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Age dependence of arterial pulse wave parameters
extracted from dynamic blood pressure and blood

volume pulse waves
Mikko Peltokangas, Antti Vehkaoja, Jarmo Verho, Ville M. Mattila, Pekka Romsi,

Jukka Lekkala, and Niku Oksala

Abstract—Atherosclerosis is a significant cause of mortality
in the aged population, and it affects arterial wall properties
causing differences in measured arterial pulse wave (PW). In
this study, both dynamic arterial blood pressure PWs and blood
volume PWs are analyzed. The PWs are recorded non-invasively
from multiple measurement points from the upper and lower
limbs from 52 healthy (22–90-year-old) volunteers without known
cardiovascular diseases. For each signal, various parameters
earlier proposed in literature are computed, and 25 different
novel parameters are formed by combining these parameters.
The results are evaluated in terms of age and heart rate (HR)
dependence of the parameters. In general, the results show
that 14 out of 25 tested combined parameters have stronger
age dependence than any of the individual parameters. The
highest obtained linear correlation coefficients between the age
and combined parameter and individual parameter equal to
0.85 (p < 10−4) and 0.79 (p < 10−4), respectively. Most of
the combined parameters have also improved discrimination
capability when classifying the test subjects into different age
groups. This is a promising result for further studies, but indicate
that the age dependence of the parameters must be taken into
account in further studies with atherosclerotic patients.

Index Terms—Atherosclerosis, Body sensor networks, Elec-
tromechanical sensors, Photoplethysmography, Pulse wave mea-
surements

I. INTRODUCTION

CARDIOVASCULAR diseases due to atherosclerosis are
an increasing cause of disabilities and mortality and

they are challenging to detect due to their subclinical course
[1]–[3]. To detect subclinical atherosclerosis and to reduce
morbidity and mortality, cost-effective methods for monitoring
the vasculature are needed. Traditional methods include the
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measurement of electrocardiogram (ECG), instantaneous sys-
tolic and diastolic blood pressures and different indices such
as ankle-brachial pressure index (ABI) [2].

Arterial pulse wave (PW) carries plenty of information on
the vascular health, but this information is not yet commonly
utilized in the clinical medicine. The arterial PW observed
at a peripheral measurement point such as a finger is a
superposition of a percussion wave induced by the heartbeat
and its reflections from the impedance discontinuities of the
main artery, aorta [4]. The propagation velocity of these
waves, both percussion wave and its reflections, depends
on arterial elasticity which is an important indicator of the
vascular health, especially the degree of atherosclerosis, which
characteristically results in arterial stiffening. Depending on
the propagation velocity and thus the arrival times of the
reflections, the observed PW looks different: the stiffer the
arteries are, the earlier the reflections arrive to the peripheral
measurement point. Various methods have been developed for
detecting the specific features of the PWs and thus for evalu-
ating the arterial condition [4]–[12] but these methods are still
mainly used for research purposes. Although atherosclerosis
is the most probable cause of arterial stiffening during aging,
it is possible that also other factors contribute to this phe-
nomenon. Atherosclerosis may present as stiffening, stenosis
or occlusion of the vessels and only hemodynamically severe
and significant stenoses result in symptoms and alterations of
ABI.

There is a growing need to develop clinically applicable,
noninvasive, rapid and cheap methodology to detect arterial
diseases. In this paper, we present methods for analyzing the
PWs recorded from multiple measurement points with two
different sensor modalities: volume pulse waves recorded us-
ing optical photoplethysmographic (PPG) sensors (index finger
and second toe) and dynamic pressure pulse waves recorded
with the sensors made of electromechanical film (EMFi)
(wrist, cubital fossa and ankle). In addition to computing
individual PW parameters, we pilot combining the information
obtained from multiple measurement points for obtaining bet-
ter discrimination capability between the subjects of different
age groups. The age dependence of the PW parameters is an
important subject for study since arteries tend to degenerate
due to aging and the prevalence of the atherosclerotic changes
is also related to aging. Age is also a potential confounder
since there are several other risk factors for atherosclerotic
changes. For these reasons, we sought to study the age-
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dependence of different PW parameters describing the arterial
aging for testing our novel technology with healthy volunteer
test subjects. Besides the age-dependence analysis of the tested
PW parameters, their dependence on subject’s heart rate (HR)
is analyzed.

II. RELATED STUDIES

In clinical medicine, a gold standard for the detection of
atherosclerosis is the ABI measurement [2]. However, abnor-
mal ABI< 0.9 does not necessarily reveal the atherosclerosis
before the disease has developed from arterial stiffening into
stenosis or occlusions. Still, there are practically no simple and
cost-effective options for vascular evaluation, although several
authors have proposed various analysis and measurement
methods for the arterial PW analysis. The data for the PW
analysis is most commonly collected as a pressure pulse from
the radial or carotid artery by using a tonometric sensor [7],
[8], or as a volume pulse by using index finger PPG [5], [6].
In the tonometric technique, a pressure transducer is placed on
top of a superficial artery so that the artery is applanated. In the
PPG technique, the varying peripheral blood volume modifies
the absorption or reflection coefficient of the tissue in optical
pathway of the light, and this is observed by measuring the
transmitted or reflected light intensity. These different methods
do not provide exactly equivalent signals because not only the
measurement points are usually different, but also because the
peripheral blood pressure and volume depend non-linearly on
each other [5].

