds to the number of fingerprints with fixed grid
resolution in the database.

Location Grid Resolution N f p Nu NAP N f loors

A Berlin, 1 m 14, 611

Germany 5 m 1446 250 727 9
10 m 516

B Tampere, 1 m 8201

Finland 5 m 1082 250 1213 4
10 m 398

C Tampere, 1 m 1988

Finland 5 m 373 250 162 3
10 m 141

5.2. Positioning Algorithm Comparison

Table 2 shows the total number of parameters needed to be stored for the training radiomap for
all three positioning methods. All three buildings are included as examples with numeric values,
since the total number of parameters is naturally building dependent. Besides the building size and
layout, the measurement collection (i.e., if the whole building is covered or not) and the number of
detected APs also affect the total number of parameters. For FP, the number of parameters is the sum
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of parameters per fingerprint, i.e., the fingerprint coordinates (xi, yi, zi) and the AP index ap and the
measured power for the ap-th AP Pi,ap for each hearable AP. Since the number of heard APs may vary
from one fingerprint to another, the number of parameters may be different for different fingerprints.
Indeed, the parameters needed for FP positioning is remarkably decreased, if the grid size is increased,
and, thus, the number of fingerprints is smaller, as can be seen in Table 2. In the case of PL and WeiC
positioning approaches, the number of parameters is not dependent on grid size. For PL, all we need is
the AP positions (xap, yap, zap) for each AP, together with AP dependent PL parameter estimates (here,
transmit power PTap and path loss coefficient nap). For WeiC, the number of parameters is even less,
namely the AP positions only. It can easily be seen, that the motivation for PL and WeiC approaches is
in the low amount of data needed to be stored and transmitted. In the FP method, the number of FPs
may be very large and the data that we save for each FP usually contains more than ten variables, e.g.,
if in a certain FP i the number of heard APs is 18, we need to save 39 parameters for this one fingerprint
only: three parameters for the FP coordinates, 18 for RSSs and 18 for the AP indexes. However, in order
to be able to calculate the AP positions and PL parameter estimates, the full radiomap is still needed
for PL and WeiC approaches as well, though the amount of transmitted data is remarkably decreased.

Table 2. Number of the parameters needed to be transmitted for different positioning methods.
Examples for buildings A and B.

FP PL WeiC

∑NFP
n=1(3 + ∑

NAPFP
m=1 2) NAP × 5 NAP × 3

Building A
1 m grid NA1 = 1, 091, 029 3635 (≈0.3% of NA1 ) 2181 (≈0.2% of NA1 )
5 m grid NA2 = 171, 090 3635 (≈2.1% of NA2 ) 2181 (≈1.3% of NA2 )
10 m grid NA3 = 76, 074 3635 (≈4.8% of NA3 ) 2181 (≈2.9% of NA3 )

Building B
1 m grid NB1 = 1, 196, 629 6065 (≈0.5% of NB1 ) 3639 (≈0.3% of NB1 )
5 m grid NB2 = 225, 246 6065 (≈2.7% of NB2 ) 3639 (≈1.6% of NB2 )
10 m grid NB3 = 104, 682 6065 (≈5.8% of NB3 ) 3639 (≈3.5% of NB3 )

Building C
1 m grid NC1 = 90, 542 810 (≈0.9% of NC1 ) 486 (≈0.5% of NC1 )
5 m grid NC2 = 23, 025 810 (≈3.5% of NC2 ) 486 (≈2.1% of NC2 )
10 m grid NC3 = 10, 483 810 (≈7.7% of NC3 ) 486 (≈4.6% of NC3 )

Different positioning methods are compared in terms of time consumption in Table 3 for buildings
A and B. The time is calculated over all 250 user measurements. Both 1 m and 5 m horizontal grid sizes
are included, with no AP selection and with 50% AP removal. It can be seen that with 1 m grid, the
FP method is clearly slower than other methods, due to a more complex pattern matching algorithm
and big data matrices in the radiomap. However, when the grid size is increased to 5 m, the time
consumption for FP is decreased remarkably, even more than 80%. Indeed, the difference between the
FP and PL methods is clearly smaller with the 5 m grid. For the PL approach, 50% AP removal slightly
decreases the time consumption. WeiC algorithm, that uses only AP positions in the estimation, is
not affected by the decrease in the number of APs. Naturally, the grid size also does not affect the
time consumption of PL and WeiC methods at all, since the number of parameters for these methods
remains the same for all grid sizes, as seen in Table 2.
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Table 3. Performance comparison via algorithm time consumption [s] for 250 user measurements.
All positioning methods included with 1 m and 5 m grids, with no AP selection and 50% AP removal.

