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Abstract

The normalised innovation squared (NIS) test, which is used to as-
sess whether a Kalman filter’s noise assumptions are consistent with
realised measurements, can be applied online with real data, and does
not require future data, repeated experiments, or knowledge of the
true state. In this work it is shown that the NIS test is equivalent to
three other model criticism procedures: it can be derived as a Bayesian
p-test for the prior predictive distribution, as a nested-model parame-
ter significance test, and from a recently-proposed filter residual test.
A new NIS-like test corresponding to a posterior predictive Bayesian
p-test is presented.

1 Introduction

If the measurement noise covariance parameter in a Kalman filter is too small
relative to the actual noise, the filter gives too much weight to measurements
relative to the process model, and estimated state trajectories are overly
erratic. On the other hand, if the parameter is too large, the filter gives too
little weight to measurements, and its response is sluggish.

Bar-Shalom et al. [1] have proposed a statistical hypothesis test for de-
tection of model mismatch (also called filter inconsistency). An acceptance
region for the test is defined based on the fact that, under the hypothesis
that the filter model is correct, the “normalised innovation squared” (NIS)
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statistic has a chi-square distribution. The test can be applied online because
the NIS statistic can be computed from current and past measurements and
does not use future measurements or knowledge of the true state. Because
measurements at a single time step may not give enough information for re-
liable assessment of consistency, Bar-Shalom et al. recommend that the test
be applied to the average of NIS values from several consecutive time steps.

The filter residual test recently proposed by Gibbs [2] is also feasible
for online implementation. This test is formulated in terms of individual
components of the residual and is intended for detection of measurement
outliers, but it is straightforward to adapt this approach to derive a sum
of squared residuals statistic in a test of filter consistency. As shown in
section 2.2, the sum of squared residuals statistic is in fact equivalent to NIS.

The aim of this study is to obtain a better understanding of existing
online filter consistency testing and to develop new methods, by adapting
methods of model criticism from Bayesian statistical theory to the Kalman
filtering setting. Bayesian model criticism is an active research area and
many approaches have been proposed; see chapter 8 of [3] for a survey. Here,
three approaches will be considered; two of these turn out be be equivalent
to the NIS test, while one leads to a new NIS-like filter consistency test.

One basic approach to model criticism is to assess whether the realised
measurements are “surprising” according to the assumed statistical model.
Box [4] suggests that this surprise be quantified using p-value diagnostics
based on the prior predictive distribution. In section 2.2 it is shown that the
NIS test can be interpreted as a Bayesian prior predictive p-value diagnostic.

Gelman et al. [5] propose p-value diagnostics based on the posterior pre-
dictive distribution. Although this approach makes redundant use of infor-
mation (the surprisingness of data is evaluated using a distribution that was
constructed using the data), it is argued to be more effective than the prior
predictive p-test especially in cases when the prior is very diffuse. A posterior
predictive variant of the NIS test is presented in section 2.2.

A more fundamental objection to Bayesian p-values is its use of hypoth-
esis testing, a procedure from classical statistics. An alternative approach
that is more consistent with Bayesian statistical theory is advocated by Kr-
uschke [6]. He constructs an augmented statistical model in which constants
in the base model are treated as additional unknown parameters to be es-
timated. Model misfit is diagnosed if the marginal posterior distribution of
the additional parameters has most of its probability far from the nominal
values that correspond to the base model. In section 2.3 it is shown how the
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NIS test can be derived using an augmented model approach.
Section 3 presents simulation studies of the performance of the NIS test

and its posterior predictive variant in a basic benchmark example. A theo-
retical study of the consistency tests applied to a Kalman filter for multiple
measurements of a scalar stationary state is presented in section 4.

2 Kalman Filter Consistency Tests

2.1 Base model

Consider the Kalman filter’s measurement update stage, where the predicted
state1 x (i.e. the state after propagation through the process model) is com-
bined with the measurement y via Bayes’ theorem to produce the updated
state x | y. The predicted state has a multivariate normal distribution with
mean µ0 and covariance P0; this is denoted x ∼ MVN(µ0, P0). The sam-
pling model for the n-variate measurement is y |x ∼ MVN(Hx,R). Then by
Bayes’ theorem, and introducing the notation

S0 = HP0H
′ +R, (1a)

K = P0H
′S−10 , (1b)

P1 = (I −KH)P0, (1c)

µ1 = µ0 +K(y −Hµ0), (1d)

the posterior distribution is

x | y ∼ MVN(µ1, P1). (2)

The distribution of a possible measurement replication ỹ that is condi-
tionally independent of y given x is called a predictive distribution. In the
Kalman filter update, the prior predictive distribution is

ỹ0 ∼ MVN(Hµ0, S0) (3)

and the posterior predictive distribution is

ỹ1 ∼ MVN(Hµ1, S1), (4)

1In filter theory, the predicted and updated states are conventionally denoted xt|t−1
and xt|t. For the sake of readability, time-index subscripts are omitted in this section.
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where
S1 = HP1H

′ +R. (5)

Formulas (2–4) are standard results of linear-Gaussian estimation theory;
derivations are outlined in Appendix A.

