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Abstract—In this article, we discuss the modeling and removal 

of fixed pattern noise (FPN) in photonic mixture devices 

employing the Time-of-flight principle for range measurements 

and scene depth estimation. We present a case which arises from 

low-sensing (LS) conditions caused by either external factors 

related with scene reflectivity or internal factors related with the 

power and operation mode of the sensor or both. In such case the 

FPN becomes especially dominating and invalidates previously 

adopted noise models, which have been used for removal of other 

noise contaminations in ToF measurements. To tackle LS cases 

we propose a noise model specifically addressing the presence of 

FPN and develop relevant FPN removal procedure. We 

demonstrate, by experiments with synthetic and real-world data, 

that the proper modeling and removing of FPN is substantial for 

the subsequent Gaussian denoising and yields accurate depth 

maps comparable with the ones obtainable in normal operating 

mode. 

 
Index Terms— Time-of-Flight (ToF), Photonic Mixer Device, 

Fixed-pattern noise (FPN), low-sensing environment, denoising 

I. INTRODUCTION 

Various automotive, entertainment, and gaming 

applications deal with 3D visual scenes. For these, it is 

important to measure or estimate distances between an 

observer at sensor position and scene objects. Relevant 

technologies are termed as range or depth sensing and include 

approaches based on structured light, LiDAR, depth from 

stereo, and Time-of-flight (ToF) active sensing. The latter 

approach has become especially attractive as it delivers the 

scene geometry information simultaneously in a form of 2D 

(range, depth) map, which can be interpreted as a 2D gray-

scale image [1], [2], [3]. In a ToF device, range data is 

measured by the elapsed time during which a light signal 

travels from the device to the scene (object) and back to the 

device. Contemporary ToF devices have achieved substantial 

progress in operating outdoors beyond a kilometer range [4], 

and delivering higher range resolution [5]. However, they still 

have a rather low spatial resolution (e.g. 204 by 204 pixels) 

and relatively high power consumption [6], [7]. For keeping 

the measurement uncertainty low, ToF devices require a 

strong reflection signal [8], [9], [10]. This is problematic for 

low-reflectivity surfaces as well as when such devices need to 
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be integrated in mobile devices where power-consumption of 

electronic elements is vital for the feasible integration. In both 

cases, denoising of captured range data has to be applied [11], 

[12], [13]. For experimental purpose, such problematic 

sensing environment can be easily simulated by intentionally 

reducing the power of the system – in this paper also referred 

to as low-sensing (LS) environment [12], [14], [15], [16]. 

In this paper, we provide noise analysis for a ToF device 

operating in LS environment. We discuss the role of various 

noises present in the signal and suggest proper order of 

denoising and develop and compare appropriate denoising 

methods. We put special emphasize on removing the so-called 

fixed-pattern noise (FPN) [8], [9], [17], [18], [19]. FPN is a 

well-known phenomenon in sensors for infrared light [17], 

[18]. Here we develop the FPN modeling and removal taking 

into account the ToF sensor properties. We also develop 

further our linear filtering approach presented in [20] for 

utilizing the periodic pattern of FPN [8], [19] for its removal. 

After removing FPN, we employ several modern denoising 

algorithms [21], [22], [23] for removing the random noise. 

The correctness of the presented noise analysis and model and 

the overall denoising procedure are demonstrated by means of 

several experiments on synthetic and real data. For 

experiments, we use devices based on the Photonic Mixer 

Device (PMD) sensor technology [6], [9], [24], [25] – this 

being one of the most popular practical implementation of ToF 

sensing hardware. 

The outline of the paper is as follows: In Section II we give 

a brief overview of the ToF sensing principle and define what 

we call LS environment. Section III introduces a noise model 

of a ToF system with a special emphasizes on the FPN. It is 

followed by description of filter design for FPN removal in 

Section IV. Finally, in Section V, the overall denoising 

procedure is demonstrated by means of examples and some 

concluding remarks are given in Section VI. 

A. Notations 

In the paper, P and Q are used to denote the observed 

(measured) value and true value of data, respectively. In 

vector form they are denoted in bold, that is, 𝑸 =
[𝑄0 𝑄1 𝑄2 𝑄3]. The data is organized in spatial phase frames, 

which are 2D functions of spatial coordinates (pixels) 𝑄(𝑥, 𝑦). 

Subscripts k and l in 𝑄𝑘,𝑙  refer to the number of phase frames 

within an observation period, and observation number, 

respectively. If not mentioned otherwise, it is assumed that 

𝑘 = 0,1,2,3. Accents hat (e. g. 𝑄̂) and tilde (e. g. 𝑄̃) are used 

for denoting the estimated true value and true value with 

added Gaussian noise, respectively. Values 𝐴𝑸, 𝜑𝑸, and 𝐶𝑸 

refer to the amplitude, phase, and offset of the sinusoidal 
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function used for estimating the depth, respectively, with sub 

index determining the phase frame used for their evaluation. 

To avoid doubt, we reserve the term ‘removal’ for tackling the 

FPN, while we use the term ‘denoising’ for tackling the 

additive Gaussian noise.  

II. BASIC PRINCIPLES OF TIME OF FLIGHT OPERATION 

For the purpose of FPN analysis and modeling, in this section 

we give a brief overview of the ToF sensing principle [8], [9], 

[10] and its performance in LS environment [12], [14], [15], 

[16]. 

A. Time-of-flight sensing principle 

A typical ToF device (c.f. Fig. 1) consists of an opto-

electronic system that beams a continuously modulated 

harmonic light signal (typically in the near-infrared 

wavelength range) in moment 𝑡, and senses back the delayed 

light reflection from the objects in the scene at time 𝑡 + 𝑡𝑑. A 

cross-correlation operation is applied for continuous signals of 

emitted 𝑠(𝑡) and reflected 𝑟(𝑡 + 𝑡𝑑) signals. Assuming ideal 

system and conditions, the result of cross correlation is an 

continuous intensity output signal 𝑞 for a given correlation 

(offset) parameter 𝜏: 

𝑞(𝑡 + 𝜏) = 𝑟(𝑡 + 𝑡𝑑)⨂𝑠(𝑡 + 𝜏) (1) 

with 

𝑠(𝑡, 𝜔) = 𝐶𝑠 + 𝐴𝑠 cos(𝜔𝑡 + 𝜑𝑠) 

𝑟(𝑡 + 𝑡𝑑, 𝜔) = 𝐶𝑅 + 𝐴𝑅 cos(𝜔(𝑡 + 𝑡𝑑) + 𝜑𝑅) 
(2) 

for 𝜔 = 2𝜋𝑓 and 𝑓 = 1/𝑇, where 𝐴 denotes amplitude, 𝜑  
denotes phase delay, 𝐶 denotes modulation offset (or 

modulation contrast), 𝜔 denotes modulation frequency, and T 

is the modulation period. 

 
Fig. 1. A typical Time-of-flight (ToF) device and its components. 

In practice, the cross-correlation in (1) is implemented by 

integrating the output of the correlator for a given value of 𝜏 

over several signal periods depending on the integration time. 