In the analysis point of view, peripheral augmentation
indices (pAIx) as the ratio of second and first systolic peak
amplitudes have often been used in the pressure PW analysis
[7], [8]. For the PPG signal analysis, Takazawa et al. have
proposed a parameter called aging index (AGI), which is based
on the first five local extremities of the second derivative of
index finger PPG [6]. Other PPG-based indices found from
literature are reflection index (RI) as the ratio of diastolic and
systolic peak amplitudes and stiffness index (SI) as the ratio
of patient’s height and the time delay tpp between the systolic
and diastolic peaks [5], [9].

In recent years, several pulse wave decompositions have
also been proposed due to increased computational capabilities
[5], [10]–[12]. In PW decomposition, the measured PW is
decomposed into 2–5 highly non-linear components that model
the percussion wave and its reflections. However, there are
several major drawbacks with PW decompositions based on
iterative non-linear optimization procedures, such as their
computational complexity and ambiguity of the results.

III. MATERIALS AND METHODS

A. Measurement hardware and sensor placement

All the signals were measured by using a synchronous
wireless body sensor network [13]. The PPG signals were
sampled at 500 Hz, whereas ECG and dynamic pressure
signals recorded with EMFi sensors were sampled by using a
sampling frequency of 250 Hz. However, the signals sampled
at 250 Hz were interpolated to 500 Hz before further data
processing for obtaining better temporal resolution and having

Figure 1. Pulse wave sensor placement.

the same sampling frequency for all the signals in later signal
processing steps.

The sensor placement is illustrated in Fig. 1. The PPG-
probes illuminating the tissue with 905 nm infrared light were
located on left index finger and left second toe for collecting
volume PW signals. The dynamic pressure PWs were recorded
with EMFi sensors placed on left ankle (posterior tibial artery),
left wrist (left distal antebrachium / radial artery) and left
cubital fossa (brachial artery). In addition, bipolar ECG was
recorded from the subjects by conventional disposable ECG
electrodes located under the right clavicle and left lower
abdomen.

B. Study subjects

The PW signals were recorded from 52 volunteer test
subjects (30 men and 22 women) who did not have symp-
toms of atherosclerosis or diagnosed arterial diseases. Ankle-
brachial pressure index (ABI) was recorded from all the test
subjects and the test subject candidates having abnormal ABI
(ABI< 0.9 or ABI> 1.3) were excluded from this study.
The measurements were conducted in Tampere University
Hospital (Tampere, Finland), Oulu University Hospital (Oulu,
Finland) and in Tampere University of Technology (Tampere,
Finland). The patient measurements were accepted by the
local ethical committees of the hospital districts (decision
IDs R14096 and 69/2014 245§) and the Finnish National
Supervisory Author of Health and Welfare (Valvira, ID 272).
All volunteer test subjects were informed on the purpose of the
study and the informed consents were obtained. The subjects
also had a chance to ask further information and interrupt their
participation at any point without reasoning.

In the analysis, the 22–90-year-old test subjects were di-
vided into three age groups: group A as ≤ 40 years, group B as
41–69 years and group C as ≥ 70 years. Groups B and C were
formed by dividing the elder test subjects into two groups,
whereas group A is slightly more distinct subpopulation with
respect the age. The number of test subjects being in each
age group and having different cardiovascular risk factors are
shown in Table I.

C. Signal preprocessing

All the signal processing was done offline in MATLAB
(version R2014b) environment. In preprocessing stage, the
signals were synchronized based on the time stamps of each
data point. After the synchronization, the signals were filtered
with a Savitzky-Golay (SG) smoothing filter having a window
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Table I
NUMBER OF PATIENTS HAVING DIFFERENT CARDIOVASCULAR RISK

FACTORS IN EACH AGE GROUP.
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A: ≤ 40 29.6 ± 4.6 54.7 ± 10.2 12 1 0 0 0 1 0
B: 41–69 61.5 ± 6.9 54.8 ± 8.4 19 1 2 3 1 1 3
C: ≥ 70 76.5 ± 5.2 52.7 ± 10.6 21 1 3 4 3 4 4
Σ: 22–9060.2 ± 19.1 53.9 ± 9.8 52 3 5 7 4 6 7

length of 91 samples and a polynomial order of 2. In addition,
the signals were lowpass-filtered with a finite impulse response
(FIR) filter having a cut-off-frequency of 10 Hz, transition
band of 10 Hz–12 Hz, pass band ripple of 0.05 dB and stop
band attenuation of 100 dB, as proposed in [14]. The relatively
heavy filtering is required since the features detected in the
parameter extraction are based on high-order derivatives of
the PW signals. However, this does not significantly affect to
the shape of PW contour, as seen in the examples shown in
Fig. 2.