2.2 Bayesian p-tests

Consider first a test statistic based on the prior predictive distribution. It
follows from (3) that the random variable

(ỹ0 −Hµ0)
′S−10 (ỹ0 −Hµ0) (6)

has a χ2
n distribution. A Bayesian p-test to assess whether the realised mea-

surement y is “surprisingly” large or small with respect to the prior predictive
distribution is to determine whether the corresponding test statistic

ε0 = (y −Hµ0)
′S−10 (y −Hµ0) (7)

lies in the tails of the χ2
n distribution. This procedure is equivalent to the

NIS test of [1, p. 236],
In Appendix A, the following equivalent formula for the NIS test statistic

is derived:

ε0 = (µ1 − µ0)
′P−10 (µ1 − µ0) + (y −Hµ1)

′R−1(y −Hµ1). (8)

Instead of the prior predictive measurement ỹ0, Gibbs [2] proposes a test
statistic based on the prior predictive residual ỹ0 −Hµ̃1, where

µ̃1 = µ0 +K(ỹ0 −Hµ0) (9)

is the prior predictive state estimate. The prior predictive residual’s distri-
bution is

ỹ0 −Hµ̃1 ∼ MVN(0, RS−10 R), (10)

(see Appendix A), and so

(ỹ0 −Hµ̃1)
′R−1S0R

−1(ỹ0 −Hµ̃1) ∼ χ2
n. (11)

The corresponding test statistic for a Bayesian p-test of the realised residual
y −Hµ1 with respect to its prior predictive distribution is then

εr = (y −Hµ1)
′R−1S0R

−1(y −Hµ1). (12)
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Substituting the identity y−Hµ1 = RS−10 (y−Hµ0) into (12), it follows that
εr = ε0. That is, the normalised sum of squared residuals statistic is equal
to the NIS statistic.

Because the number of measurements available at a single time step can
be too small to reliably assess model mismatch, Bar-Shalom et al. [1, p.237]
advocate combining test statistics from several time steps. Because the time
series of ỹ0−Hµ0 values is an innovations sequence, random variables (6) from
different time instants are mutually independent. Consequently, the sum of
values from k different instants has a χ2

nk distribution. The corresponding
Bayesian p-test is to determine whether the sum of ε0 values from k different
instants lies in the tails of the χ2

nk distribution. This is equivalent to the
time-average NIS test of Bar-Shalom et al.

Now consider a test statistic based on the posterior predictive distribu-
tion. It follows from (4) that the posterior random variable

(ỹ1 −Hµ1)
′S−11 (ỹ1 −Hµ1) (13)

has a χ2
n distribution. The corresponding Bayesian p-test is to determine

whether the test statistic

ε1 = (y −Hµ1)
′S−11 (y −Hµ1) (14)

lies in the tails of the χ2
n distribution. This is a new filter consistency test

that, like the NIS test, can in principle be implemented as an online pro-
cedure because it does not require knowledge of the true state or of future
measurements.

Comparing (12) and (14), it can be seen that the test statistics εr = ε0
and ε1 are both weighted sums of squares of the realised residuals y −Hµ1,
but with different weighting matrices. In Appendix A it is shown that the
statistics are related by the inequality

ε1 ≤ ε0. (15)

Thus ε1 is in the lower tail of χ2
n whenever ε0 is, and ε0 is in the upper tail

of χ2
n whenever ε1 is.

2.3 Augmented model approach

Consider now the following application of the augmented-model approach ad-
vocated by Kruschke [6]. In order to assess whether the nominal measurement
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noise covariance is correct, the base model is augmented with a parameter τ
that scales the measurement noise covariance; the measurement’s sampling
model is then y |x, τ ∼ MVN(Hx, 1

τ
R). The base model is obtained as the

special case τ = 1.
In order to be able to obtain a posterior in terms of standard distributions,

it is assumed that the prior distribution of τ is a gamma distribution and
that x | τ ∼ MVN(µ0,

1
τ
P0). The prior for τ is denoted τ ∼ gam(a0, b0), a

gamma distribution with location a0 and scale b0. Then, as derived in [7, p.
118], the marginal posterior of τ is

τ | y ∼ gam
(
a0 +

n

2
, b0 +

2

ε0

)
. (16)

If most of the posterior probability of τ is located far below the nominal value
τ = 1, then the nominal measurement noise covariance in the base model can
be inferred to be too small to be consistent with the data. Similarly, a too-
large noise covariance in the base model is indicated when τ = 1 is far in the
lower tail of the posterior gamma distribution.

