
Distance-based Interpolation and
Extrapolation Methods for RSS-based

Localization with Indoor Wireless Signals

Jukka Talvitie, Markku Renfors , Elena Simona Lohan
Department of Electronics and Communications Engineering

Tampere University of Technology
Tampere, Finland

jukka.talvitie@tut.fi, markku.renfors@tut.fi, elena-simona.lohan@tut.fi

Abstract—Wireless Local Area Network (WLAN) based fingerprinting using Received Signal Strengths (RSS)
has been considered as one solution for indoor positioning. However, one widely recognized problem in
fingerprinting is the collection and maintenance of a proper fingerprint database. In this paper we consider
having an incomplete fingerprint database with realistic coverage gaps and we study the performance of
several interpolation and extrapolation methods for recovering the missing fingerprint data. For this purpose,
we have collected an extensive set of data at 2.4GHz and 5GHz frequency bands from one university building
with  four  floors.  The  accuracy  of  the  interpolation  and  extrapolation  methods  is  studied  by  artificially
removing fingerprints from the database using a randomized procedure, and by comparing the estimated
fingerprints with the original ones. The average RSS estimation error of different interpolation and
extrapolation methods is shown for various percentages of missing fingerprints. In addition, a cumulative RSS
error distribution is studied in order to reveal the dispersion of the error statistics, which affect the user
positioning accuracy. Here, the user positioning accuracy is defined in terms of horizontal positioning error
and floor detection probability. The user positioning accuracy is also compared in four cases, namely when
using the original fingerprints, the partial fingerprints, the interpolated fingerprints, and the interpolated and
extrapolated fingerprints. It is shown that both the horizontal positioning accuracy and the floor detection
probability can be improved with proper interpolation and extrapolation methods. However, it is also
illustrated that the best positioning performance is not necessarily achieved with the best average interpolation
and extrapolation accuracy, but it is important to avoid certain type of errors in the interpolation and
extrapolation process.
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I. INTRODUCTION

Low-cost indoor positioning has become one of the most important research topics in recent years and the

emerging market of indoor positioning applications is continuously seeking for novel and efficient

positioning solutions. One widely recognized approach for indoor positioning is to exploit IEEE 802.11

standard [1] for Wireless Local Area Networks (WLAN). The market of WLANs has continued to increase

rapidly and it has made the WLANs widely available in urban areas, especially indoors. Besides the network

availability, the growth of WLAN-equipped mobile devices has made WLAN-based positioning even more



appealing, since it has become more likely that the users are already carrying the required positioning

technology with them. Moreover, WLAN signals are nowadays transmitted on multiple frequency bands (e.g.

2.4GHz and 5GHz), which may ensure also a certain form of diversity in positioning the wireless users.

Exploiting the Received Signal Strength (RSS) measurements from WLAN Access Points (AP) is one of

the most common WLAN based positioning method [2]-[21]. In fact, RSS-based positioning is not limited to

WLANs, but it can be applied also with cellular [22]-[23] , RFID [24]-[25] , Bluetooth [26], or ZigBee [27]

signals.  From  this  point  of  view,  our  work  in  here  is  not  limited  to  WLAN  signals,  but  it  could  find  its

usefulness as well for any other wireless signals used for localization via RSS. One option for RSS-based

positioning is to exploit the WLAN Access Point (AP) locations and the radio propagation pathloss models or

more advanced ray-tracing algorithms with building floor plans. However, since the AP locations and the

building floor plans are not usually accessible, it makes these approaches less attractive from the global

availability point of view. The other option is to collect enough learning data and to use it to estimate the AP

positions and the pathloss models, or to create fingerprints, which can be used in positioning by comparing

the signals measured by the user with the pre-collected data. In this paper, we consider traditional

fingerprinting, where the learning data is comprised of fingerprints as done in [10]-[18], because the

fingerprinting methods have been traditionally shown to give more accurate positioning results than the

probabilistic methods based on pathloss modeling [12]-[15],[28]. Nevertheless, fingerprinting requires

usually significant efforts to construct and maintain an adequate fingerprint database, but on the other hand,

the learning data can be collected and used without any extra knowledge about the physical environment.