The individual PWs were detected by using the R-peaks
found from the recorded ECG signal as a marker of heartbeats:
the last local minimum after the R-peak and before the steepest
rise of the PW was considered as a boundary between two
consecutive PWs.

D. Pulse wave parameter extraction

For each PW from each measurement channel, four tradi-
tional pulse wave parameters were defined based on the PW
contour and its derivatives: pAIx, RI, tpp and AGI. Before the
parameter extraction, a linear trend fixed to the end points was
subtracted from each individual PW.

For the parameter determination, let the ith individual PW
be fi = [yi,1, yi,2, . . . , yi,N ] and f ′i , f

′′
i , f ′′′i , f (4)

i , and f (5)
i its

1st, 2nd, 3rd, 4th, and 5th derivatives approximated by discrete
differences, respectively. As the first step, the maximum of fi
is detected. Next, a point of incisura dividing the PW into
systolic and diastolic parts is searched. This is detected as the
last zero-crossing from negative to positive of f ′i in the search
window limited by a point 80 ms after the maximum of fi
and a point which corresponds to 65% from the total length
of the PW. In case of the absence of such zero-crossing of
f ′i , the location of incisura is detected at the location of the
highest peak of f ′′i found from the same interval. Examples
illustrating the detection of incisura are shown in Fig. 2 for
both cases.

1) RI and tpp: RI is defined as the ratio of diastolic and
systolic peak amplitudes B and A as

RI =
B

A
. (1)

Peak-to-peak time tpp is defined as the time delay between
the systolic and diastolic peaks A and B, respectively. The
graphical explanations for A and B are shown in Fig 2.

However, especially with clinically interesting cases i.e.
people with vascular diseases, the location and the amplitude

of the diastolic peak is often everything but clear and obvious.
If there is a clear diastolic local maximum, i.e. there is a
zero-crossing of f ′i from positive to negative in the diastolic
part of the PW, this point is selected as the location of the
diastolic peak. If such diastolic zero-crossing of f ′i is missing,
the location for the diastolic peak is defined as the first zero-
crossing of f ′′i from positive to negative in the diastolic part
of the PW. This point corresponds to a point in which the f ′i
is closest the zero. [14]

2) pAIx: The basic idea behind pAIx proposed e.g. in [8]
is to calculate the parameter as the ratio of the amplitudes of
late and early systolic peaks as

pAIx =
P2

P1
. (2)

However, the two overlapping peaks are often indistinguish-
able from each other. For this reason, fourth order derivative
analysis is needed for revealing the location of hidden systolic
peak as proposed in [15]: If the sign of the f (5)

i (i.e. the slope
of f (4)

i ) at the point corresponding to the systolic maximum
of PW is

1) positive, this point is considered as a point for the late
systolic peak P2 and the last zero-crossing of f (4)

i from
positive to negative before P2 as early systolic peak P1.

2) negative, this point is considered as a point for the early
systolic peak P1 and the first zero-crossing of f (4)

i from
negative to positive after P1 as a late systolic peak P2.

The detection of early and late systolic peaks is illustrated in
Fig. 2 for different kind of cases: the left side panels are for
case 2 and the right side panels for case 1.

3) AGI: AGI is calculated based on its definition [6] by
using the amplitudes of the first five extremities of f ′′i as

AGI =
b− c− d− e

a
(3)

in which a is the maximum of f ′′i and b, c, d, and e are the
following local extremities (both peaks and throughs) of f ′′i .

E. Outlier replacement in the time series of the parameters
Because of derivative-based feature extraction algorithms

and artefact-containing signals, the time-series of the com-
puted parameters contain occasionally outliers. In order to
remove the outliers, parameters related to the PWs observed at
different measurement points and caused by each jth heart beat
were organized as feature vectors xj = [x1, x2, . . . , xn]T ∈
Rn where each xi represents the value of one arterial index
from one measurement point. Because the total number of
PW measurement points is 5 and 4 parameters are determined
for each measurement point, each xj has 20 elements. The
feature vectors of each test subject k were gathered into a
matrix Xk = [x1,x2, . . . ,xm]T ∈ Rm×n where m refers
to the number of heart beats. Due to motion artefacts, all
measurement channels cannot provide useful signal all the
time, so the missing values of each time series were replaced
by its median. The outliers of the time-series (columns) in Xk

were replaced by using a winsorizing and principal component
analysis based multivariate method proposed in [16] and by
implementing Huber’s M-estimator with parameter values of
k = 1.5 and ε = 10−5.