There remains the question of choosing the parameters for the prior of
τ . A conventional choice for a diffuse prior of a variance parameter is the
scale-invariant improper density p(τ) ∝ 1

τ
, which corresponds to the gamma

with a0 → 0 and b0 → 0. The marginal posterior (16) then reduces to

τ | y ∼ gam
(n

2
,

2

ε0

)
, (17)

or equivalently, τε0 | y ∼ χ2
n. Appraising whether this posterior τ is far from

the base model’s nominal value τ = 1 can be done by checking whether ε0
lies in the tails of the χ2

n distribution; this procedure is equivalent to the NIS
test.

3 Tracking example

The performance of the online filter consistency tests is now illustrated with
some simple examples with computer-generated data.

Consider first the example of [1, chap. 5], which has process model

xt+1 |xt ∼ MVN
([ 1 1

0 1

]
xt, q

[ 0.25 0.5
0.5 1

])
, (18)
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known initial state

x0 ∼ MVN
([ 0

10

]
,
[ 0 0

0 0

])
, (19)

and measurement sampling model

yt |xt ∼ MVN(
[

1 0
]
xt, r). (20)

Computer simulations of a 100-step trajectory are made with states and
measurements generated using noise intensity values of q and r that may
differ from the filter model’s nominal values qF = rF = 1. The test quantities
ε0 and ε1 are computed at each time step (Figure 1), and the number of times
they are outside the two-sided 95% χ2

1 acceptance bounds B = (0.001, 5.024)
is counted (Table 1). In the results, neither test has a model mismatch
detection rate better than 50%. Apparently, there is too little information
in a single measurement to allow effective filter consistency assessment with
these tests.

Table 1: Consistency tests for the example (18–20). Measurements are gener-
ated with the given q, r values and the filter having noise variance parameters
q = r = 1 is run for 100 time steps.

%{ε0 %{ε0 %{ε1 %{ε1
q r < B1} > B2} < B1} > B2}
1 1 2 3 7 0
10 1 0 27 1 2
1 10 2 27 4 2

0.1 1 2 0 7 0
1 0.1 3 0 11 0

Consider now time-averaged versions of the consistency tests applied to
the same simulation data. Moving-window sums of k = 5 consecutive sam-
ples of ε0 and ε1 are compared to the two-sided 95% χ2

5 acceptance bounds
B = (3.25 20.48). In the results (Table 2), the time-averaged NIS test, which
uses ε0, has fair (63% or better) detection rate in the cases where the process
or measurement noise covariances are larger than in the nominal model. The
new consistency test based on posterior predictive distributions, which uses
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ε1, has high (over 90%) detection rate in cases where the process or mea-
surement noise covariances are smaller than in the nominal model. However,
the new test also has fairly high (59%) false detection rate when the nominal
model is correct.

Table 2: Time-averaged consistency tests for the example (18–20), based on
a moving window of width k = 5.

%{
∑
ε0 %{

∑
ε0 %{

∑
ε1 %{

∑
ε1

q r < B1} > B2} < B1} > B2}
1 1 2 0 59 0
10 1 0 63 13 0
1 10 0 66 9 2

0.1 1 2 0 91 0
1 0.1 14 0 99 0

Finally, consider a modification of the example so that there is more
redundancy in the measurements. Let n = 5 independent measurements be
made at each time step, so that (20) is replaced by

yt |xt ∼ MVN
([

1 0
: :
1 0

]
xt, rI

)
. (21)

The two-sided 95% χ2
5 acceptance bounds are B = (0.83, 12.83).

In the simulation results (Table 3, Figure 2) both tests have 90% or better
model mismatch detection rate when the nominal measurement covariance is
too small. When the nominal measurement covariance is too large, the new
test has better detection rate (92%) than the NIS test (56%). Neither test
has a detection rate better than 30% when only the process covariance is too
large or too small.

4 Consistency in estimation of a scalar

As is done in [2], further insight into the consistency tests can be obtained
by consideration of the elementary problem of estimating a scalar from n
iid measurements. Consider measurments that are modelled as univariate
normal with mean x and variance ρ, denoted yi |x

iid∼ N(x, ρ). Let the prior
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Table 3: Consistency tests for the example with n = 5 measurements per
time step. Measurements are generated with the given q, r values and the
filter having noise variance parameters q = r = 1 is run for 100 time steps.