In many cases, the collected data does not necessarily cover the whole target area, leaving some of the

areas in total blackness from positioning point of view. For example, this might occur, if some areas, such as

office rooms and apartments, are restricted or inaccessible for the persons (or devices) collecting the data. In

addition, parts of the learning data might get outdated or lose their integrity, which can lead to exclusion of

the data. In all the cases, some gaps may appear in the fingerprint coverage area. One of the main focuses of

this paper is on studying the applicability of different floor-wise interpolation and extrapolation methods for

recovering the information of missing fingerprints. Interpolation and similar type of processing of RSS based

fingerprints has been earlier studied in [2]-[6] and [8], but none of these have tested the algorithms with large



and comprehensive networks as those provided in this paper. For example, instead of using specific network

arrangements with only 6 or 10 APs as in [5] and [4], our results are based on extensive measurement

campaign with over 400 observed APs including more than half a million RSS measurements. In addition,

extrapolation methods have usually not been addressed, or addressed in a very basic form (e.g., padding with

constant values), and yet the extrapolation step is a crucial step into filling the gaps from the measurement

phase.

In order to study the performance of different interpolation and extrapolation methods, a specific

randomized process for artificial fingerprint removal, introduced by the authors in [29], is used for generating

realistic gaps in the fingerprint coverage area. The results in [29] have demonstrated that the fingerprint

removal method has a significant impact on the positioning accuracy, thus we take it  into account in our

current studies. Since the RSS values of removed fingerprints are known, they can be used as reference points

when comparing the accuracy and error statistics of different interpolation and extrapolation methods. Results

are evaluated by means of average RSS estimation error and cumulative error distribution for all considered

interpolation and extrapolation methods. Moreover, the additional objectives of this paper are: to study the

effect of the given fingerprint recovery techniques on user positioning accuracy, to provide an applicable

approach for fingerprint removal scheme, to study and evaluate a gradient-based extrapolation in context of

WLAN signals, delivering results from real-life large scale WLAN networks (not only a few APs), and to

provide comparative analysis in two different frequency bands (2.4GHz and 5GHz). It is shown here that the

positioning error can be noticeably decreased with proper interpolation and extrapolation methods, even if

most of the fingerprints have been removed from the database. This is a new and important finding, not

necessarily intuitive, and it can help the location service provider to choose how to collect the fingerprint

data, in a minimal way, still ensuring a desirable target performance.

The remainder of this paper is organized as follows: Section II introduces the measurement set-up and the

structure of the used fingerprint database. In addition, the used fingerprint removal scheme for interpolation

and extrapolation performance analysis is provided. The considered interpolation and extrapolation

techniques are presented in detail in Section III and their estimation accuracy is further analyzed in Section



IV. After this, in Section V, the user positioning accuracy with the considered interpolation and extrapolation

methods are compared with each other. Finally, the conclusions are drawn in Section VI.

II. MEASUREMENT SET-UP AND FINGERPRINT DATABASE

WLAN measurements were taken with a Nexus 7 tablet by ASUSTeK Computer Inc. (ASUS) in a four-

floor University building in Tampere University of Technology campus, in Tampere, Finland, between

December 2013 and March 2014. The collected data consists of a set of fingerprints, each including

coordinates and RSS values for the heard APs. All the measurements considered in this paper are taken at

2.4GHz and 5GHz carrier frequencies and the fingerprints are constructed separately for the both bands. The

fingerprint coordinates were manually defined by the user with the help of a building floor plan and dedicated

measurement software. The maximum error between fingerprint coordinates and true measurement

coordinates is roughly evaluated to be around 1 meter which is adequate for the expected positioning

accuracy. Moreover, deviation of RSS values due to body loss and other environment variations introduces

considerably larger errors for the learning data and positioning algorithms compared to relatively small

reference coordinate errors. The floor plan and the coordinates of collected fingerprints for all 4 floors are

illustrated in Fig. 1.