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. ZZ, XXMONTH 201Y 4

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
M

F
i s

ig
na

l (
no

rm
al

iz
ed

)

-0.5

0

0.5

1

P
1

A

P
2

B

In
ci

su
ra

EMFi signal from left ankle (male, 49 years)
Detrended PW
SG&LP filtered f

i

LP filtered f
i

f
i
''

f
i
(4)

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

P
P

G
 s

ig
na

l (
no

rm
al

iz
ed

)

-0.5

0

0.5

1

P
1

A

P
2

B

In
ci

su
ra

PPG signal from left 2nd toe (male, 77 years)
Detrended PW
SG&LP filtered f

i

LP filtered f
i

f
i
''

f
i
(4)

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
M

F
i s

ig
na

l (
no

rm
al

iz
ed

)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

P
1

A

P
2

B

In
ci

su
ra

EMFi signal from left wrist (male, 35 years)
Detrended PW
SG&LP filtered f

i

LP filtered f
i

f
i
''

f
i
(4)

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
P

G
 s

ig
na

l (
no

rm
al

iz
ed

)

-0.5

0

0.5

1

P
1

A
P

2

BIn
ci

su
ra

PPG signal from left index finger (female, 90 years)
Detrended PW
SG&LP filtered f

i

LP filtered f
i

f
i
''

f
i
(4)

Figure 2. Detrended PW without any digital filtering, both Savitzky-Golay (SG) and low-pass (LP) filtered PW and only low-pass filtered PW for different
kind of pulse waves. Also 2nd and 4th order derivatives based on SG&LP filtered PWs are shown. In each figure, the two leftmost chracteristic points are
for pAIx determination and the two rightmost charecteristic points are for the determination of incisura and dicrotic wave.

F. Combined parameters

The single parameters may have high beat-to-beat variation
and different parameters may provide sometimes inconsistent
information on the vascular health or be skewed systematically
because the particular features of the PW may be ambiguous
with some individuals. Earlier, only a sensor modality and
measurement point specific analysis methods have been pro-
posed [5]–[12] although additional measurement points may
provide different perspective to the PW analysis. In addition,
valuable information could be extracted from the data by
computing multiple parameters from the PW and condensing
them as a new more representative index.

The leading hypothesis behind the combined parameters
is to reduce the uncertainty of the results by increasing the
amount of correlating measurements of the same phenomenon
with independent and random variations and therefore improv-
ing the signal-to-noise ratio of the result. We tested all the
possible combinations that can be formed by averaging the
individual parameters in the same scale as

Ij =
1

N

∑
zi∈Ω

zi (4)

where zi refers to the selected outlier-corrected individual
parameters, Ω is the set of the selected parameters and
N is the the number of selected parameters. Therefore, 25
different groups of different combinations are formed (and the

results Ij are subscripted) as follows: groups 1–4 include all
combinations containing pAIx values from 2–5 measurement
points; groups 5–8 include all combinations containing RI
values from 2–5 measurement points; groups 9–12 include
all combinations containing tpp values from 2–5 measurement
points; groups 13–16 include all combinations containing
AGI values from 2–5 measurement points; and groups 17–
25 include all combinations containing 2–10 pAIx or RI
values. The explanations for the selected combined parameters
Ij are shown in Tables II–III, and the number of possible
combinations in each groups varies between 1 and 252.

If the individual parameters from different scales were
combined (such as tpp and interval-scaled AGI), the input data
should be normalized before the analysis. However this is not
a straigthforward process because of non-fixed endpoints of
the parameter ranges. For this reason, we combined only the
parameters already being in the same scale, but the techniques
that can be utilized in constructing more advanced models are
included in our future interests.

G. Age dependence
The age dependence of the individual and combined pa-

rameters were studied both based on the mean values of each
parameter as well as based on the parameter values obtained
from individual PWs.

As the number of test subjects in each age group is only
12–21, two-sided Mann-Whitney U-tests are implemented to
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Table II
INDIVIDUAL PARAMETERS (Ω) USED IN THE DETERMINATION OF

COMBINED PARAMETERS Ij . THE EXPLANATIONS FOR THE ITEMS IN Ω
ARE SHOWN IN THE FIRST COLUMN OF TABLE III.

j Set of individual parameters, Ωj Set of individual parameters, Ω

1 {Wp, Fp} 14 {WA, FA, TA}
2 {Wp, Fp, Tp} 15 {WA, CA, FA, TA}
3 {Wp, Ap, Fp, Tp} 16 {WA, CA, AA, FA, TA}
4 {Wp, Cp, Ap, Fp, Tp} 17 {Wp, Fp}
5 {AR, TR} 18 {Wp, Fp, TR}
6 {AR, FR, TR} 19 {Wp, AR, Fp, TR}
7 {WR, AR, FR, TR} 20 {Wp, Ap, Fp, Tp, TR}
8 {WR, CR, AR, FR, TR} 21 {Wp, Cp, Ap, Fp, Tp, TR}
9 {Ft, Tt} 22 {Wp, Cp, Ap, AR, Fp, Tp, TR}
10 {At, Ft, Tt} 23 {Wp, Cp, Ap, AR, Fp, FR, Tp, TR}
11 {Ct, At, Ft, Tt} 24 {Wp, WR, Cp, Ap, AR, Fp, FR, Tp, TR}
12 {Wt, Ct, At, Ft, Tt} 25 {Wp, WR, Cp, CR, Ap, AR, Fp, FR, Tp,
13 {FA, TA} TR}

check whether there are statistically significant differences in
the parameter values found for different age groups. In the
statistical testing, p-values less than 0.05 are considered as
statistically significant.