For integration times that are a multiplier of the modulation 

period, that is 𝐼𝑇 = 𝑡1 − 𝑡0 = 𝐾 𝑇, 𝐾 ∈ ℕ this output is a 

cosine function: 

𝑄(𝜏) = ∫ 𝑞(𝑡 + 𝜏)𝑑𝑡
𝑡1

𝑡0

= 𝐶𝑄 + 𝐴𝑄 cos(𝜏 + 𝜑𝑄) (3) 

where 𝜑𝑄 = 𝜔𝑡𝑑 is the phase from which the range can be 

determined. By sampling 𝑄(𝜏) in four points 𝑸 =
[𝑄0, 𝑄1, 𝑄2, 𝑄3], corresponding to 𝜏 = 0, 𝜋/2, 𝜋, 3𝜋/2, the 

amplitude 𝐴𝑸, the offset 𝐶𝑸, and most importantly the phase 

𝜑𝑸 of the 𝑄(𝜏) can be estimated as [9], [26] 

𝐴𝑸 =
√(𝑄0 − 𝑄2)2 + (𝑄3 − 𝑄1)2

2
 

𝐶𝑸 = (𝑄0 + 𝑄1 + 𝑄2 + 𝑄3)/4 

𝜑𝑸 = tan−1 (
𝑄0 − 𝑄2

𝑄3 − 𝑄1

) . 

(4) 

Finally, the measured distance D is proportional to the 

estimated phase 𝜑𝑄 and can be evaluated as 

𝐷𝑸 = 𝑘1

𝜑𝑸𝑐𝐿

4𝜋𝑓
+ 𝑘2, (5) 

where 𝑐𝐿 is speed of light in dry air (𝑐𝐿~2.98×108[m/sec]). 
Parameters k1 and k2 are sensor-dependent constants that 

should be determined by calibration for a particular sensor 

(e.g. compensating for imperfections of the signal generator 

and phase offset / delays due to signal propagation through the 

device). Without loss of generality we can assume that k1=1 

and k2=0. It is obvious that due to the phase-wrap, the distance 

can be measured only inside a range interval  𝜑𝑄 ∈ [0,2𝜋] →

𝐷 ∈ [0, 𝐷𝑀𝐴𝑋], e.g. for 𝑓 = 20 × 106[𝐻𝑧], 𝐷𝑀𝐴𝑋 =  𝑐𝐿/2𝑓 =
7.5 [𝑚] [9]. The data samples 𝑸 obained from the ToF sensor 

are expressed in ToF system units (12 bit integer values). 

Consequently, following (4), the amplitude 𝐴𝑸 and offset 𝐶𝑸 

are also in ToF system units. The phase 𝜑𝑸, estimated from 

phase frames 𝑸 by using (4), is given in radians. Eq. (5) 

converts the phase to the estimated distance 𝐷𝑸 expressed in 

meters. If not mentioned otherwise, these units are 

assumed/used in the rest of this paper. 

The above procedure is calculated pixel-wise for spatial 

phase frames 𝑄𝑘(𝑥, 𝑦), in order to obtain the offset map 

𝐶𝑸(𝑥, 𝑦), amplitude map 𝐴𝑸(𝑥, 𝑦), and phase delay map 

𝜑𝑸(𝑥, 𝑦). In practice, one is not able to directly measure the 

true values 𝑸. Instead, the observed (measured) values 𝑷 are 

mixtures of 𝑸 values and measurement errors of various kinds. 

The amplitude and phase parameters are then calculated from 

the potentially noisy measurements 𝑷. As an example, sensed 

data captured in normal operating mode is shown in Fig. 2 

(image of the used scene is given in Fig. 3b). 
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Fig. 2. Sensed data maps by a ToF device in normal operating mode. a) Phase 

frame 𝑃0(𝑥, 𝑦). b) Phase frame 𝑃1(𝑥, 𝑦). c) Amplitudes 𝐴𝑷(𝑥, 𝑦). d) Phase 

delays 𝜑𝑷(𝑥, 𝑦). 

 
Fig. 3. Experimental scenes. a) Scene with smooth depth for FPN analysis. b) 

Scene with varying reflectance and depths for denoising experiments. 

 

B. Low sensing environment and operating mode 

We define low-sensing (LS) environment [12], [15] as an 

operating mode of a particular ToF device that works in 

suboptimal conditions and therefore generates higher 

measurement errors than the ones defined for normal 

operating mode. There are a number of external (e.g. materials 

of low-reflectivity, low-incident angles of reflected light, 

strong ambient light, multi-reflectivity path) and internal (low-

powered beamers, short integration times, high sensor 

resolution) factors that can cause LS operating mode. External 

factors cannot be influenced by a user or system designer, but 

internal ones can be intentionally introduced in the design, e.g. 

reducing the power of the light beamers for power efficiency 

reasons when using ToF device on / with mobile devices. 

For a typical ToF device, we consider an LS environment, 

when the measurement error 𝐸𝐷 exceeds the maximum error 

𝛦𝑇𝑜𝐹  observed in normal conditions: 

𝐸𝐷 = |𝐷𝑷 − 𝐷| > 𝛦𝑇𝑜𝐹  (6) 

with 𝐷𝑷 and 𝐷 being the measured (observed) and real 

distance, respectively. For example, in the case of the ToF 

device under consideration, CamCube 2.0 by PMDTec™, the 

maximum error for the normal operational mode is given as 

𝛦𝑇𝑜𝐹 = 0.05[𝑚] [27]. It has been observed that for cases 

when the observed amplitude becomes 𝐴𝑷 < 300 [ToF system 

units] then the error becomes larger then 𝛦𝑇𝑜𝐹 . Consequently, 

this value of 𝐴𝑷 is considered as an upper limit defining the 

LS operating mode for this particular device. 

An example for a device operating in LS environment is 

given in Fig. 4. Here, the varying integration time is the factor 

causing an LS environment. As seen in the figure, the lower 

the integration time is, the lower the computed amplitude is. 

As a consequence more noise is present in the phase map. 

Although the noise is quite extreme, as it will be shown later, 

it can be effectively filtered by specific denoising techniques 

thus making it feasible for the ToF device to operate robustly 

in LS conditions. In next subsection we will discuss the noise 

in ToF devices in more detail as basis for developing suitable 

denoising approaches. 

III. NOISE MODEL FOR TIME OF FLIGHT DEVICES OPERATING 

IN LOW-SENSING ENVIRONMENT  

The sensing mechanism in ToF devices is based mainly on 

Complimentary Metal-oxide Semiconductors (CMOS) or 

Charge-coupled Device (CCD) sensors [28]. There are many 

internal causes, due to the sensor or associated electronic 

circuits, that influence the output of the sensors as discussed in 

[8], [24]. All those manifest themselves as noise added to the 

true signal. Among various sources of noise, for practical 

reasons we identify and model two dominant noise types that 

contaminate the data sensed by a ToF device. Those can be 

modeled as additive Gaussian noise and fixed-pattern noise. 

They are discussed in the following sections. 

 

 
Fig. 4. Time-of-flight device in low sensing environment for integration times 

𝐼𝑇 = 50𝜇𝑠 (left column) and 𝐼𝑇 = 200𝜇𝑠 (right column). Upper row: Phase 

delay maps 𝜑𝑷(𝑥, 𝑦); middle row: Amplitude maps 𝐴𝑷(𝑥, 𝑦); lower row: 
Histogram plots of amplitude maps. 