A. Fingerprint database structure

Fingerprints are defined as (xi, yi, zi, Pi), where i=1… NFP is the fingerprint index, xi, yi and zi are the x, y,

and z coordinates of the fingerprint, Pi is  a  1xNi vector  of  RSS measurements  for  a  set  of Ni heard  APs  in

point i and NFP is the number of fingerprints in the database. The RSS measurement vector at ith fingerprint

can be further described as
,1 ,2 ,i i i Nii ap ap apP P Pé ù= ë ûP L , where

,i japP is  the  RSS value  of  the jth heard  AP

and at ith fingerprint. The index [ ], 1,i j APap NÎ  corresponding to each fingerprint and each heard AP in that

particular fingerprint refers to a unique AP identity based on the MAC (Media Access Control) address of the

AP and NAP is the total number of APs in the database ( ,i APN N i£ "  and the set of { },i jap  has elements with

values between 1 and NAP). This type of fingerprint database is constructed separately for the 2.4GHz and



5GHz bands. In this paper, fingerprints from separate frequency bands are not interacted with each other, and

thus, the frequency band indices are left out from the database structure definitions for the sake of simplicity.

To avoid unnecessary overlapping between fingerprints very close to each other, it is common to merge

information of these fingerprints by constructing a uniform rectangular grid with certain grid interval gint as

done in [10] and [11]. The same principle is also exploited in [12]-[15] , but without the assumption of a

rectangular grid. Here, each measured fingerprint is mapped into the closest available grid point. In the case

when multiple RSS measurements from the same AP are mapped into the same grid point, an arithmetic

mean over the RSS values is taken. For the sake of clarity, these grid points with merged fingerprint data are

still referred as fingerprints, since their structure and purpose do not differ from the original definition. An

example of the used fingerprint database regarding the first floor is given in Fig. 2 using grid interval of

gint=5m.

B. Fingerprint Removal Process

To be able to study the possibilities of interpolation and extrapolation methods, some of the measured

fingerprints are desired to be removed from the database. The fundamental goal is to simulate a situation

where learning data collection does not cover the whole operating area. Now, it is essential that fingerprints

are not removed randomly using a simple uniform probability distribution, since in average this would result

into a case where there would still be some learning data available in every part of the original coverage area.

In practical cases though, some data is usually missing from larger spaces, such as whole rooms or corridors,

at a time. Hence, the idea is to remove adjacent fingerprints in larger blocks and to introduce much larger and

more realistic coverage gaps in the fingerprint database. In this paper, the interpolation and extrapolation are

considered only horizontally in floor-wise manner (2D), since the radio propagation properties are drastically

changed in the vertical direction. However, the methods presented here are also applicable in vertical

direction with minor modifications.

Separate floors are considered as individual entities from the data collection point of view. Thus, the given

fingerprint removal process is defined in a floor-wise manner, similar to the interpolation and extrapolation

methods presented further in Section III. The proposed fingerprint removal process is completely defined by

the two following parameters: removal percentage µ and removal block radius dblock. Here, µ defines the



percentage of removed fingerprints with respect to the initial number of fingerprints, and dblock defines the

radius (in meters) of a circular area, referred as a block, where fingerprints are removed. Here, dblock outlines

roughly the average size of coverage gaps introduced by the removal process.

Defining the set of original fingerprints as Ωfull, the target is to determine the set of fingerprints after the

removal process denoted as Ωpartial, so that |Ωpartial|=(1-µ)|Ωfull|, where the operator |∙| defines the size of the

set, i.e., the number of fingerprints. By initializing the partial database as Ωpartial=Ωfull, the removal procedure

to fulfil the above condition and to include property of removing fingerprints in larger blocks can be

described as follows:

1. Select randomly one fingerprint (xi, yi, zi, Pi)  from Ωpartial using uniform probability distribution

2. Remove all fingerprints whose Euclidian distance in horizontal plane (the xy-plane) to the

randomly selected fingerprint (xi, yi, zi, Pi) is smaller or equal to the block radius parameter dblock.

The preserved fingerprints are now defining the new partial database Ωpartial.

3. Check if the desired removal percentage is satisfied by |Ωpartial|≤(1-µ)|Ωfull|. If yes, continue to the

part 4. Otherwise, go back to the part 1.

4. In case |Ωpartial|=(1-µ)|Ωfull| is not satisfied with one fingerprint accuracy, retrieve a required

number of the fingerprints from the last removed block starting from the fingerprints with largest

distance to (xi, yi, zi, Pi).

After the above-mentioned procedure, the value of µ is given with accuracy of one fingerprint. An illustration

of the partial fingerprint database is given in Fig. 3, in which 50% of the fingerprints are removed using the

block radius of 10m.  The original fingerprints were earlier shown in Fig. 2.

