
0018-9464 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2016.2537263, IEEE
Transactions on Magnetics

IEEE TRANSACTIONS ON MAGNETICS, VOL. X, NO. X, DECEMBER 201X 1

Energy Preserving Methods and Torque Computation From Energy
Balance in Electrical Machine Simulations

Lauri Perkkiö 1,2, Paavo Rasilo2,3, Bishal Silwal2, Antti Hannukainen1, Antero Arkkio2, and Timo Eirola1

1Department of Mathematics and Systems Analysis, Aalto University, PO Box 11100, FI-00076 AALTO, Finland
2Department of Electrical Engineering and Automation, Aalto University, PO Box 13000, FI-00076 AALTO, Finland

3Department of Electrical Engineering, Tampere University of Technology, P.O. Box 692, FI-33101 TAMPERE, Finland

Finite element analysis for the simulation of magnetic fields in electrical machines leads to an index-1 differential algebraic
equation (as opposed to a conventional ordinary differential equation), because the electrical conductivity can be zero in certain
regions. First, we construct a differential-algebraic equation-compatible time integration scheme which is energy-balanced, meaning
that in a linear system the input, stored and lost powers sum exactly to zero. Second, we use a method based on the energy balance
to compute torque. We show that the energy balance method approaches the virtual work principle applied at remeshing layer as
the time step is refined. A similar result holds also if the rotation of the rotor is implemented by Nitsche’s method, which is an
instance of so-called mortar methods.

Index Terms—electric machine, energy balance, non-matching mesh, torque.

I. INTRODUCTION

FORCES and torques can be computed by several different
methods in finite element (FE) analysis of electromag-

netic problems, especially when rotating electric machines are
simulated [1]–[5]. Even if the methods give equal results for
exact, non-discretized fields, at the finite element level there
might be a significant difference. In this paper we analyze one
proposed method where the torque of an electrical machine is
computed from the power balance equation

Pin = d
dtWstored + Ploss + Ptorq, (1)

where Ptorq = ωmT , mechanical angular speed ωm times
torque T . Thus, T could be in principle solved if all the other
terms are known [6]–[8].

First, we introduce a differential algebraic equation (DAE)-
compatible time stepping scheme, which either conserves
energy if a conservative system is studied, or gives energy
consistent losses for a dissipative system. The motivation for
this method is to ensure that the time integration method itself
does not cause numerical energy losses in (1). When, for
instance, an induction machine is modeled, the non-conducting
domains will lead to a FE-discretized equation that is an
index - 1 DAE [9]. An ordinary differential equation (ODE)
governs at the conducting areas, whereas (nonlinear) constraint
equations hold at the nonconducting ones. The proposed time
integration scheme is based on Gaussian collocation meth-
ods [10], a subfamily of implicit Runge-Kutta methods, where
the DAE-constraint equations are required to hold at each time
step, and if 4th or higher order scheme is used, constraints
are required as certain averages of the Gaussian quadrature
points [11]. The simplest of these methods can be stated
as “Solve ODE by Implicit Midpoint method, but require
the constraints to hold at the endpoint”. The computational
cost and solution error of this approach are very close to
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the conventional Crank-Nicolson method but the advantage is
that the numerical energy balance is exactly zero for a linear
problem, and closer to zero for a non-linear problem. Another
advantage is that one obtains a polynomial representation for
the solution in a consistent manner on each time step which
can be used for interpolating the solution between time steps.

Second, we show that the torque computation method based
on energy balance is actually a difference approximation to
virtual work principle applied in the remeshing layer. This
is illustrated by comparing Coulomb’s method [4] (an im-
plementation of virtual work principle) to torque by energy
balance method using very short time steps. Similar results are
obtained if Nitsche’s method [12] is used instead of remeshing.
Nitsche’s method is an instance of discontinuous Galerkin
methods, where the field is allowed to be discontinuous over
element interfaces. In this case it allows a non-matching
mesh in the airgap, which is convenient when rotor motion
is modeled [13], [14]. Some problems emerge if the time
step is very small. First, using the remeshing layer for torque
integration will give oscillating results, and the energy balance
method has the same problem. This oscillation is a numerical
artefact, which occurs as the nodes slide past each other at the
air gap interface. Second, we do not get the exact value (in
temporal sense) of the virtual work principle, but effectively
a difference approximation to it.