A. Additive Gaussian noise 

First type of noise present in a ToF system is introduced by 

the photonic nature of emitted and reflected light and its 

dissipation in the medium and is related to the light conditions 

of the emitted and sensed signals. This noise is common in all 

imaging sensors (e.g. thermal cameras [17]) and is typically 

considered as a random process with Gaussian distribution. 
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Specifically for the case of LS environment, it dominates over 

the photonic-shot noise, as discussed in [8]. Thus, it is a 

satisfactory assumption for denoising of ToF data. 

Mathematically, the influence of this noise can be expressed 

as 

𝑄̃𝑘(𝑥, 𝑦) = 𝑄𝑘(𝑥, 𝑦) + 𝜂(𝑥, 𝑦) (7) 

where 𝑄𝑘(𝑥, 𝑦) is the value of the true signal (phase frames), 

𝜂(𝑥, 𝑦) is Gaussian noise with zero mean and variance 𝜎2, and 

𝑄̃𝑘(𝑥, 𝑦) is the true signal contaminated with Gaussian noise. 

Due to the assumption of Gaussian noise model, it is 

expected that in an ideal ToF device, the noise variance of 

each pixel is close to constant, that is, 

𝑉𝑎𝑟(𝑄̃0(𝑥, 𝑦)) ≅ ⋯ ≅ 𝑉𝑎𝑟 (𝑄̃3
(𝑥, 𝑦)) ≅  𝜎̃𝑄̃𝑘

2 ≅ 𝜎2. (8) 

This assumption has been verified by empirical estimation of 

covariance matrices from multiple observations of phase 

frames [9]. 

Furthermore, assuming that 𝜎̃𝑄̃𝑘

2  is the variance of each 

phase frame, it turns out that the amplitude variance 𝜎𝑨̃
2 and 

phase variance 𝜎𝝋̃
2 of the estimated correlation signal relate as 

[9]: 

𝜎̃𝐴
2 = 𝜎̃𝑄̃𝑘

2 /2 

𝜎̃𝜑̃
2 = 𝜎̃𝑄̃𝑘

2 /(2𝐴̃𝑸̃
2 ) . 

(9) 

The second relation is especially important as it shows that 

amplitude can be utilized as a confidence measure of expected 

measurement uncertainty of phase and consequently range. As 

such, it provides a confidence map, which can drive ToF 

denoising techniques. The fact that measurements and 

calculated parameters exhibit close-enough Gaussian behavior 

enables one to utilize any modern denoising algorithm for its 

removal. Examples are demonstrated and discussed in Section 

V. 

B. Fixed-pattern noise 

Second type of noise is related more to the hardware 

implementation of the overall ToF device, including the 

sensor, signal generator, LED, correlator, amplifiers, etc. This 

noise is present in every digital sensor and is referred to as 

fixed pattern noise (FPN) [17], [18], [24]. The source of this 

noise can be explained by the structural non-uniformities of 

sensing elements, that is, capabilities of sensing elements to 

integrate different signal intensities. Such variations have 

fixed behavior, but are randomly distributed among the pixels. 

Therefore, this effect has been named FPN. Furthermore the 

sensor elements are read column-wise or row-wise. Therefore, 

FPN typically appears as “column-” or “row-wise” stripes of 

slightly brighter and darker intensity across the acquired data. 

The FPN is clearly visible both for raw data provided by 

the measured phase frames 𝑷(𝑥, 𝑦) as well as amplitude 

𝐴𝑷(𝑥, 𝑦) and phase 𝜑𝑷(𝑥, 𝑦) evaluated from those 

measurements (c. f. Fig. 4 a,b and Fig. 6a). Furthermore, FPN 

appears visually stronger in LS environment and is negligible 

in normal operating mode (c. f. Fig. 2). In normal operating 

mode, the influence of FPN appears usually below the 

resolution of the device and can be excluded from 

consideration. In LS environment, the noise influence 

becomes important, since its levels start to be comparable to 

the sensed charges – FPN usually appears dominant over 

resulted sensed signal that holds true, but noisy information. 

FPN is modeled as a signal-dependent noise for each phase 

frame  

𝑃𝑘(𝑥, 𝑦) = 𝛼(𝑥, 𝑦)𝑄̃𝑘(𝑥, 𝑦) + 𝛽𝑘(𝑥, 𝑦) 

𝛼(𝑥, 𝑦) = 𝑓𝑥,𝑦(𝑄̃𝑘(𝑥, 𝑦)), 
(10) 

with 𝛼(𝑥, 𝑦) and 𝛽𝑘(𝑥, 𝑦) being the FPN gain and offset 

component, respectively, 𝑃𝑘(𝑥, 𝑦) the observed (measured) 

signal and 𝑄̃𝑘 the true signal plus Gaussian noise mixture. The 

offset component is also sometimes referred to as the 

“pedestal maps”. 

Two points regarding the FPN model have to be 

emphasized. First, the gain component 𝛼(𝑥, 𝑦) is signal 

dependent. As it will be seen later, it takes values close to one 

for normal operational mode and gets values significantly 

deviating from one in LS mode. Second, the same gain 

component is used for all phase frames (𝑘 = 0,1,2,3), however 

each phase frame k has a different offset 𝛽𝑘(𝑥, 𝑦). This is 

significantly different from, for example, thermal camera 

imaging where only one offset per sensor element is used – 

here it was necessary to have different offsets due to the fact 

that different hardware might be involved for capturing 

different phase frames. 

Removing the FPN is a necessity for enhancing the 

operating performance of a ToF device in LS environment. 

While FPN could be effectively tackled by various hardware 

solutions [24], those are expensive and difficult to implement 

– especially for high-frequency sampling devices such as ToF. 

As an alternative, FPN can be corrected digitally as post-

capturing operation thereby improving the signal-to-noise 

ratio of the sensed signal [8]. 

The FPN is cast as ‘fixed’, since the offset 𝛽𝑘(𝑥, 𝑦) is 

spatially fixed to sensed intensities and always appears as 

initial parasitic value of the sensor element added to the phase 

frame even when no data is sensed. The gain component map 

𝛼(𝑥, 𝑦) also remains fixed in terms that it always amplifies the 

captured intensity of certain magnitude for a certain pixel in 

the same functional manner. However, although termed as 

‘fixed’, the effect of FPN is unique for each sensor device, and 

tends to change during exploitation time due to sensor wearing 

out. This means that certain easy-to-implement FPN 

estimation and filtering mechanism should be developed that 

adapts to possible changes in the nature of FPN over time. 

In this paper we propose a two-stage technique for 

removing the FPN. First stage is responsible for removing the 

offset 𝛽𝑘(𝑥, 𝑦), and second one tackles the gain component 

𝛼(𝑥, 𝑦). They are discussed in the following two sections. 