H. HR dependence

The varying HR of a subject or between subjects is a
potential confounder of the analysis because the duration
of the PW affects also the peak amplitudes of the PW.
Therefore we computed the correlation coefficients between
the instantaneous HR and the parameter values. This analysis
was performed for each individual test subject for each tested
parameter in order to check the intra-subject parameter value
dependence on HR. The average correlation coefficients and
their standard deviations are reported as results from this test.
We also calculated the correlation coefficients between each
test subject’s average HR and average parameter values in
order to study the inter-subject variability of the parameter
values due to HR.

IV. RESULTS

A. Correlation between age and parameter value

Pearson’s product moment correlation coefficient between
the age and PW parameter values are shown in Table III
for both individual parameter values as well as combined

parameter values. The results of correlation analysis are shown
for both averaged parameter values as well as for parameter
values based on individual PWs. The age-dependence of the
combined parameters is graphically illustrated with regression
lines in Fig. 3 for the averaged data. The maximum absolute
values of the Pearson’s correlation coefficient between the age
and individual parameter values are below 0.80, being 0.71–
0.79 (p < 10−4) and many individual parameters have prac-
tically no correlation with age. However, higher correlation
coefficients are found for the selected combined parameters
I1−I25. The maximum obtained correlation coefficient of the
combined parameters equals 0.85 (p < 10−4).

Similarly as with Pearson’s correlation coefficient, the re-
sults for the analysis of Spearman’s rank correlation coefficient

Table III
TWO DIFFERENT CORRELATION COEFFICIENTS FOR AGE DEPENDENCE,

PEARSON’S r FOR AGE-PARAMETER AND SPEARMAN r FOR AGE
GROUP-PARAMETER DEPENDENCE. ALSO THE CORRELATION

COEFFICIENTS BETWEEN HR AND PARAMETER VALUES ARE SHOWN FOR
INTRA- AND INTER-SUBJECT HR DEPENDENCE.

Age dependence HR dependence
S Pearson’s r Spearman’s r Intra- Inter-
or Para- Aver. Indiv. Aver. Indiv. subject r subject
G meter r r |r| |r| mean ± std r
Wp

W
ri

st

pAIx 0.76∗ 0.74∗ 0.63∗ 0.63∗ -0.20±0.20 -0.11
WR RI 0.04 0.08∗ 0.05 0.08∗ -0.23±0.26 0.28⊕

Wt tpp -0.37‡ -0.40∗ 0.47† 0.47∗ -0.01±0.18 0.33⊕

WA AGI 0.64∗ 0.62∗ 0.57∗ 0.56∗ -0.15±0.19 -0.22
Cp

C
ub

it.
F.

pAIx 0.63∗ 0.63∗ 0.56∗ 0.56∗ -0.16±0.23 -0.11
CR RI -0.13 -0.06∗ 0.04 0.10∗ -0.20±0.25 0.22
Ct tpp -0.48† -0.51∗ 0.50† 0.51∗ -0.02±0.19 0.39‡

CA AGI 0.49† 0.47∗ 0.53∗ 0.50∗ -0.10±0.20 -0.10
Ap

A
nk

le

pAIx 0.52∗ 0.53∗ 0.35⊕ 0.37∗ -0.05±0.13 -0.02
AR RI 0.47† 0.50∗ 0.50† 0.51∗ -0.17±0.24 0.07
At tpp -0.59∗ -0.59∗ 0.48† 0.51∗ -0.02±0.18 0.51†

AA AGI 0.36‡ 0.35∗ 0.37‡ 0.40∗ -0.02±0.13 -0.11
Fp

Fi
ng

er

pAIx 0.79∗ 0.78∗ 0.68∗ 0.67∗ -0.20±0.21 -0.10
FR RI 0.10 0.14∗ 0.24 0.24∗ -0.22±0.26 0.50†

Ft tpp -0.78∗ -0.77∗ 0.68∗ 0.66∗ 0.05±0.18 0.14
FA AGI 0.71∗ 0.71∗ 0.65∗ 0.64∗ -0.15±0.16 -0.17
Tp

To
e

pAIx 0.59∗ 0.58∗ 0.70∗ 0.65∗ -0.10±0.18 -0.03
TR RI 0.46† 0.46∗ 0.54∗ 0.50∗ -0.24±0.29 0.29⊕