These findings are illustrated with numerical examples for a
three-phase squirrel cage motor in 2D [15] , but the principle
is the same for 3D simulations or different machine types, for
example, permanent magnet machines.

II. DIFFERENTIAL ALGEBRAIC EQUATION

Throughout the paper we use a standard two dimensional
vector potential formulation for an electric machine [15],
which leads to a PDE which is parabolic (like the heat equa-
tion) in conducting regions, and elliptic (like the Laplace equa-
tion) in non-conducting ones. The magnetic field B lies on the
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xy-plane and the currents J = Jez flow in the z-direction.
By using a potential A(x, y) such that B = ∇ × (A ez),
E = − ∂

∂tAez , we are left with a PDE

−∇ · (ν∇A) + σ
∂A

∂t
= J, (2)

where the reluctivity ν is a piecewise constant or a (non-
hysteretic) function of the field B (or equivalently A), electric
conductivity σ is zero in some regions, and the current density
J in wires can be coupled to circuit equations, which in our
test case model a squirrel cage induction motor. Zero Dirichlet
boundary condition is imposed on the outer boundary of the
stator. The initial state A0 may be zero or, e.g., come from a
magnetostatic or time-harmonic solution of (2).

The weak form of (2) is to find field A such that∫
Ω

ν∇A · ∇φ+

∫
Ω

σ
∂A

∂t
φ =

∫
Ω

Jφ (3)

for all test fields φ. After a standard finite element dis-
cretization, e.g., quadratic elements for A in 2D, the spatial
discretization of PDE (3) is as follows. Some basis functions
are completely in non-conducting (σ = 0) areas; denote the
coefficients of these functions by v ∈ RM . The (at least
partially) conducting ones are labeled u ∈ RN . Then the
problem is to solve (u,v) ∈ RN+M from the equation

k1(u,v) + Mu̇ = j(t) (4)
k2(u,v) = 0, (5)

where the mass matrix M ∈ RN×N represents the conducti-
vity term and k1 : RN+M → RN and k2 : RN+M → RM are
nonlinear if the reluctivity ν depends on the field, i.e. we have
nonlinear magnetic materials. In the linear case we simply
have k1 = Kuuu + Kuvv and k2 = Kvuu + Kvvv, where
Kij are fixed matrices. Equation (4) is an ODE, whereas (5)
is an algebraic equation (AE), sometimes called constraint
equation, which correspond to areas where the conductivity
σ is zero. The variables u, whose derivative appears in the
Equation (4), are called differential variables, whereas the rest
(v) are called algebraic variables. The system of equations (4-
5), with the assumption that v can be solved for any given
u from (5), is called a semi-explicit index-1 DAE [10]. More
generally, we write such DAE system as

Mu̇ = f(u,v, t) (6)
0 = g(u,v). (7)

For some time integration methods the initial state (u0,v0)
has to be consistent, which means that (u0,v0) has to
satisfy (7) (and possibly some so-called hidden constraints
if higher than index-1 DAE is considered). Otherwise, the
solution might oscillate when Crank-Nicolson (trapezoidal
rule) is used for time stepping. If the initial state is obtained as
the real part of a non-linear harmonic approximation, then it is
inconsistent in general. Therefore, one could solve v with re-
spect to given u0 obtained from the harmonic approximation,
and use that as the initial state v0.

The two conventional time integration methods for solving
the system (4-5) are Implicit (or Backward) Euler, written as

Mui+1 = Mui + hf i+1 (8)
0 = g(ui+1,vi+1), (9)

and Crank-Nicolson (or Trapezoidal) method

Mui+1 = Mui + h
2 (f i + f i+1) (10)

0 = g(ui+1,vi+1), (11)

where h is the time step length, f i = f(ui,vi, ti) and f i+1 =
f(ui+1,vi+1, ti + h). These methods are otherwise suitable
for solving the given DAE, but if one wishes to have an exact
energy balance at each time step (at least for a linear system),
then slightly different methods are required. Suitable methods
are presented in Section IV.