C. Removing the FPN offset component 

The offset components 𝛽𝑘(𝑥, 𝑦) are generally considered as 

fixed masks. For estimating the offset, we occlude the optical 

system (if possible then the camera beamers should be also 

switched off in order to avoid thermal noise) and gather 

observation data for a large number of frames (e. g. 𝐿 = 400). 
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We denote those observations 𝑃𝑘,𝑙(𝑥, 𝑦) for 𝑙 = 0,1, … 𝐿 − 1 

and 𝑘 = 0,1,2,3. Since we are effectively sensing ‘nothing’, in 

an ideal case each pixel would record only random noise. 

Since this is not the case due to the FPN offset, the idea is to 

determine, for each pixel, such parameters 𝛽𝑘(𝑥, 𝑦) that when 

those are extracted for corresponding measured phase frame, 

𝑄̂𝑘,𝑙(𝑥, 𝑦) = 𝑃𝑘,𝑙(𝑥, 𝑦) − 𝛽𝑘
𝑙 (𝑥, 𝑦), for each pixel the estimated 

amplitude and phase would have close-to-zero mean and 

minimum variance for amplitude (𝜇̂𝐴 → 0, 𝜎̂𝐴
2 → 0) and at the 

same time minimum mean and maximum variance for phase 

(𝜇̂𝜑̂ → 0, 𝜎̂𝜑̂
2 → 𝜋) with mean and variance calculated per pixel 

over all observations. Those means and variances before and 

after optimization are shown in Fig. 5. 

After estimating the offset values 𝛽𝑘(𝑥, 𝑦), they are stored 

in a table and can be subtracted in real time. They should be 

periodically recalculated to compensate for changes due to 

aging of the sensor (device). However, it is expected that those 

changes are not significant over time as long as the sensor 

does not malfunction and small changes can be mitigated by 

the denoising step in the proposed method. Therefore, 

although the offset changes with time, there is no need to 

measure the offset too often. This has been experimentally 

observed on the sensor under consideration. The offset has 

been measured twice in the beginning and the end of a 

yearlong period. While the two measurement differed, the 

difference was in the form of random pattern (white noise) and 

was compensated by the applied denoising. 

D. Removing the FPN gain component  

For estimating and removing the FPN gain 𝛼(𝑥, 𝑦), we exploit 

the fact that visual stripes that are the result of the FPN gain 

can be considered as a texture [8], [24]. Such texture pattern 

can be isolated by utilizing frequency-domain analysis. When 

identifying the texture pattern and in order to minimize the 

influence of the scene content, we considered a smooth natural 

scene from a high reflectivity material and a continuous 

change in distance 𝐷 (e.g. 1𝑚 ≤ 𝐷 ≤ 5𝑚 ). Such scene 

provides varying values of phase maps 𝑃𝑘(𝑥, 𝑦) and at the 

same time is free of edges between scene objects situated at 

different distances. This avoids the appearance of high-

frequency components in the frequency domain representation 

that are not related to FPN. The special scene used for this 

analysis is shown in Fig. 3a. This scene is used only for 

determining the FPN dominant frequency. Experiments 

quantifying the performance of the FPN removal filters are 

done on real-life scenes, which typically exhibit edges in the 

corresponding depth maps (c.f. Fig. 3b). 

For a captured phase frame map 𝑃𝑘,𝑙(𝑥, 𝑦) we remove the 

offset components 𝛽𝑘(𝑥, 𝑦), to get 𝑃𝑘,𝑙(𝑥, 𝑦) − 𝛽𝑘(𝑥, 𝑦), and 

calculate the Fourier transform of the resulting phase frame. 

The phase frame is shown in Fig. 6a and the Fourier domain 

representation in Fig. 7a. As seen in Fig. 7a, for the sensor 

under consideration, two frequency components related to the 

FPN gain component can be easily identified, namely, 

(𝜔𝑋, 𝜔𝑌) = (2/3𝜋, 0) and (𝜔𝑋, 𝜔𝑌) = (𝜋, 0). For other 

sensors, these frequencies might be different [8]. However, 

they can be determined by the same frequency domain 

analysis as described above. 

A finite number of dominant frequency components can be 

easily removed by a properly designed linear-phase FIR filter. 

The filter design procedure takes the estimated dominant 

frequencies as input parameters. In the case under 

consideration, the undesired components are along the x-axis 

and one can use 1D filters that are applied horizontally (row 

by row) on the signal 𝑃𝑘,𝑙(𝑥, 𝑦) − 𝛽𝑘(𝑥, 𝑦). A good filter must 

satisfy the following requirements. First, is should remove the 

undesired components. Second, it should preserve the signal 

(spectra of the signal) as well as possible, that is, the passband 

ripple should be as small as possible. Third, it should not 

introduce ringing artifacts – in real scenes this will be taken 

care by adaptive filtering. For now it is important to point out 

that for our test scene this is not an issue since the scene does 

not have edges, while ringing is related to processing edges. 

A method for designing FIR filters satisfying 

aforementioned requirements is discussed in Section IV. Here, 

we applied one of the designed filters (𝑁 = 20 and 𝜌 = 0.14) 

on our test data (row by row). We assume that after filtering, 

we obtain 𝑄̃𝑘,𝑙(𝑥, 𝑦) which is the true value of the measured 

phase frame contaminated with Gaussian noise (c.f. Fig. 6d). 

This is confirmed by the Fourier domain representation of the 

filtered phase frame that is shown in Fig. 7b. As seen, the 

undesired frequency components responsible for FPN pattern 

are effectively removed without any noticeable modifications 

in the rest of the spectra. 

 

 
Fig. 5. Removing FPN offset 𝛽𝑘(𝑥, 𝑦) for an occluded ToF system – input 

data (lower-left parts) and masked data (upper right part): a) 𝜇̂𝐴, b) 𝜎̃𝐴
2, c) 𝜇̂𝜑̂, 

and d) 𝜎̂𝜑̂
2. 
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Fig. 6. Example of FPN removal. a) Measured phase frame 𝑃0(𝑥, 𝑦). b) FPN 

offset 𝛽0(𝑥, 𝑦). c) 𝑃0(𝑥, 𝑦) − 𝛽0(𝑥, 𝑦). d) Filtered output 𝑄̃0(𝑥, 𝑦). 

 

 
Fig. 7. Filtering of FPN amplitude gain component 𝛼Q(𝑥,𝑦)

𝑈 : a) Input frequency 

response 𝐻𝑄. b) Filtered output for FIR filter of order 20 with 𝜌 =0.28. 

Assuming that filtering successfully removed the gain 

component of FPN, we can use the filtered values of the phase 

map 𝑄̃𝑘,𝑙(𝑥, 𝑦) to identify the behavior of the gain component. 

According to (10), the estimated FPN gain component is: 

𝛼̂𝑘,𝑙(𝑥, 𝑦) = (𝑃𝑘,𝑙(𝑥, 𝑦) − 𝛽𝑘(𝑥, 𝑦))/𝑄̃𝑘,𝑙(𝑥, 𝑦) (11) 

In order to cope with the Gaussian noise still present in 

𝑄̃𝑘,𝑙(𝑥, 𝑦), we take multiple observations of 𝑃𝑘,𝑙(𝑥, 𝑦) for 

several integration times in the range 50𝜇𝑠 ≤ 𝐼𝑇 ≤ 2000𝜇𝑠 

and estimate corresponding 𝛼̂𝑘,𝑙(𝑥, 𝑦) values. We plot all 

obtained 𝛼̂𝑘,𝑙(𝑥, 𝑦) against 𝑄̃𝑘,𝑙(𝑥, 𝑦) for several pixels (x,y) 

and fit curves for the selected pixels as illustrated in Fig. 8(a). 