Tt tpp -0.64∗ -0.65∗ 0.64∗ 0.63∗ -0.04±0.22 0.23
TA AGI 0.41‡ 0.39∗ 0.43‡ 0.37∗ -0.07±0.19 -0.11

pA
Ix

I1 0.81∗ 0.80∗ 0.66∗ 0.67∗ -0.23±0.20 -0.10
I2 0.83∗ 0.82∗ 0.71∗ 0.71∗ -0.23±0.20 -0.08
I3 0.84∗ 0.83∗ 0.70∗ 0.70∗ -0.21±0.20 -0.06
I4 0.82∗ 0.82∗ 0.69∗ 0.69∗ -0.23±0.21 -0.06

R
I

I5 0.59∗ 0.61∗ 0.59∗ 0.59∗ -0.24±0.26 0.24
I6 0.50† 0.53∗ 0.53∗ 0.55∗ -0.27±0.28 0.39‡

I7 0.43‡ 0.47∗ 0.48† 0.50∗ -0.29±0.28 0.42‡

I8 0.33⊕ 0.38∗ 0.43‡ 0.44∗ -0.30±0.28 0.44‡

t p
p

I9 -0.79∗ -0.78∗ 0.70∗ 0.70∗ -0.00±0.23 0.21
I10 -0.80∗ -0.80∗ 0.67∗ 0.68∗ -0.01±0.21 0.37‡

I11 -0.75∗ -0.76∗ 0.66∗ 0.67∗ -0.01±0.21 0.40‡

I12 -0.70∗ -0.72∗ 0.65∗ 0.65∗ -0.01±0.22 0.39‡

A
G

I

I13 0.76∗ 0.74∗ 0.69∗ 0.68∗ -0.13±0.19 -0.19
I14 0.78∗ 0.76∗ 0.69∗ 0.68∗ -0.17±0.20 -0.21
I15 0.78∗ 0.76∗ 0.71∗ 0.70∗ -0.18±0.22 -0.20
I16 0.75∗ 0.74∗ 0.70∗ 0.69∗ -0.15±0.20 -0.18

pA
Ix

&
R

I

I17 0.81∗ 0.80∗ 0.66∗ 0.67∗ -0.23±0.20 -0.10
I18 0.83∗ 0.82∗ 0.75∗ 0.73∗ -0.27±0.25 0.02
I19 0.84∗ 0.83∗ 0.73∗ 0.72∗ -0.28±0.24 0.04
I20 0.85∗ 0.84∗ 0.75∗ 0.74∗ -0.24±0.24 0.01
I21 0.85∗ 0.84∗ 0.74∗ 0.73∗ -0.25±0.24 -0.00
I22 0.85∗ 0.84∗ 0.73∗ 0.72∗ -0.26±0.24 0.01
I23 0.82∗ 0.82∗ 0.70∗ 0.72∗ -0.28±0.25 0.08
I24 0.80∗ 0.79∗ 0.69∗ 0.69∗ -0.29±0.26 0.11
I25 0.75∗ 0.75∗ 0.66∗ 0.66∗ -0.29±0.26 0.14

∗: p < 10−4, †: p < 10−3, ‡: p < 0.01, ⊕: p < 0.05. S or G: Symbol of the
individual parameter or the parameter group in which the combined parameter is based

on. Cubit. F. = cubital fossa

between the parameter values and the age groups presented
in Table I are shown in Table III. The highest Spearman’s
correlation coefficient obtained for the individual parameters
equals to 0.70 (p < 10−4). As seen in Table III, higher
correlations are again obtained with the combined parameters,
being 0.70–0.75 (p < 10−4).

B. Differences between different age groups

The results of the statistical tests between different age
groups are shown in Table IV for the individual and combined
parameters. The distributions of the averaged data are also
illustrated with boxplots in Fig. 4 for both types of parameters.
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Figure 3. Scatter plots, regression lines and their coefficients for the combined parameters I1–I25.

Table IV
THE p-VALUES FOR THE REJECTION OF THE NULL HYPOTHESES OF THE

TWO-SIDED MANN-WHITNEY U-TESTS FOR THE INDIVIDUAL AND
COMBINED PARAMETERS BETWEEN DIFFERENT AGE GROUPS.