III. ENERGY

For simplicity, we assume a stationary rotor and current-fed
system. This can be generalized to coupled circuit equations,
as their energy and loss terms have a similar form. Rotor
motion, and the relation to torque, is more delicate and it will
be discussed later.

For convenience, we denote x = [u v]T and write the
DAE (4-5) shortly as

k(x) + Mẋ = j(t), (12)

where k = [k1 k2]T and M has the obvious zero rows and
columns. Multiplying (12) by ẋT we obtain

ẋTk(x) + ẋTMẋ = ẋTj(t), (13)

which is the discrete form of the equation∫
Ω

ν( ∂∂tB) ·B +

∫
Ω

σ|E|2 = −
∫

Ω

E · J .

These quantities are, respectively, rate of change of magnetic
energy, heat loss by Ohmic currents, and input power. Let us
label them respectively

d
dtEmag + Ploss = Pin.

Accumulated energies are their time integrals

Emag(t)− Emag(0) +

∫ t

0

ẋTMẋ dt =

∫ t

0

ẋTj(t) dt, (14)

which we denote

∆Emag + ∆Eloss = ∆Ein. (15)

Only Emag is an explicit function of x, for example Emag =
1
2x

TKx in the linear case. After time discretization (15) may
not exactly hold, so we call its residual the energy imbalance

∆Ebal = ∆Emag + ∆Eloss −∆Ein. (16)

It is well-known that time integration by, e.g., Implicit Euler
leads to ∆Ebal 6= 0. Implicit trapezoidal rule (sometimes
known as Crank-Nicolson) gives smaller, but non-zero, error.
Note that ∆Ebal 6= 0 is caused solely by the time discretiza-
tion, even though the accuracy of right-hand side energy terms
is affected by the error of spatial discretization.
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IV. ENERGY PRESERVING DAE INTEGRATOR

A. Time Integration Method

The given DAE (6-7) is index-1, which is the simplest type
of DAEs [10]. For this problem one can construct an energy
preserving integrator by the so-called Gaussian collocation
methods. These modified Runge-Kutta methods are discussed,
e.g., in [11]. The variable x is considered to be an nth degree
polynomial

x =

[
u
v

]
= p(t) =

n∑
i=0

tici (17)

in each time step and we assume that the initial value c0 = x0

is given (from the initial state or previous time step), and that
x0 satisfies the AE (5), i.e. it is consistent. For clarity, assume
that the time step is in the interval 0 ≤ t ≤ h.

The remaining coefficients c1, . . . , cn are determined by
the following procedure. For ODE we choose n nodes τi,
0 < τ1 < ... < τn < h, to be the Gaussian quadrature
points (giving the most accurate quadrature for a given n),
and we integrate ODE (6) by using this quadrature. Algebraic
equation (7) is assumed to be satisfied at t = 0, and it is
required to hold at t = h. If n > 1, AE is in addition required
to hold as certain weighted averages of the Gaussian points.
This construction avoids oscillation in the algebraic component
v that may occur when Gaussian points are used for both
ODE and AE. For the methods considered in this paper the
quadrature points are

n = 1 : τ1 =
1

2

n = 2 : τ1 =
1

2
−
√

3

6
, τ2 =

1

2
+

√
3

6
.

By substituting p into (6-7), the system of equations to be
solved w.r.t. ci is

Mṗ(τi) = f(p(τi), τi) (18)
0 = g(p(h)), (19)

0 =
n∑
j=1

djg(p(τj)), if n > 1. (20)

For n = 2 the weights are simply d1 = d2 = 1
2 . See [11]

for the higher order methods. These equations determine the
coefficients ci uniquely. After solving ci, p(h) is used as the
initial value for the next time step. Note that Equation (19) will
assert that the next time step starts from a consistent state.