Building Grid [m] FP PL WeiC

Building A

1 No removal t1 = 1483 s 0.10× t1 1.2× 10−5 × t1
50% removal 0.81× t1 0.07× t1 1.2× 10−5 × t1

5 No removal 0.18× t1 0.10× t1 1.2× 10−5 × t1
50% removal 0.17× t1 0.06× t1 1.2× 10−5 × t1

Building B

1 No removal t2 = 2472.0 s 0.08× t2 7.8× 10−6 × t2
50% removal 0.82× t2 0.06× t2 7.8× 10−6 × t2

5 No removal 0.23× t2 0.08× t2 7.8× 10−6 × t2
50% removal 0.13× t2 0.05× t2 7.8× 10−6 × t2

5.3. AP Selection

The localization results for AP selection are presented in this section as Mean Distance Error
(MDE) in 3D. MDE is calculated by taking the main of the Euclidean distances between the user
location estimates and the true user locations in a 3D (x, y, z) Cartesian coordinate system. For the FP
method, the NN-method is also used, with Nn = 5.

Figure 2 shows the MDE for the seven investigated AP selection criteria for buildings A and C,
with all three positioning approaches and 5 m horizontal grid size. The percentage of removed APs
from the radiomap varies between 10% and 80%, excluding the MIMO case. In the case of MIMO
selection, the number of removed APs is varied so that either one (with the maximum average RSS
value), two or three APs were kept out of the APs located next to each other (within 1 m range). When
we keep only one AP, the removal percentage is the highest compared to the case when we remove
two or three APs. It can easily be seen in Figure 2a,c,e that maxRSS, KL and entropy-based selection
criteria are the best choices in building A, with no big difference to each other. The results are similar to
every positioning method. Indeed, removing APs using MIMO AP selection criteria and and keeping
only one AP among the subset of co-located APs does not increase the positioning error. This however
holds only for FP and PL approaches, and it should be noticed, that since the number of MIMO APs is
building dependent, the percentage of removed APs may vary between only a few percent and even
60%. This is the case also in building C (Figure 2b,d,f that has clearly less detected APs in the radiomap
database (as can be seen in Table 1), and the MIMO selection criterion removes only 17% of the APs. When
it comes to the other criteria for building C, maxRSS is also the best criterion in this building in the case
of PL and WeiC, but for the FP method, the differences between different criteria are smaller. In general,
WeiC positioning seems to be very sensitive to AP selection, and basically only 20% of the APs can be
removed safely without deteriorating the results. In the case of FP, APs can be removed up to 50%–60%,
but after that, the performance starts to decrease faster. The PL method instead is also very robust to high
percentage removals. Based both on the Figure 2 and also on the results obtained for building B and our
previous studies in [21,22], it is observed that the best results are obtained with maxRSS-based AP removal
criterion. This criterion is also most consistent among all criteria in general, if 50% of the APs are removed
from the radiomap database. This holds for both FP and PL positioning methods, but for WeiC, the AP
selection should be performed with much lower removal percentages, if any.
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Figure 2. Average positioning error [m] for all AP selection criteria. FP, PL and WeiC positioning
approaches. Building A (a,c,e) and building C (b,d,f) with 5 m horizontal grid size.

Figure 3 illustrates the effects of AP removal and grid size, for all three positioning approaches and
maxRSS-selection criterion. The grid size is varied between 1 m and 20 m and the removal percentage
between 10% and 80%. We remark that the color bars are different for each figure. The reason for this
is that the results vary in the case of WeiC so widely (between 10 m and 55 m) that the much smaller
variation for FP (between 5 m and 15 m) would not be visible anymore if the same color bar was used



Sensors 2016, 16, 737 12 of 15

for all figures. Also in Figure 3, it can be seen that the WeiC method is very sensitive to AP removal,
but the grid size affects less. On the other hand, as it was noticed already in Figure 2, the PL method is
robust to AP removal also with high removal percentages, but the grid size affects more. This is the
case also for fingerprinting, though the positioning accuracy for FP in general is better than for PL,
e.g., for 50% removal and 10 m grid, the positioning accuracy is around 9 m for FP and 12 m for PL
(building A), 7 m for FP and 10 m for PL (building B) and 11 m for FP and 17 m for PL (building C).
We remark that both the FP and PL methods still achieve reasonable results, with as high as 10 m grids,
and 50% of the APs are removed, especially in buildings A and B that have more detected APs than
building C.
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Figure 3. Effects of AP removal and grid size for buildings A, B and C. FP, PL and WeiC positioning
positioning approaches and maxRSS-selection criterion.

6. Conclusions

In this paper, three positioning approaches, namely FP, PL and WeiC, have been compared in
terms of complexity and performance. All results are based on real field measurements in three
multi-floor office buildings with thousands of gathered fingerprints. Indeed, the effects of grid size
and AP reduction to different methods is studied. We have validated our earlier findings concerning
several different AP selection criteria, including one new proposed criterion, and concluded that
the maxRSS-based removal criterion gives consistently the best results in the majority of scenarios.
We have shown that in the case of FP, 50% of the APs can be removed safely from the training database
with a properly chosen removal criterion without deteriorating the positioning results much. Indeed,
we have shown that the low-complexity method WeiC is very sensitive to AP reduction, while the PL
method is also very robust to high percentage removals. If the grid size is increased to 5 or even 10 m,
the performance for every positioning method remains tolerable, but the number of parameters in
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the radiomap needed especially for the FP method can be significantly decreased. Our study is most
useful in mobile-centric approaches but is valid also in the network-centric cases.
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