As seen from the figure, the gain values converge to one for 

higher-magnitude measurements and deviate considerably of 

that value for lower values of Q. 

We can extend the comparison and investigate the relation 

between the FPN gain 𝛼𝐴(𝑥, 𝑦) and amplitude 𝐴𝑸̃(𝑥, 𝑦). 

Applying similar procedure as explained above for 𝛼̂𝑘,𝑙(𝑥, 𝑦), 

we can show a different FPN gain behavior at different 

sensing conditions quantified by different amplitudes. This is 

illustrated for several pixels in Fig. 8(b). As seen in the figure, 

the estimated gain deviates from one for low amplitudes. This 

can be interpreted as a high nonlinearity between the observed 

amplitude and the true one for the case we do not remove the 

FPN gain for LS environment 𝐴𝑸̃(𝑥, 𝑦) < 300. 

We aim at modeling the FPN gain component for the 

sensor under consideration as texture with two dominant 

frequencies. As seen in Fig 7a, the pattern is very well 

localized in frequency domain with two clear peaks and, 

correspondingly, has strong sinusoidal pattern in spatial 

domain. Given that the relation between 𝛼(𝑥, 𝑦) and 𝑄̃𝑘,𝑙(𝑥, 𝑦) 

is tabulated by the curves 𝛼̂𝑘,𝑙(𝑥, 𝑦) in Fig. 8(a), the model is 

rewritten as contribution of two sinusoidal components 

(patterns) in horizontal direction 

𝑓𝑥,𝑦(𝑄̃(𝑥, 𝑦)) =  1 + 𝛾(𝑄̃(𝑥, 𝑦)) (sin(𝜔1𝑥) + sin(𝜔2𝑥)) (12) 

with 𝛾(𝑄̃(𝑥, 𝑦)) = 𝛼̂(𝑥, 𝑦) − 1 and 𝛼̂(𝑥, 𝑦) being an 

approximation of one of the steepest curves 𝛼̂𝑘,𝑙(𝑥, 𝑦) in Fig. 8 

(we use the steepest curve to simulate the worst-case 

scenario). Following this model, during the exploitation time 

of the sensor, two things can change. The frequency can drift 

and/or the alpha factors can vary. Since all alpha curves are 

similar, changing alpha factors causes change in the 

amplification only and not in the shape of the curve. In both 

cases this would result in deviating the dominant frequencies 

causing FPN from their estimated values. As long as the 

deviations are reasonably small (large changes are expected to 

occur only in the case the sensor is malfunctioning), they will 

not influence the performance for FPN gain removal with the 

designed filters since the filters have relatively wide stopbands 

and therefore will still properly remove FPN. This makes the 

proposed FPN removal method robust to aging of the sensor. 
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Fig. 8. Behavior of the FPN gain component 𝛼(𝑥, 𝑦) for several pixels with 

respect to: (a) Phase frame 𝑄̃𝑘,𝑙(𝑥, 𝑦). (b) Amplitude 𝐴̂𝑸̃𝑙
(𝑥, 𝑦). 

E. Effect of FPN removal on ToF noise model 

Based on our ToF noise model, the FPN noise removal yields 

a signal, whose noise component should exhibit mostly 

Gaussian distribution in which case the phase variance 𝜎̃𝜑̃
2 can 

be directly linked to variance of phase frames 𝜎̃𝑄̃𝑘

2  and the 

amplitude estimate can be used as a measure for that variance 

(c.f. (9)). Furthermore, it is expected that the phase variance 

(and in turn the error of the estimated range) will reduce, that 

is, the LS mode should perform closer to the normal 

operational mode. We illustrate this in Fig. 9 that shows the 

relation between amplitude 𝐴 and phase variance 𝜎𝜑
2 before 

and after FPN removal. The data related to measurements 

𝑃𝑘,𝑙(𝑥, 𝑦) is shown in green and data after FPN removal 

(filtering) 𝑄̃𝑘,𝑙(𝑥, 𝑦) in blue. For easier comparison, we fitted 

curves according to Eq.(9) over observed data (please note 

that the x-axis is in log-scale). As expected, after removing the 

FPN, the phase delay variance becomes considerably smaller. 

Extremely small amplitudes and corresponding high phase 

variances are gone, the remaining variances are tolerable even 

for low amplitudes 𝐴𝑄 < 20 [ToF system units]. For high-

enough amplitudes 𝐴𝑄 > 100 the two curves coincide. This 

suggests that in normal operating mode the FPN is not an 

issue, however, it should be specifically tackled in LS mode in 

order to minimize the expected phase measurement 

uncertainty. 

 

 
Fig. 9. Experimental observation of phase delay variance relation to signal 

amplitudes 𝐴𝑄 for FPN filtered data  

 

IV. DESIGN OF FILTERS FOR FPN REMOVAL  

As shown in the previous section, for removing the FPN gain, 

we need custom-made notch-type filters. In this section we 

discuss methods for efficient design of such filters. Their cut-

off frequencies are sensor dependent and have to be estimated 

before the actual design procedure takes place. However, the 

same general filter design principle described here can, be 

applied for other sensors since the frequencies relates to FPN 

are input parameters to the filter design algorithm. 

A. Filter specifications 

Based on the discussion in Section III.D, a 1D filter for 

removing the FPN gain for the sensor under consideration 

should remove (or sufficiently suppress) two dominant 

frequencies, namely, 𝜔1 = 2/3𝜋 and 𝜔2 = 𝜋 (c.f. Fig. 7a), 

and at the same time preserve all other information in the 

signal. Ideal frequency domain representation of a filter 

satisfying these requirements is given in Fig. 10a and can be 

expressed as:  

|𝐷(𝑒𝑗𝜔)| = {
1     for      𝜔 ∈ 𝑋1

0     for      𝜔 ∈ 𝑋2
 (13) 

With regions 𝑋1 and 𝑋2 being defined as 

𝑋1 = [0, 𝜔𝑝1]  ∪  [𝜔𝑝2, 𝜔𝑝3]

𝑋2 = [2/3 𝜋;    𝜋].                     
 (14) 

In the design, the filter transition bands (around 2/3 𝜋 and 𝜋) 

should be kept as short as possible, but at the same time they 

have to be wide enough in order to be able to design filters 

with small passband ripples and reasonable orders. A method 

for designing linear-phase FIR filters that can achieve a good 

approximation of the desired response is given in the next 

section. 
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Fig. 10. Filter requirements. (a) Frequency domain specifications. (b) Desired 
position of fixed zeros. 