The simplest method, n = 1, reads just as “use Implicit
Midpoint method for the ODE and require the AE to hold at
the endpoint”. The next method, n = 2 is “use 2-point Gauss
for the ODE, AE at endpoint and as average of Gauss points”.
The order of these methods is 2n, meaning that the solution
error ‖p(ti) − xexact(ti)‖ = O(h2n), where ti = ih. In
principle, these methods can be used as conventional Runge-
Kutta methods without considering any collocation polynomi-
als, but this polynomial interpretation provides an easy way to
understand the energy preservation in the next section.

The advantage of these methods is that in a linear problem
the changes of energies will sum up exactly to zero at each
time step, or in a conservative system (without losses) the

method preserves energy. The powers Pin and Ploss, as defined
in the previous section, involve the time derivative of x, so
the corresponding change of energy over one time step,

∆Eloss =

∫ h

0

Ploss dt,

could be considered to be an “ODE” and we use the same
Gauss quadrature formula to compute the integral.

The number of unknowns and function evaluations of the
modified midpoint method (n = 1) is essentially the same as
with the popular Backward Euler and Crank-Nicolson methods
(note that in Crank-Nicolson (10) the term fi is already
computed during the previous time step). The second method
(n = 2) is essentially a 2-step Implicit Runge-Kutta method,
and the system to be solved at each time step is twice as large
as for the n = 1-methods.

B. Energy Balance Over One Time Step

We show that the methods described in Section IV.A give
an exact energy balance on each time step if the problem
is linear. The heuristics is as follows: if we use an energy-
preserving scheme to solve the DAE and then (at post-
processing) the same scheme to compute the energy changes,
then the numerical scheme has an exact energy balance.

Consider a linear DAE[
M 0
0 0

] [
u̇
v̇

]
+

[
Kuu Kuv

Kvu Kvv

] [
u
v

]
=

[
j
0

]
. (21)

Matrix K is symmetric, so Kuv = KT
vu. Formally (but not

in practice for a large system) we can solve v by

v = −K−1
vvKvuu

and substitute it into the ODE to get an equation only for u,

Mu̇ + Kuuu−KuvK
−1
vvKvuu = f .

If we denote

K̃ = Kuu −KuvK
−1
vvKvu, (22)

the ODE can be written as

Mu̇ + K̃u = f . (23)

In this notation the magnetic field energy in both conducting
and non-conducting regions is the quadratic form

Emag = 1
2u

TK̃u. (24)

Now, we solve (21) by the simplest of above constructed
methods, requiring ODE at midpoint and AE at endpoint.
Assume that the initial condition is consistent. Denote the
known initial values by u0,v0 and unknown values at the
next time step by u1,v1. The equations to be solved, (18-20),
including the initial consistency, are now explicitly

M
u1 − u0

h
+ Kuu

u1 + u0

2
+ Kuv

v1 + v0

2
= f(h2 ) (25)

Kvuu1 = −Kvvv1 (26)
Kvuu0 = −Kvvv0. (27)
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In practice we solve (u1,v1) from (25-26) as such. But
now, formally, the last two rows give

v1 + v0

2
= −K−1

vvKvu
u1 + u0

2
,

which we substitute into the first equation to get

M
u1 − u0

h
+ K̃

u1 + u0

2
= f(h/2). (28)

At post-processing the input energy
∫ h

0
u̇Tf dt and resistive

loss
∫ h

0
u̇TMu̇ dt are computed by the same midpoint rule. To

compute the change of energies over one time step 0 ≤ t ≤ h,
we multiply (28) by u̇T at the midpoint (which in this case is
just u1−u0

h ), and multiply by the interval length h

0 = h
(uT

1−uT
0

h
M

u1−u0

h
+

uT
1−uT

0

h
K̃

u1+u0

2

− uT
1−uT

0

h
f(h2 )

)
= (uT

1−uT
0 )M

u1−u0

h
+ (uT

1−uT
0 )K̃

u1 + u0

2
− (uT

1−uT
0 )f(h2 )

= (uT
1−uT

0 )M
u1−u0

h
+ 1

2 (uT
1 K̃u1 − uT

0 K̃u0)

− (uT
1−uT

0 )f(h2 )

= ∆Eloss + ∆Emag −∆Ein.