%{ε0 %{ε0 %{ε1 %{ε1
q r < B1} > B2} < B1} > B2}
1 1 2 3 6 2
10 1 0 28 1 2
1 10 0 95 0 90

0.1 1 2 0 4 0
1 0.1 56 0 92 0

be x ∼ N(0, π0). The posterior distribution of the state is then

x | y ∼ N( 1
ρ
nπ0

+1
ȳ, 1

1
π0

+n
ρ

), (22)

where ȳ = 1
n

∑
yi. As shown in Appendix A, the prior predictive test quan-

tity for this example is

ε0 =
nv

ρ
+

1
ρ
n

+ π0
ȳ2, (23)

where v = 1
n
‖y − ȳ‖2 = 1

n
‖y‖2 − ȳ2 is the empirical variance.

By examination of (23) it can be seen that ε0 is large when the empirical
variance is large (i.e. v � ρ

n
) and/or the observations’ mean is far from the

(zero) prior mean (i.e. |ȳ| �
√

ρ
n

+ π0). In other words, an excessively large
ε0 indicates that the model’s ρ value is too small or the prior mean is wrong.
An excessively small ε0 means that ρ is too large and that the prior mean is
correct.

As shown in Appendix A, the posterior predictive test quantity for this
example is

ε1 =
nv

ρ
+

1

( ρ
n

+ π0)(1 + 2π0n
ρ

)
ȳ2. (24)

Because the second term tends to zero as n grows large, it follows that when
there is a large amount of data at the time step (i.e. n � ρ

π0
), the test

quantity ε1 is relatively insensitive to mis-modelling of the prior, and is too
small (resp. too large) when ρ is too small (resp. large).
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5 Conclusion

In this work, different procedures of Bayesian model criticism were explored
as possible alternatives to the online NIS test of Kalman filter consistency.
Three of the procedures turned out to be equivalent to the NIS test. We
thus have three new interpretations of NIS: as a Bayesian p-test for the prior
predictive distribution, as a nested-model parameter significance test, and as
a test based on a weighted sum of squared residuals statistic.

A new NIS-like test was obtained from a posterior predictive Bayesian p-
test. NIS and the new test statistic are weighted sums of squared residuals,
but with different weighting matrices. In simulations, the new test outper-
forms the NIS test in the detection of undersized covariance parameters.
Theoretical analysis of a basic estimation problem shows that the two tests
are complementary, in that they detect different aspects of mis-modelling,

The present work extends only to linear Gaussian filtering. It is known
that even when noise is additive zero-mean Gaussian, the effect of nonlinear-
ity in the measurement function can be modelled as an additional term to
the measurement covariance in the extended Kalman filter model [1, p. 385].
Thus, changes in the severity of nonlinearity may also lead to effects similar
to those of filter covariance mis-modelling. A recent study on consistency
tests for nonlinear filters is presented in [8].
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A Derivations and proofs

A.1 Derivation of (2–4)

Introducing the measurement and predicted measurement noise variables w
and w̃, the measurement models can be written as y |x,w, w̃ = Hx+ w and
ỹ |x,w, w̃ = Hx + w̃. The variables x,w, w̃ are mutually independent with
x ∼ MVN(µ0, P0), w ∼ MVN(0, R), and w̃ ∼ MVN(0, R). The full model is
thus  x

ỹ
y

 =

 I 0 0
H I 0
H 0 I

 x
w̃
w

 ,
with  x

w̃
w

 ∼ MVN

 µ0

0
0

 ,
 P0 0 0

0 R 0
0 0 R

 .

Applying the formula for linear transformation of normal random variables
and the notation of (1a) gives[ x

ỹ
y

]
∼ MVN

([ µ0

Hµ0

Hµ0

]
,

[ P0 P0H
′ P0H

′

HP0 S0 HP0H
′

HP0 HP0H
′ S0

])
,
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from which (3) is obtained by marginalisation of ỹ. Then, applying the
formula for conditioning of normal distributions and the notation (1) and (5)
gives [

x
ỹ

]
| y ∼ MVN

([ µ1

Hµ1

]
,
[ P1 P1H

′

HP1 S1

])
,

from which (2) and (4) are obtained by marginalisation.