B. Filter design approach 

Based on the requirements listed in the previous section, 

the design problem can be specified as: Determine the 

unknown filter coefficients ℎ[𝑛] of a filter of order N with 

transfer function 𝐻(𝑧) = ∑ ℎ[𝑛]𝑧−𝑛𝑁
𝑛=0  to 

minimize    𝛿  (15) 

such that 

1 − 𝛿 ≤ |𝐻(𝑒𝑗𝜔)| ≤ 1 + 𝛿  for  𝜔 ∈ 𝑋1 

        |𝐻(𝑒𝑗𝜔)| = 0  for  𝜔 ∈ 𝑋2. 
(16) 

To simplify the design, the desired filter transfer function 

𝐻(𝑧) can be split into fixed and variable part as: 

𝐻(𝑧) = 𝐹(𝑧)𝐺(𝑧) = 𝐹(𝑧) ∑ 𝑔[𝑛]𝑧−𝑛𝑁𝐺
𝑛=0   (17) 

with  

𝐹(𝑧) = 1 + 2𝑧−1 + 2𝑧−2 + 𝑧−3, 𝑁𝐺 = 𝑁 − 3. (18) 

The fixed part represented through transfer function 𝐹(𝑧) 

corresponds to the fixed zeros (c.f. Fig. 10b) and 𝑔[𝑛] for 𝑛 =
0,1, … 𝑁𝐺 are the unknown filter coefficients. Those filter 

coefficients can be calculated by utilizing the Remez multiple 

exchange algorithm [29]. The procedure for applying the 

Remez algorithm on the above design problem is discussed in 

detail in [20], [30], [31]. After obtaining coefficients 𝑔[𝑛] for 

𝑛 = 0,1, … 𝑁𝐺, the filter values ℎ[𝑛] for 𝑛 = 0,1, … , 𝑁 can be 

easily obtained by convolving 𝐺(𝑧) with 𝐹(𝑧) as given by 

(17). 

C. Designed filters 

We used the design method proposed in the previous section 

and designed a family of filters having various orders and 

passband edges. We limited our self to filters of orders less 

than 60 (since we are processing finite length signals, longer 

filters are not to useful) and selected all passband edges at 

equal distances from fixed zeros in the filter frequency 

response, that is,  

𝜔𝑝1 = (
2

3
) 𝜋 − 𝜌𝜋; 𝜔𝑝2 = (

2

3
) 𝜋 + 𝜌𝜋; 𝜔𝑝3 = 𝜋 − 𝜌𝜋 (19) 

with 0.01 < 𝜌 < 1/6. Larger 𝜌 values do not make practical 

sense, since for 𝜌 > 1/6 → 𝜔𝑝2 > 𝜔𝑝3. 

The obtained passband behavior (ripples) for filters of 

various orders and transition bandwidths are shown in Fig. 

11(a,b) and the impulse response and the frequency response 

of one of the designed filter are shown in Fig. 11(c,d). Those 

filters will be considered as good candidates for FPN removal. 

Several comments regarding the designed filters: First, as 

expected, filters of higher order and wider transition band 

have smaller passband ripple and vice versa. Second, for, for 

the same performance, filters with even-order must be of 

higher order than the ones with odd-order. This is due to the 

fact that an even order filter will have, due to its properties 

[30], two zeros at 𝜔 = 𝜋 instead of one, thereby making the 

passband optimization more challenging. Third, filters of odd 

order introduce a half sample delay that has to be taken care of 

during filtering, e.g. adjusting filtered data with original one 

for the purpose of comparison. 

Since it is not clear which of those filters will give the best 

results for FPN removal, in the next section we will test all of 

them on synthetic and measured data in order to see which one 

performs best. 

 
Fig. 11. Performance of designed filters. (a) Odd filter orders. (b) Even filter 

orders, c) & d) Impulse response and magnitude response of filter with 𝑁 =
41 and  𝜌 = 0.1. 

V. EXPERIMENTS 

We performed two sets of experiments. In the first set we used 

synthetic data for evaluating the performance of designed 

filters for FPN removal in order to select the best filter(s). The 

performance of the overall FPN removal approach for 

estimating the depth map in LS mode is then illustrated on real 

data in the second set of experiments. 

A. Testing performance of FIR filters for FPN removal on 

synthetic data 

We apply the proposed filtering approach by reproducing the 

FPN influence in a simulated LS environment, where the 

focus is on the gain component 𝛼Q(𝑥,𝑦)
𝑈  removal. We create a 

synthetic scene (c.f. Fig. 12), which is rich of objects of fine 

details, edges, and contours in different orientation and thus 

influencing the whole frequency response spectrum. We 

choose a distance sensing range of typical PMD device (e.g. 

PMDTec™ CamCube 2.0) 𝐷 ∈ [0, 7.5]𝑚. We denote the 

depth map of such scene as 𝐷𝐺𝑇(𝑥, 𝑦). We simulate the 

influence of the sensor for 𝐴𝑸 ∈ [7, 300] units, by applying 

the observed noise model as given in Section II (c.f. Fig. 9), 

which corresponds to the LS case. Thus, we provide a 

challenging testing scenario for the proposed FPN suppression 

approach. We apply a periodic FPN pattern that follows our 

observation on the same device, with modulation frequencies 

𝜔𝐹𝑃𝑁 = [1, 2/3] × 𝜋 and intensity corresponding to the sensed 
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values of phase frames 𝑄𝑘 as discussed in Section III.We 

ensure that the added FPN is at least 25% of the signal value 

for very low-sensed signals and less than 5% for signals of 

highest values of the sensing range. Since the FPN is more 

dominant for signals of low intensity, we propose also an 

adaptation technique of the filtering process. We adapt in a 

manner that filtered output 𝐷̂𝑸̂ and original data input 𝐷𝑷  are 

fused in a certain normalized fraction (𝛿𝐴, 1– 𝛿𝐴) according to 

the sensed signal amplitudes 𝐴̂𝑸̂: 

𝐷̂𝑎𝑑𝑎𝑝𝑡(𝑥, 𝑦) = 𝛿𝐴𝐷̂𝑸̂(𝑥, 𝑦) + (1 − 𝛿𝐴 )𝐷𝑝(𝑥, 𝑦).  (20) 

The adaptation helps in preserving data edges by minimizing 

the effect of filter-caused ringing. The adaptation parameter 𝛿𝐴 

is select such that 𝛿𝐴  =  1 for very low amplitudes (𝐴 <
 70), while for the range of amplitudes [70, 350],  𝛿𝐴  decreases 

linearly between 1 and 0.2. In Fig. 14, we plot the results for 

proposed filters along with the effect of FPN removal on the 

subsequent Gaussian noise suppression applied using the Non-

local Means (NLM) [21]. In Fig. 13 we plot visual output of 

filtered content. Table I shows the performance for some FPN 

removal filters quantified in terms of mean absolute error 

(MAE), mean square error (MSE) and peak signal-to-noise 

ratio (PSNR) between the ground true signal and the NLM-

denoised signal. The MAE, MSE and PSNR are calculated by 

using following expressions: 

𝑀𝐴𝐸 =
1

𝑋𝑌
∑ ∑|𝐷̂(𝑥, 𝑦) − 𝐷𝐺𝑇(𝑥, 𝑦)|

𝑌−1

𝑦=0

𝑋−1

𝑥=0

 

𝑀𝑆𝐸 =
1

𝑋𝑌
∑ ∑ (𝐷̂(𝑥, 𝑦) − 𝐷𝐺𝑇(𝑥, 𝑦))

2
𝑌−1

𝑦=0

𝑋−1

𝑥=0

 

𝑃𝑆𝑁𝑅 = 20 log10 (
𝐷𝑀𝐴𝑋

√𝑀𝑆𝐸
) 

(21) 

with 𝑌 and 𝑋 being the number of rows and columns, 

respectively and 𝐷𝑀𝐴𝑋 = 7.5[m]. The above three measures 

are used to quantify the difference between the processed 

depth map and the ground true one over the whole image. The 

results demonstrate that for a range of filters, the FPN is 

effectively suppressed and a 6-10 𝑑𝐵 improvement is 

observed for the denoising performance for the filtered data 

content. Similar improvements can be noticed in terms of 

MAE and MSE. 