This shows that the change of energies sum up to zero, and
that the stored energy ∆Emag is also integrated correctly.

The previous computation was for the simplest method
having only one collocation point. The same result can be
proven also for higher order Gaussian methods. This is done
by considering the polynomial degree of the integrands in∫ h

0
ṗTK̃p dt,

∫ h
0
ṗTf dt and

∫ h
0
ṗTMṗ dt and using the fact

that n-point Gaussian quadrature integrates polynomial of
degree 2n− 1 exactly. The polynomial degree of x is n, and
the integrands’ degree is at most 2n − 1, so the change in
stored energy is computed exactly by this formula, and all the
terms will sum up to zero due to collocation condition (18-19)
being satisfied at the integration points.

The exact energy balance does not hold for a nonlinear
magnetic material, e.g., if the iron core reluctance is a spline
function of form ν(|B|2). Then the magnetic field energy is no
more quadratic, but instead some piecewise function E(|B|2).
The reasoning in the previous paragraph will fail, regardless
of the time interation method’s order. Still, one may expect
better balance compared to methods where even the quadratic
part is not balanced.

C. Numerical Evidence

The numerical error of solution x and energy balance
∆Ebal are studied in test simulations with different time
steps h. The proposed methods are compared to conventional
Backward Euler and Crank-Nicolson methods. The simulated
motor is a voltage supplied star-connected locked-rotor 37-kW
induction machine. The magnetic field equation is coupled to
the stator and rotor circuit equations, so in addition to finite
element DoFs, we have rotor circuit voltages, and rotor and
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Figure 1. Linear problem, solution error vs time step length h. The legend
refers to Implicit Euler, (modified) Midpoint, Trapezoidal and (modified)
Gauss method, respectively. Convergence rates are h, h2, h2 and h4. The
errors for a nonlinear problem are very similar.

stator circuit currents as unknowns, see [15] for details. With
these additional equations and variables the system remains
in form (6 - 7), so it can be solved by using the previously
constructed integration methods. Also, the energy balance
considerations remain essentially the same with the coupled
equations.

The previous reasoning applied to trapezoidal rule (Crank-
Nicolson) will not give exactly Ebal = 0. Instead, if we use the
trapezoidal rule both for DAE-solving and power computation
we will have Ebal = O(h3) over one time step, which leads
to Ebal = O(h2) over a time interval [0, Nh]. If we integrate
the energies by using backward differences, we will get only
Ebal = O(h). Backward Euler will give Ebal = O(h),
regardless of if we use mid- or endpoint for energy integration.

Fig. 1 shows how the error in the solution itself converges
as the time step size h is refined. The solution error behaves as
expected (Implicit Euler has order 1, midpoint/trapezoid has
order 2, 2-point Gauss has order 4). Fig. 2 shows numerical
evidence for the energy balance behaviour. For a nonlinear
problem (in this case, spline ν(B)) the energy balance is not
exactly satisfied, as seen in Fig. 3. Still, the proposed methods
give Ebal that is smaller by several orders of magnitude
compared to Implicit Euler and Crank-Nicolson methods.

V. ROTATION AND ENERGY

In this section we show, both theoretically and numerically,
how the torque computed from the energy balance is actually
a difference approximation to the principle of virtual work
applied on the remeshing layers. However, when small enough
time steps are used, sliding nodes will cause oscillation and
jumps in the torque obtained in this way if remeshing is used.
The oscillation is a numerical artefact, as it occurs in the same
frequency as the nodes slide past each other. The jumps can
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Figure 2. Linear problem, energy balance vs time step length. Midpoint and
Gauss methods give practically exact balance. Trapezoid for time stepping
(and energy integration) gives Ebal = O(h2). Implicit Euler for time
stepping gives Ebal = O(h).
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Figure 3. Nonlinear problem, energy balance vs. time step length.

be avoided if Nitsche’s method is used instead of remeshing,
even though the oscillation remains.