A.2 Proof that (7) = (8)

From (1d) it follows that µ1−µ0 = K(y−Hµ0) and y−Hµ1 = (I−HK)(y−
Hµ0). Then

(µ1 − µ0)
′P−10 (µ1 − µ0) + (y −Hµ1)

′R−1(y −Hµ1)

= tr
(
(µ1 − µ0)(µ1 − µ0)

′P−10

+ (y −Hµ1)(y −Hµ1)
′R−1

)
= tr

(
K(y −Hµ0)(y −Hµ0)

′K ′P−10

+ (I −HK)(y −Hµ0)(y −Hµ0)
′(I −HK)R−1

)
= tr

(
(y −Hµ0)(y −Hµ0)

′(K ′P−10 K

+ (I −HK)(I −HK)R−1)
)

The result is then obtained by substituting (1d) and the identity RS−10 =
I −HK.

A.3 Derivation of (10)

From (9) and the identity RS−10 = I −HK we have

ỹ −Hµ̃1 = ỹ −H(µ0 +K(ỹ −Hµ0))

= (I −HK)ỹ −H(I −KH)µ0

= (I −HK)(ỹ −Hµ0)

= RS−10 (ỹ −Hµ0).

Applying (3) then gives (10).
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A.4 Proof of (15)

Using (8) and the fact that S1 − R = HP1H
′ is non-negative definite, we

have

ε0 = (µ1 − µ0)
′P−10 (µ1 − µ0) + (y −Hµ1)

′R−1(y −Hµ1)

≥ (y −Hµ1)
′R−1(y −Hµ1)

≥ (y −Hµ1)
′S−11 (y −Hµ1) = ε1.

A.5 Derivation of (22)

Let m = π0
ρ

, H = 1 (a column-vector of ones), and R = ρI. Then

S0 = HP0H
′ +R = π011

′ + ρI

K = P0H
′S−10 = π01

′(π011
′ + ρI)−1

= 1′
(
11′ +

1

m
I
)−1

= 1′
(
mI − m2

1 +mn
11′
)

[Woodbury formula]

=
m

1 +mn
1′

µ1 = µ0 +K(y −Hµ0) =
m

1 +mn
1′y

=
m

1 +mn
nȳ =

1
ρ
nπ0

+ 1
ȳ

I −KH = 1− m

1 +mn
1′1 =

1

1 +mn

P1 = (I −KH)P0 =
π0

1 +mn
=

1
1
π0

+ n
ρ
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A.6 Derivation of (23)

ε0 = y′S−10 y = y′(π011
′ + ρI)−1y

=
1

π0
y′(11′ +

1

m
I)−1y

=
1

π0
y′
(
mI − m2

1 +mn
11′
)
y

=
1

π0

(
m‖y‖2 − m2n2

1 +mn
ȳ2
)

=
1

π0

mn(1 +mn)(v + ȳ2)−m2n2ȳ2

1 +mn

=
1

π0

(
mnv +

mn

1 +mn
ȳ2
)

=
nv

ρ
+

1
ρ
n

+ π0
ȳ2

A.7 Derivation of (24)

S−11 =
1

π0

( 1

1 +mn
11′ +

1

m
I
)−1

=
1

π0

(
mI − m2

1 + 2mn
11′
)

y′S−11 y =
1

π0

(
m‖y‖2 − m2n2

1 + 2mn
ȳ2
)

y′S−11 Hµ1 =
m

1 +mn
y′S−11 11′y

=
1

π0

m

1 +mn

(
m− m2n

1 + 2mn

)
y′11′y

=
1

π0

m2n2

1 + 2mn
ȳ2

µ′1H
′S−11 Hµ1 =

m2

(1 +mn)2
y′11′S−11 11′y

=
1

π0

m2

(1 +mn)2

(
mn− m2n2

1 + 2mn

)
y′11′y

=
1

π0

m3n3

(1 +mn)(1 + 2mn)
ȳ2
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ε1 = (y −Hµ1)
′S−11 (y −Hµ1)

= yS−11 y − 2y′S−11 Hµ1 + µ′1H
′S−11 Hµ1

=
1

π0

(
m‖y‖2 − m2n2(3 + 2mn)

(1 +mn)(1 + 2mn)
ȳ2
)

=
1

π0

(
mnv +

mn

(1 +mn)(1 + 2mn)
ȳ2
)

=
nv

ρ
+

1

( ρ
n

+ π0)(1 + 2π0n
ρ

)
ȳ2
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Figure 1: Time series for the simulation in Table 1. Solid lines are the test
statistics ε0 and ε1, with ε0 ≥ ε1; dashed lines are the two-sided 95% χ2

1

acceptance bounds.
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Figure 2: Time series for the simulation in Table 3. Solid lines are the test
statistics ε0 ≥ ε1; dashed lines are the two-sided 95% χ2

5 acceptance bounds.
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