 

 

 
Fig. 12. Synthetic scene for low-sensing ToF sensing environment: (a) GT 

amplitude map, (b) GT range map, (c) noise contamination (d) FPN influence 

on measured depth; (zoomed region in yellow-bordered squares) 

 
Fig. 13. FPN suppression using filter {20, 0.28} for the synthetic scene 

experiment: (a) filtered and (b) adaptively filtered output, and their 
corresponding subsequently denoised versions (c), (d). 

TABLE I 

DENOISING RESULTS FOR SYNTHETIC DATA 

Metrics – MAE[m], MSE[m], PSNR[db] 

 With added noise [dB] With FPN [dB] 

Input data .40, .35, 27.9 .54, .70, 24.9 

NLM, no filter .13, .05, 35.4 .23, .12, 31.6 

                                 FPN Filtering                FPN filtering & denoising 
{order,  F AF F AF 

{20,  0.28} .45, .44, 27.0 .42, .38, 27.8 .16, .06, 34.6 .17, .07, 34.8 

{28,  0.26} .46, .47, 26.8 .43, .41, 27.4 .17, .08, 34.4 .17, .08, 34.7 

{40,  0.18} .47, .49, 26.6 .44, .42, 27.2 .17, .08, 34.2 .18, .08, 34.5  

{17,  0.28} .47, .48, 26.7 .44, .42, 27.3 .18, .09, 33.7 .18, .08, 34.3 
{31,  0.28} .48, .50, 26.5 .45, .43, 27.1 .19, .10, 33.4 .18, .08, 34.0 

{53,  0.24} .50, .53, 26.2 .46, .45, 27.0 .19, .11, 33.1 .18, .09, 33.9 

* F and AF denote denoising results for filtered and adaptively filtereddepth 

map estimation, respectively. 
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Fig. 14. Performance (PSNR) of NLM denoising method after suppression of 

FPN with filters of odd order (first row) and even order (second row) with 

(second column) and without adaptation (first column). 

 

B. Denoising performance of FPN removal filters for real-

case data 

We apply the designed filters for FPN removal for a real-

case experimental setup. We use a scene (c.f. Fig. 3b), 

composed of planar objects at different depths with respect to 

the sensing device. The objects are made of materials with 

different reflectivity and in different colors and textures. The 

position of sensed objects remains unchanged, while the 

sensing conditions are changed by varying the sensor 

operational parameters (c.f. Fig. 4). The default sensor 

parameters (e.g. integration time 𝐼𝑇 = 2000[𝜇𝑠] or higher) 

have been used to produce data in normal sensing conditions. 

In such conditions, the measured data yields high-enough 

amplitudes, which suggest that the uncertainty in phase 

estimate is lower than (or equal to) the one specified for the 

device. We have prepared a reference depth map, which, for 

consistency with the previous case, is denoted as Ground 

Truth (GT) depth map 𝐷𝐺𝑇(𝑥, 𝑦). It is of size 204 x 204 pixels 

and obtained by averaging 100 consecutive frames, captured 

in normal sensing conditions. The GT depth map estimated in 

such way is shown in Fig. 15(a). The corresponding 

uncertainty map, expressed through the standard deviation 

𝜎𝐺𝑇(𝑥, 𝑦) evaluated pixel-wise over the 100 observed frames, 

is shown in Fig. 15(b). As seen in the figure, 95% of 𝜎𝐺𝑇(𝑥, 𝑦) 

are below 2.11 cm. This value is in line with the expected 

performance of this particular sensor (c.f. Fig. 6 in [27]) 

confirming that our measurement setup is correct. It should be 

pointed out that this depth map is just a reference and it might 

differ from the ‘true’ depth map. However, it is the best 

estimate that can be achieved by this device while working in 

normal operational mode. Our goal is to quantify the 

performance of the proposed FPN removal method for the LS 

mode, against normal mode, therefore it is justifiable to use 

the latter for creating the GT depth map. 

 

 
Fig. 15. Estimated data for real scene: (a) Ground truth depth map 𝐷𝐺𝑇(𝑥, 𝑦) 
and (b) corresponding uncertainty map expressed through standard deviation 

𝜎𝐺𝑇(𝑥, 𝑦). 

 

The LS mode is enforced by decreasing the integration 

intervals to be in the range of [50 ÷ 200] [𝜇𝑠] (c.f. Fig. 4). 

Table II lists the percentage of pixels, where the sensed signals 

are with amplitudes Â𝑸 < 300 ToF units, i.e. below the low-

sensing threshold (denoted by LOW in Table II). As seen from 

the table, as well as Fig. 4(a), the scene has been assembled in 

such a way that for the 50 [𝜇𝑠] integration time, all pixels 

have amplitude smaller than 300 ToF units with most of them 

having amplitude smaller than 200 ToF units. In this way we 

can test the performance of the algorithm in an extreme LS 

environment.  

A number of techniques for suppression of additive 

Gaussian noise relevant to ToF data have been applied on non-

filtered and filtered data. The following techniques have been 

applied: NLM [12], [21], Block matching over 3D (BM3D) 

[22], cross-bilateral filtering [32] with depth hypothesis 

regularizer (HypBL) [33], and Local polynomial 

approximation with intersection of confidence intervals rule 

(LPA-ICI) [23], [34]. The denoising performance is quantified 

in terms of MAE, MSE, and PSNR calculated according to 

𝐷𝑀𝐴𝑋 = 7.5[𝑚] following (21).  The experimental results 

demonstrate that the denoising of ToF data measured in LS 

environment benefits from the proposed filtering for 

preliminary FPN removal. As seen in Table II, for an extreme 

measurement case (𝐼𝑇 = 50𝜇𝑠), the denoising performance is 

5-7 dB better, in terms of PSNR, with respect to the case when 

FPN is not handled. Similar performance can be observed in 

the table also in the terms of MSE and MAE. It is important to 

emphasize that we utilize those three metrics since we are 

interested in the overall depth map and not in individual 

pixels. An interesting observation shows that the periodicity of 

FPN contributes to an artifact produced especially by non-

local denoising techniques (NLM, BM3D). In these cases, the 

FPN is even amplified after the denoising (c.f. Fig. 17a). Fig. 

17(c)-(d) illustrate the performance of denoising algorithms 

for a different integration time (𝐼𝑇 = 200𝜇𝑠) while FPN is 

present or removed. Obviously, the role of FPN is less 

prominent when the integration time is increased, that in turn, 

results with less pixels having amplitude in the LS range. This 

is illustrated in Fig. 16. The same three metrics are evaluated 

for different integration times. The figures show two things. 