Based on numerical tests we conclude that the energy
balance method shares the oscillation property of using the
sliding layer for torque computation. Additionally, the method
has two more error sources. First comes from the numerical
energy balance, and second from the method being a difference
approximation to a quantity which can be computed exactly
with, e.g., Coulomb’s method.

A. Remeshing and Nitsche’s method

The rotor field is solved in coordinates which rotate along
with the material, called Lagrangian coordinates in e.g. fluid
mechanics, and the stator field is solved in fixed coordinates.
Computationally one can think that we have two separate
meshes (or two separate finite element problems) for rotor and
stator, and then we somehow connect these two components
for a given rotation angle. The air gap is governed by Laplace’s
equation ∆A = 0, boundary conditions arising from continuity
over the rotor and stator boundaries. Note that there are
no time derivatives involved in the air gap, so the rotation-
dependent component is contained within the constraint terms
in Equation (4 - 5). The rotor and stator meshes are connected
in our example either by remeshing or Nitsche’s method.
Remeshing is implemented by the sliding-layer technique.

Remeshing causes jumps in the stiffness matrix K when the
triangle connectivity changes, and this causes problems if the
torque is computed by the energy balance method, as we will
see later. To avoid these jumps, we introduce Nitsche’s method
for non-matching grids very briefly, for a rigorous treatment
see [16]. The method is an example of a mortar method, see
e.g. [13], [14] for other similar methods. One can think that
there are two separate meshes, one for the rotor and one for
the stator, both including a part of the air gap. At a circular
(or cylindrical in 3D) interface Γ, which is somewhere inside
the air gap, the nodes are not necessarily matching but lie on
the same circle, as in Fig. 4. FE matrix elements associated
with area integrals inside rotor and stator do not depend on the
rotation angle θ. Instead, we have some θ-dependent matrix
which involves basis functions at triangles that have a part of
Γ as their edge.

The solution of Laplace’s equation w has to satisfy

ã(w, v) = 0 (29)

for each air gap basis function v, where

ã(w, v) = (∇w,∇v)Ω, (30)

(·, ·)Ω denoting the area integral over the whole domain Ω.
However, we allow the field to be discontinuous on Γ, and
Nitsche’s method is one way to implement it. Denote the rotor
and the stator side domains by Ω1 and Ω2, the corresponding
mesh edges by G1 and G2, corresponding edge length by hE
(where E ∈ Gi), and the interface between the domains by Γ.
We allow the mesh to be nonconforming and the solution w
to be discontinuous over Γ, and using Nitsche’s method the
bilinear form (30) is replaced by

a(w, v) =
∑
i=1,2

[
(∇w,∇v)Ωi + γ

∑
E∈Gi

h−1
E 〈JwK, JvK〉E

]

−
〈{

∂w

∂n

}
, JvK

〉
Γ

−
〈{

∂v

∂n

}
, JwK

〉
Γ

, (31)

where 〈u, v〉 denotes a line integral, JuK the jump u1 − u2 of
the function u over the interface, {u} the average 1

2 (u1 + u2)
on the interface, and ∂

∂n the normal derivative. The parameter
γ > 0 has to be chosen to be large enough to make the method
stable, see Remark 2.12 in [16]. If we denote the stator side



0018-9464 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2016.2537263, IEEE
Transactions on Magnetics

IEEE TRANSACTIONS ON MAGNETICS, VOL. X, NO. X, DECEMBER 201X 6

StatorRotor

Air gap

Interface Γ

Figure 4. A nonconforming mesh in the air gap, which is used by the Nitsche’s
method. The interface Γ is the circle arc with hanging nodes.

basis functions by si and rotor side by ri, we see that a(si, sj)
and a(ri, rj) do not depend on the rotor angle θ, whereas
terms a(si, rj) = a(rj , si) do depend. Let us denote this rotor
angle-dependent part of the stiffness matrix by Kθ.