Combined parameters Individual parameters
Param. A vs. B B vs. C i A vs. B B vs. C
I1 < 10−4 NS Wp < 10−4 NS
I2 < 10−4 NS WR NS NS
I3 < 10−4 NS Wt < 10−3 NS
I4 < 10−4 NS WA < 10−4 NS
I5 < 10−2 < 0.05 Cp < 10−4 NS
I6 < 0.05 < 0.05 CR NS NS
I7 < 0.05 NS Ct < 10−3 NS
I8 < 0.05 NS CA < 0.05 NS
I9 < 10−3 < 10−2 Ap < 0.05 NS
I10 < 10−3 < 0.05 AR < 10−2 NS
I11 < 10−3 < 0.05 At < 10−2 NS
I12 < 10−3 NS AA NS NS
I13 < 10−4 < 0.05 Fp < 10−4 < 0.05
I14 < 10−4 NS FR NS NS
I15 < 10−4 NS Ft < 10−3 < 0.05
I16 < 10−3 < 0.05 FA < 10−3 NS
I17 < 10−4 NS Tp < 10−2 < 10−2

I18 < 10−4 < 10−2 TR < 0.05 < 10−2

I19 < 10−4 < 0.05 Tt < 10−2 < 10−2

I20 < 10−4 < 10−2 TA NS NS
I21 < 10−4 < 0.05 A, B, and C refer to the age groups
I22 < 10−4 < 0.05 presented in Table I. The column
I23 < 10−4 < 0.05 header i refers to the individual
I24 < 10−4 NS parameters presented in Table III.
I25 < 10−3 NS NS = not significant, i.e. p ≥ 0.05.

C. HR dependence

The averages of the correlations between test subject’s
instantaneous HR and parameter values are presented in Table
III as intra-subject HR-dependence. The absolute value of each
correlation coefficient is less than 0.3, but the standard devia-
tions are quite high, being 0.29 in maximum. The maximum

correlations between the averaged HR and parameter values
(inter-subject HR dependence) equal to 0.51 and 0.44 for the
individual and combined parameters, respectively.

V. DISCUSSION

A. Age dependence

In this study, we showed that combining the data from
multiple measurement points may provide additional infor-
mation for arterial screening. Although there are parameter
values with strong age dependence, it does not automati-
cally guarantee that those particular parameters are versatile
in discriminating the healthy arteries from e.g. the arteries
having atherosclerotic changes. However, the arteries tend to
degenerate with age and the probability of atherosclerosis is
linked to age, so the parameters having strong age dependence
are promising startpoints for a study where differences be-
tween healthy control subjects and e.g. atherosclerotic patients
are studied. It is also possible that the obtained regression
equations (Fig. 3) can be utilized in compensating the effects
of age or checking whether a particular PW parameter value
is normal with respect to patient’s age.

According to the results, the highest age-parameter value
correlations and the best discrimination capability between
different age groups are seen with the combined parameters
that are composed of the individual PW parameters based on
the signals recorded from both upper and lower limbs, such
as I18–I23.

Only few reference values are available for comparing the
obtained Pearson’s correlation coefficients since the parame-
ters have previously been tested only for a single measurement
point and method. Takazawa et al. [6] reported a correlation
coefficient of 0.80 (p < 10−3) for the index finger based AGI,
whereas a correlation of 0.71 (p < 10−4) was obtained in this



IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. XX, NO. ZZ, XXMONTH 201Y 7

Parameter I
j

1 2 3 4 5* 6* 7 8 9* 10* 11* 12 13* 14 15 16* 17 18* 19* 20* 21* 22* 23* 24 25N
or

m
al

iz
ed

 v
al

ue

-2

-1

0

1

2

Combined parameters

Parameter

N
or

m
al

iz
ed

 v
al

ue

-5
-4
-3
-2
-1
0
1
2
3
4

Wp WR Wt WA Cp CR Ct CA Ap AR At AA Fp* FR Ft* FA Tp* TR* Tt* TA

Individual parameters

Figure 4. Distributions of different indices for each age group for both combined parameters (upper panel) and individual parameters (lower panel). Each
group of three boxplots represents different arterial index and the joint distribution of each parameters are normalized. The order from left to right in each
group is ≥ 70year-old (blue), 40–69-year-old (red) and < 40-year-old (yellow) test subjects. For the parameters marked with *, p < 0.05 for all groups.

study. Kohara et al. [7] have reported correlation coefficients of
0.619 (p < 10−3) and 0.644 (p < 10−3) for men and women,
respectively, between the wrist pAIx and the age. In this study,
higher correlations, 0.76 (p < 10−4) and 0.74 (p < 10−4)
were obtained for wrist pAIx values based on averaged data
and individual PWs, respectively. The gender based analysis
was not performed in this study since the sex ratio does not
follow the uniform distribution especially in the youngest test
subject group A.