First they demonstrate the effectiveness of the proposed FPN 

denoising approach – the estimated depth map benefits 

considerably from the proposed approach for most of the cases 

shown – exception are long integration times (𝐼𝑇 > 1000𝜇𝑠) 

for which the amplitudes are high and as such the influence of 
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FPN is negligible (effectively FPN is not an important factor). 

Second, it illustrates a compromise between the integration 

time (that is how much power we are ready to spend) and the 

achieved quality of the depth map – longer time means better 

depth map. This enables a user to make a proper choice based 

on the requirements of the application at hand. 

 
Fig. 16. Performance of proposed approach for different integration times: (a) 

PSNR, (b) MAE, and (c) MSE. 

 
Fig. 17. Estimated depth map for a noisy input for 𝐼𝑇 = 50𝜇𝑠 (upper row) and 

𝐼𝑇 = 200𝜇𝑠 (lower row) using BM3D. Denoising with no preliminary FPN 
removal (left column) and (b) denoising with preliminary FPN removal (right 

column). 

 

TABLE II 

DENOISING RESULTS FOR REAL-CASE DATA 

Metrics – MAE[m], MSE[m], PSNR[db] 

Integration time IT                            50μs                                     200μs 

LOW                                      100%                                        81% 
 

Method NF AF NF AF 

No denoising .41, .49, 20.5 .38, .44, 21.1 .12, .05, 30.3 .09, .02, 33.5 
NLM[21] .25, .22, 24.1 .16, .08, 28.3 .07, .01, 35.8 .04, .00, 40.2 

HypBL [33] .24, .10, 27.1 .16, .05, 30.0 .07, .01, 35.7 .05, .00, 38.6 

LPA-ICI [23] .20, .12, 26.5 .16, .06, 29.2 .07, .01, 36.6 .05, .00, 39.9 
BM3D [22] .25, .19, 24.5 .16, .07, 28.9 .07, .02, 35.1 .04, .00, 40.6 

* NF and AF denote denoising results for not filtered and FPN adaptively 

filtered depth map estimation, respectively. 
 

In order to quantify further the quality of the estimated depth 

map, we repeated the measurement, for a selected integration 

time, 100 times thereby obtaining 100 observations of the 

depth maps captured under identical conditions. On those 

observations, we applied the proposed FPN removal approach 

obtaining 100 depth map estimates, 𝐷̂𝑘 for 𝑘 = 1,2, … 100. 

For each depth map estimate, we calculated the difference 

between the map and the GT depth map. Finally we computed 

pixel-wise average and standard deviation of those differences 

as 

𝜇(𝑥, 𝑦) =
1

𝑁
∑ 𝐷̂𝑘(𝑥, 𝑦) − 𝐷𝐺𝑇(𝑥, 𝑦)

𝑁

𝑘=1

 

𝜎(𝑥, 𝑦) = √
1

𝑁
∑(𝐷̂𝑘(𝑥, 𝑦) − 𝐷𝐺𝑇(𝑥, 𝑦) − 𝜇𝑘(𝑥, 𝑦))

2
𝑁

𝑘=1

 

(22) 

with N 100. In this way, the map 𝜇(𝑥, 𝑦) represents the 

accuracy of the depth map estimation in the LS mode in 

comparison to the normal operational mode of the device and 

the map 𝜎(𝑥, 𝑦) represents the uncertainty of the estimated 

depth map. 𝜇(𝑥, 𝑦) and 𝜎(𝑥, 𝑦) maps for 𝐼𝑇 = 50𝜇𝑠 and 𝐼𝑇 =
200𝜇𝑠 are shown in Fig. 18. In order to emphasize regions 

with high accuracy and uncertainty deviation from the GT, we 

limited the colorbars in the figures to encompass 95% of the 

values. The figure shows that the high deviations, as expected, 

are mostly on the edges of the object and some background 

regions but overall the accuracy and uncertainty of the depth 

maps are reasonable. We repeated the experiment for various 

integration times and compared the estimated deviations from 

GT and uncertainty with and without proposed FPN removal 

(c.f. Fig. 19). We can see that the accuracy increases (with or 

without FPN removal) as the integration time increases. 

Nevertheless, it is always beneficial to use the proposed 

approach since it always gives better results than unprocessed 

data. 

Fig. 18. Estimates of depth map accuracy 𝜇 (left column) and uncertainty 𝜎 

(right column) for integration times 𝐼𝑇 = 50𝜇𝑠 (upper row) and 𝐼𝑇 = 200𝜇𝑠 

(lower row). 
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Fig. 19. Performance of the proposed approach for different integration times 

– c.f. Eq. (22): (a) accuracy expressed through 𝜇 and (b) uncertainty expressed 

through 𝜎. 

Finally, we analyzed the repeatability of the proposed method 

for estimating the depth map. Since, as already mentioned, we 

are interested in the quality of the depth map, we use the MAE 

as the evaluation criteria. We calculate MAE for each of the 

100 observations of the scene (for 𝐼𝑇 = 50𝜇𝑠). The results are 

shown in Fig. 20. As seen in the figure, there are very small 

variations between independent estimation of the depth map – 

standard deviation of the observation being 𝜎 = 0.0066 with 

𝜇 = 0.0648. 

 
Fig. 20. Variation of MAE for the real scene (𝐼𝑇 = 50𝜇𝑠) for 100 successive 
observations. 

 

VI. CONCLUSIONS 

We have addressed the operation of ToF sensors in what we 

call LS mode. In such mode, the phase measurement 

uncertainty exceeds the limits specified for the particular 

device. Factors causing erroneous measurements can be 

external (scene of low-reflectivity, low-incident light-reflected 

angles or multi-reflectivity paths) as well as internal (weak 

emitted signal, short integration times) and they impose the 

mandatory use of denoising techniques at a post-processing 

stage. For proper use of such techniques, one needs an 

adequate noise model. We have proposed a noise model 

composed of two components: an additive Gaussian noise 

component and a signal-dependent component cast as FPN. 

The latter is subsequently modeled as signal-dependent gain 

component and additive (offset) component. FPN becomes 

especially visible in the LS mode and has to be handled before 

any additive Gaussian noise removal takes place. Based on the 

proposed FPN model, we developed a corresponding two-

stage noise removal procedure involving 1) estimation and 

compensation of the offset component and 2) estimation and 

filtering of periodic pattern (gain) component. 

Purposely-designed linear notch filters tackle the latter. We 

have validated our noise model by empirical measurements 

showing dependence between the gain component and the 

correlation signal amplitude, where the latter is considered a 

measure of varying sensing conditions. The empirical relation 

illustrates the importance of tackling FPN first as well as the 

adequacy of our noise model and the corresponding filtering 

method. Furthermore, we demonstrated the influence of the 

FPN and its removal on the widely-adopted relation between 

the phase variance and amplitude. While this dependence is 

highly violated in the LS case and in the strong presence of 

FPN, it gets close to the model when FPN is removed. This 

observation is further strengthened by experiments involving 

techniques for denoising signals contaminated by additive 

Gaussian noise applied either on non-filtered or filtered 

signals. The denoising results are much better while FPN has 

been removed before denoising. 
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