Nitsche’s method for Laplace equation is specifically con-
structed such that the resulting matrix Kθ is symmetric and
positive-definite, so it preserves properties of the ambient
problem. Thus we can also speak of energy Enit stored in
the Nitsche term,

Enit = 1
2x

TKθx, (32)

where Kθ includes only the last three terms (edge-integrals)
of (31). Enit is considered to be some numerical energy
and it can be shown that Enit tends to zero as the mesh is
refined [16], because the jump JuK tends to zero. One can also
check numerically that the ratio Enit/Emag is indeed small.
However, if we consider numerical energy balance, the term
Enit should be included in the equations.

We have similar θ-dependent term when remeshing is
considered,

Erem = 1
2x

TKθx = 1
2

∫
rem

ν0B
2, (33)

but this is the actual magnetic field energy in the remeshing
layer.

B. Energy Balance Method’s Relation to Virtual Work Prin-
ciple

We explain how torque computation by energy balance
is related to the principle of virtual work. This will also
show how the energy balance method is dependent on the
smoothness of Kθ with respect to θ. Let us add rotation to
the linear problem and assume a constant speed ωm. The rotor
angle-dependent discretized field equation can be written as

Kx + Kθx + Mẋ = f(t),

where Kθ denotes the matrix which changes with the rotor
angle θ, coming from either remeshing or Nitsche’s method.

Assume for a while that we study small enough time interval
where triangulation does not change, so Kθ is differentiable
with respect to θ. Multiplying the previous field equation by
ẋT leads to a power balance equation

ẋTKx + ẋTKθx + ẋTMẋ− ẋTf(t) = 0. (34)

The stored energy at remeshing (or Nitsche) layer is

Wrem = 1
2x

TKθx, (35)

but the rate of its change is not ẋTKθx, because the matrix
Kθ is not constant over time (unless we have a stationary
rotor).

However, we see that (note Kθ = KT
θ if we use remeshing

or Nitsche)

d
dt

1
2x

TKθx = ẋTKθx + 1
2 θ̇x

T dKθ

dθ
x, (36)

where
Tvw = − 1

2x
T dKθ

dθ
x (37)

is actually the torque computed by virtual work principle at the
remeshing layer, which can be computed e.g. by Coulomb’s
method [4]. Numerical experiments show that (37) gives a
sensible estimate for the torque even if Kθ emerges from
Nitsche’s method. The reason for this can be seen by com-

puting the derivative
∂

∂θ
a(u, u) and using estimates in [16].

Then one can obtain an estimate
∂
∂θa(u, u) = −2

〈
R ∂
∂θu,

∂
∂ru
〉

Γ
+O(h

1/2
T ), (38)

where the first term is exactly the integral of Maxwell stress
tensor over Γ, and hT denotes the mesh parameter of the
triangulation. For other mortar methods a relation like (38)
is not guaranteed.

The previous explains how torque is related to the power
balance equation (34), which combined with (36) gives

ẋTKx + d
dt

1
2x

TKθx− θ̇Tvw + ẋTMẋ− ẋTf(t)

= d
dtWmag + d

dtWrem + Ptorq + Ploss − Pin

=0. (39)

In other words, assuming that Kθ is smooth enough with
respect to θ, the energy balance method leads to the same
value as Coulomb’s method applied in remeshing layer (or its
equivalent when Nitsche’s method is used) as the time step is
refined. Note that we assumed Kθ to be differentiable with
respect to θ. This is not true when remeshing is used, and its
effect is seen in the numerical examples.

C. Computational Cost of Torque Computation

Computing the torque by Maxwell stress tensor or
Coulomb’s method involves integrating a quadratic function
of the magnetic field B in the air gap. Because the function
is quadratic, we can write the torque as a product

T = xTV x, (40)

where the matrix V is constant throughout the simulation if we
use only fixed (non-sliding) air gap layers in the integration.
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Once the matrix V is assembled in the beginning of the
simulation, the computational cost of torque computation (one
vector-matrix-vector product involving only air gap elements)
is very small compared to the solution of implicit equations
arising from the time stepping.

The energy balance method involves computation of the
terms in (39), which is more expensive, but still cheap com-
pared to time stepping.

