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In this Data in Brief article we provide a data package of GROMACS
input files for atomistic molecular dynamics simulations of multi-
component, asymmetric lipid bilayers using the OPLS-AA force field.
These data include 14 model bilayers composed of 8 different lipid
molecules. The lipids present in these models are: cholesterol (CHOL),
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-pal-
mitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE),
1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidyl-ethanolamine (SOPE),
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 1-stear-
oyl-2-oleoyl-sn-glycero-3-phosphatidylserine (SOPS), N-palmitoyl-D-
erythro-sphingosyl-phosphatidylcholine (SM16), and N-lignoceroy
l-D-erythro-sphingosyl-phosphatidylcholine (SM24). The bilayers'
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compositions are based on lipidomic studies of PC-3 prostate cancer
cells and exosomes discussed in Llorente et al. (2013) [1], showing an
increase in the section of long-tail lipid species (SOPS, SOPE, and
SM24) in the exosomes. Former knowledge about lipid asymmetry in
cell membranes was accounted for in the models, meaning that the
model of the inner leaflet is composed of a mixture of PC, PS, PE, and
cholesterol, while the extracellular leaflet is composed of SM, PC and
cholesterol discussed in Van Meer et al. (2008) [2]. The provided data
include lipids' topologies, equilibrated structures of asymmetric
bilayers, all force field parameters, and input files with parameters
describing simulation conditions (md.mdp). The data is associated
with the research article “Interdigitation of Long-Chain Sphingomyelin
Induces Coupling of Membrane Leaflets in a Cholesterol Dependent
Manner” (Róg et al., 2016) [3].
& 2016 The Authors. Published by Elsevier Inc. This is an open access

article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Specifications Table
ubject area
 Chemistry, Biophysics

ore specific subject area
 Molecular dynamics simulations

ype of data
 Text files

ow data was acquired
 Classical and quantum mechanics calculations

ata format
 Consistent ordered package

xperimental factors
 Software used: GROMACS 4 for MD, GAUSSIAN-03/09 for QM

xperimental features
 OPLS-AA force field suit

ata source location
 Not applicable

ata accessibility
 Data are supplied with this article
D

Value of the data

� New parameters for MD simulations of PS and PE are provided.
� New parameters for MD simulations of sphingomyelin are provided.
� The lipid models given here are compatible with the OPLS-AA force field in studies of membrane

proteins and drugs interacting with lipids.
� The force field parameters and lipid topologies provided here may be used to construct lipid

bilayers whose composition is closely related to that of biological membranes.
� Equilibrated structures of asymmetric bilayer models may be used in MD studies of cell membranes.
1. Data

Lipidomics studies are becoming more and more popular [1] to identify in detail the lipid com-
positions found in cell membranes [2]. The emerging lipidomics data provide a very valuable source
of information for atom-scale molecular dynamics (MD) simulations [3] that can clarify nanoscale
dynamical phenomena in complex biomembrane systems.

To perform MD simulations, one needs detailed descriptions of the molecules that one aims to
study [4]. First, one needs the topology, which includes information about all bonds, valence angles,
and torsion angles in the molecule. Second, one needs a set of parameters, called the force field, to
describe interactions related to all the interactions in the studied system. In this Data in Brief article,
we provide a data package for the force field parameters and topologies for a number of lipids, in
particular phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and
sphingomyelin (SM).



Fig. 1. Structure of SM16. The colors highlight the origin of force field parameterization for partial charges and torsional inter-
actions. The color of the circle (red or blue) indicates the source of partial charges, and the color of the lines (red or black)
connecting the circles indicates the source of torsional parameters. Red stands for parameterization based on [8], blue stands for
parameterization based on new calculations reported in this work, and black corresponds to the original OPLS-AA parameters.
There is reason to stress that all parameters for bonds and valence angle description are taken from the original OPLS-AA force
field. Lennard-Jones parameters originate from OPLS-AA except for long hydrocarbons, which were derived in [8] (see text).

Fig. 2. Example of the simulation results: snapshots of equilibrated structures of a multicomponent bilayer (model M3 in
Ref. [3]) where SM24 molecules are shown as yellow sticks with the last eight carbon atoms depicted as red balls. The figure
illustrates interdigitation of long SM24 tails into the opposite leaflet of the bilayer. Lipids in the outer leaflet are shown as
transparent blue glass, while lipids in the inner leaflet are described as transparent gray glass. For clarity, the system is sur-
rounded by its periodic image on the left and right sides (SM24 molecules are highlighted only in the central image).
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2. Experimental design, materials and methods

In this article, we provide the topologies and force field parameters for 6 lipids compatible with
the OPLS-AA force field [5,6] to be used with the GROMACS simulation package [7]. The models
described in this article are based on a combination of specific parameters for lipids derived in our
previous studies [8–10], original OPLS-AA parameters, and a few specifically derived parameters for
sphingomyelin. The description of cholesterol is entirely based on OPLS-AA parameters.

In our prior studies, we reparameterized (1) the torsion angles in the glycerol backbone and in the
phosphocholine group, (2) the torsion angles and Lennard-Jones parameters in long saturated
hydrocarbons [8], and (3) the torsion angles in unsaturated hydrocarbons [9]. All these components
are necessary to describe a PC molecule. For PE and PS, we used the same parameters as for PC to
describe the glycerol backbone, the phosphate group, and acyl chains, which are identical in these
lipid classes. The parameters for the ethanolamine and serine groups were taken from the OPLS-AA
force field derived for the amino acids' sidechain of lysine and serine, respectively.
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The structure of SM is based on the amino alcohol sphingosine (Fig. 1) that is attached to a phos-
phatidylcholine head group and an acyl chain. To parameterize SM, we used previously derived para-
meters for the phosphatidylcholine group and long hydrocarbons [8], while the backbone part of
sphingosine was reparameterized. First, partial charges were derived using a procedure described in our
previous work [8], and the torsion angle potentials missing in the OPLS-AA set were calculated using a
protocol described elsewhere [8]. Energy evaluation in torsion angles' potential parameterization was
performed with the Hartree–Fock method by employing a polarized basis set 6�31G* augmented with
diffuse functions (6�31þG**) on phosphorus and non-ester oxygen atoms. The effects of polar solvent
were included implicitly by employing the Polarizable Continuum Model [11]. All electronic structure
calculations were carried out using the GAUSSIAN-03/09 [12]. Fig. 1 shows the structure of SM16 with
fragments of the molecule marked according to the source of parameters (Fig. 2).
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2016.03.067.
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