Related to index finger PPG based tpp, Pearson’s corre-
lations of −0.78 (p < 10−4) (averaged data) and −0.77
(p < 10−4) (individual PWs) were achieved in this study.
These are somewhat higher than the correlations coefficients
reported in [14], 0.63 (p < 10−3) for a parameter called
stiffness index which depends on tpp inversely. In the same
study, a correlation coefficient of 0.24 was reported between
the age and index finger PPG based RI. Low age dependence
of index finger RI is supported also by this study, since
insignificant correlation of 0.10 was found. However, the RIs
based on the lower limb signals have clearly higher linear
age dependencies in this study (r = 0.46–0.50 for ankle and
toe PW based signals) than those ones computed based on
upper limb signals. The reflection causing the PW features
detected as a reflected diastolic wave in the RI determination
have at least different arterial pathways and possibly different
reflection sites for the upper and lower limbs. This may explain
the difference in the age dependencies of the upper and lower
limb RIs. On the other hand, the arteries of the lower limbs are
longer but also more prone to develop atherosclerotic plaques
than are the arteries in the upper limbs. The plaques causing
either stiffening, stenosis or occlusions are more common
with older people. Those changes in the major arteries of the
lower limbs may attenuate the amplitude of the reflections
so that practically only the stronger percussion wave caused

by the heartbeat passes through the arteries of the leg while
the reflected wave is significantly attenuated [3]. In addition,
the reflected waves arrive earlier due to increased pulse wave
velocity caused by stiffened arteries as a result of aging.
These two factors may cause highly overlapping percussion
and reflected waves which result in difficulties at least in
visual detection of the points of incisura and the reflected
diastolic wave (Fig. 2). However, if these features are detected
systematically as derivative based characteristic points in case
of missing obvious local extremities, the amplitude of the
feature considered as reflected diastolic wave increases in with
respect to the percussion wave. For this reason, the individual
parameters labeled in this study as reflection index (RI) may
have different physiological background in case of the upper
and lower limbs, although the required characteristic points
can be detected in a similar way in both cases. This may be an
explanation why there are differences in the age dependencies
between the RIs determined from the arms and legs.

The p-values as a result of Mann-Whitney U-tests in Table
IV and boxplots in Fig. 4 show that the individual parameter
values from different age groups are strongly overlapped,
whereas the combined parameters have better discrimination
capability between different age groups. Also the variance
inside each age group is clearly smaller with most of the
combined parameters than with the individual parameters.

A notable issue is that the group of 40–69-year-old test
subjects differs from younger with higher significance level
than from the elders’ group when analyzing the combined pa-
rameters. This can be explained by two factors: These middle-
aged test subjects may have latent cardiovascular diseases with
no symptoms whereas young people usually do not have such
problems due to the strong age dependence of the prevalence
of atherosclerosis. On the other hand, the age distributions of
the young (group A) and middle-aged (group B) test subjects
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are more distinct than the age distributions of middle-aged and
elderly (group C) test subjects (Table I).

B. HR dependence

As seen in Table III, the average correlation coefficients
between the parameter values and RR intervals are low, below
0.30 with all the parameters. If the age groups are studied
separately, the strongest HR dependence is in the youngest
age group A. This explains the large standard deviation of
the HR correlation. The differences between the groups may
be a result of respiratory sinus arrhythmia which is generally
stronger in young healthy subjects. However, these small intra-
subject variations can be eliminated by averaging the PW
parameters over time, but the changes in the average HR
between different measurements are more problematic. For
these reasons, it is important that the subject being measured
is in standard conditions, e.g. in rest and relaxed.In this
study, the average instantaneous HR values of each study
group are within 2 bpm (Table I) indicating that the HR does
not significantly distort the analysis. Based on the obtained
results, especially purely tpp and RI based parameters indicate
larger inter-subject variations due to HR than e.g. AGI and
pAIx based parameters (Table III), although any clear HR
dependence cannot be observed by a visual inspection of the
results.

VI. CONCLUSIONS

We showed that our novel measurement system and analysis
methods are capable of detecting the age-dependence of sev-
eral pulse wave (PW) parameters from subjects with normal
ABIs and without symptoms or previously diagnosed cardio-
vascular diseases. Altogether 14 out of 25 presented combined
PW parameters have equal or stronger age-dependence with
higher significance level than any of the tested individual
20 PW parameters for describing the arterial condition in the
study population of 52 healthy 22–90-year-old test subjects
with normal ABIs and without diagnosed cardiovascular dis-
eases or symptoms. Also 13 combined parameters showed
statistically significant differences between the 3 different age
groups.

These findings can be utilized in future studies aiming for
the development of non-invasive, fast and cheap diagnostic
equipment for the detection of the patients at risk before they
observe any symptoms. However, the strong age dependence
in healthy subject population does not confirm that the pa-
rameters can be used in discriminating whether the patients
do have atherosclerosis or not. In addition, the scaling of the
parameters with respect to the HR may be a necessary step
in our further studies although the inter-subject variation of
the PW parameter values cannot be fully explained by the
HR. Further investigation on this matter is required, and it
will be an important part on our future work. Nevertheless,
the study shows that combining the PW parameters from
multiple measurement points and sensor modalities have un-
exploited potential in the PW analysis. In addition, the results
encourage to implement analysis methods originally intended
for PPG volume PWs also for pressure PWs and vice versa.

Further studies with e.g. atherosclerotic patients are needed
and planned for finding out which analysis methods provide
the most accurate results in discriminating whether the test
subject has healthy or degenerated arteries.
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