Assuming that the air gap elements are in circular layers and
by integrating the Maxwell stress tensor over one layer [15,
Eq. 124], the matrix V in (40) is

V ij =
ν0

r0 − r1

∫
S

r(∇× (viez))r · (∇× (vjez))φ,

where the integration is over an air gap layer S between radii
r0 and r1, ν0 is the reluctivity of air, and (∇× (viez))r and
(∇× (vjez))φ are the radial and tangential components of the
curls of the basis functions vi and vj .

For Coulomb’s method [4] the corresponding matrix is

V ij = ν0

∫
S

[
− (∇× (viez))

TG−1 ∂G

∂φ
(∇× (vjez))

+
1

2
(∇× (viez)) · (∇× (vjez))|G|−1 ∂|G|

∂φ

]
, (41)

where G is the affine mapping from the mesh element into
the reference element and |G| its determinant.

D. Numerical Examples

We assume linear magnetic materials and constant rotation
speed in each example, as that is sufficient to show the
interesting features of torque computation by energy balance
method compared to other methods. These features are seen
when the rotor angle change per time step is comparable to
angle between nodes in the sliding layer, so a slow speed (slip
s = 0.5) is chosen. Second order elements are used, such that
one quarter of the simulated machine contains 15734 basis
functions. The torque computation methods are
• Tvw1, Coulomb’s method applied on a rotor side layer;
• Tvw2, Coulomb’s method applied on a stator side layer;
• Trem, Coulomb’s method applied on the sliding layer (not

applicable in Nitsche’s method);
• Tene, energy balance method.
In Example I, Fig. 5, we use remeshing with sliding layer

technique, the modified midpoint method (Crank-Nicolson
giving very similar results) and comparatively long time step,
such that the supply voltage period is divided into nper = 200
steps. The difference between torques obtained from different
method is up to 5 percent. In Example II, Fig. 6, we use
Implicit Euler method, instead of midpoint or Crank-Nicolson,
with the same time step. Energy balance method overestimates
the torque because of the numerical energy loss.

Example III, Fig. 7, has the same setup as Example I, but
one supply voltage period is divided into nper = 1200 steps.
Now the rotor angle change per time step, ∆θ, is several
times smaller than the angle between adjacent remeshing layer
nodes, ∆α. The following observations are made:
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Figure 5. Example I, remeshing.
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Figure 6. Example II, remeshing, Implicit Euler for time integration. Energy
balance method overestimates the torque when the time step is large.

• Tvw1 and Tvw1 are not affected significantly by the mesh
deformation.

• Trem is affected by the mesh deformation and oscillates
with frequency corresponding to ∆α.

• Tene resembles Trem, but has discontinuities when the
mesh connectivity changes (i.e. when θ is such that Kθ

is discontinuous).
The effect of Nitsche’s method in energy balance method is

seen in Fig. 8. The setup is otherwise the same as in Example
III, but Nitsche’s method is used. Because Kθ is smoother
with respect to θ (meaning that the matrix elements change
continuously when θ changes, as opposed to remeshing) the
resulting torque waveform will be smoother, and the oscillation
has smaller amplitude. If one uses coarser mesh or linear
elements instead of quadratic ones, then the oscillation and
jumps are even more prominent.
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Figure 7. Example III, remeshing, smaller time step. Oscillation occurs as
the nodes slide past each other.
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Figure 8. Example IV, Nitsche, smaller time step.

VI. CONCLUSION

It is possible to construct a time integration scheme that is
suitable for DAEs encountered in electric machine simulations
and is exactly energy-balanced at every time step, at least when
a linear and non-moving system is considered. The simplest of
the methods, based on Implicit Midpoint method, is as accurate
as the common Crank-Nicolson method and requires a similar
amount of computational effort.

The energy balance method for torque computation is shown
to be a difference approximation to the virtual work principle
applied on the remeshing layer. The resulting torque waveform
will have larger and larger discontinuities when the time
step is refined. This is due to a jump in magnetic field
energy when remeshing changes the triangulation. A smoother
waveform can be obtained if Nitsche’s method, an instance
of discontinuous Galerkin methods, is used to implement the

rotor motion.
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