III. INTERPOLATION AND EXTRAPOLATION METHODS

RSS  measurements  of  an  individual  AP  in  one  floor  create  a  surface,  whose  shape  is  dependent  on  the

radio wave propagation environment. Besides the distance from the transmitter, RSS values are affected by

walls and obstacles along with reflections and diffractions in the radio path. For this reason, fingerprints are

able to provide more accurate information about the location compared to simple pathloss models, especially

indoors. In this paper both interpolation and extrapolation are performed only in floor-wise manner because



of the differences in radio propagation properties between horizontal and vertical directions. To the best of

our knowledge, full 3D interpolation and extrapolation for fingerprint recovery have not been addressed in

the literature.

The fingerprint recovery process consists of interpolation and extrapolation of fingerprints for each AP

and floor separately. In other words, for each AP and each floor a set of fingerprints denoted as (xj, yj, Pj) are

extracted from the database, where xj, yj, and
,j napP are x coordinate, y coordinate, and the RSS of jth

fingerprint for the n-th considered AP  and for the considered floor (the floor index has been dropped here for

clarity). Notice that now the index j collects all fingerprints from one floor for one AP and the z coordinate

can be neglected, since we focus at one floor at the time. As the coordinates xj and yj are now located in a

rectangular grid, the target of the interpolation is to estimate the RSS values in the grid points between the

known fingerprints, and more precisely, inside the convex hull defined by the fingerprints. The convex hull

describing the interpolation area along with the definition of extrapolation area is illustrated in Fig. 4. As

shown in Fig. 4, the extrapolation area is defined by the area given by the rectangular fitted in the outer limits

of original fingerprint coordinates. It should be noticed that in practice, the extrapolation area must be defined

without the knowledge of original fingerprints, for example, using reasonable approximation of the maximum

coverage of the AP.

The considered interpolation and extrapolation approaches are divided into two separate categories. In the

first category, the interpolation is performed linearly as described further in Part A.1, and the extrapolation is

followed by either minimum method, mean method or gradient method as described in Part A.2, A.3 and A.4,

respectively. In the second category the interpolation and extrapolation are performed jointly using

approaches based on nearest neighbor method and Inverse Distance Weighting (IDW) method, described in

Part B.

A. Disjoint interpolation and extrapolation
Whereas the interpolation refers to filling the gaps between known data points, extrapolation tries to

estimate the data outside the known data points. Therefore, extrapolation is, of course, much more

challenging and it has to be carried out with great caution to avoid generating extensively misleading data. As

the interpolation task is less challenging, a straightforward linear interpolation method is used in all disjointed



interpolation and extrapolation approaches, whereas the extrapolation method varies between three

considered approaches: minimum method, mean method and gradient method.

A.1  Linear interpolation

We denote ΩAP as a set of fingerprints { },
, ,

j APj j ap j
x y P for one specific AP and floor defining the available

data for each interpolation and extrapolation procedure. The used linear interpolation method is based on

Delaunay triangulation [30], also referred as Delaunay tessellation.  The Delaunay triangulation is illustrated

in Fig. 4., where the dots represent the fingerprint coordinates (xj, yj). Compared to other known data

independent triangulation methods, Delaunay triangulation maximizes the observed minimum angle of the

tessellation, and thus, results in smoother surfaces. The actual interpolation method exploiting the Delaunay

triangulation can be performed in several ways. However, in this paper only the linear interpolation is

considered due to uncertainty of the radio propagation environment and relatively large gaps in the data

covered by the interpolation. For example, parameters of an indoor radio propagation model can vary

considerably between different locations due to walls and other obstacles. Therefore, defining the curvature

of the surface model for more advanced interpolation methods can be very challenging, which makes the

linear interpolation a reasonable choice.

The first step in linearly interpolating the RSS value for an unknown coordinate point (x,y) is to discover

in which tessellation triangle the point belongs to. After this, denoting the triangle vertices as (x1, y1, P1), (x2,

y2, P2) and (x3, y3, P3), the interpolated RSS value can be calculated as

1 1 2 2 3 3interpP P P Pl l l= + + , (1)

where λ1, λ2, and λ3 are barycentric coordinates of (x,y) on the triangle and λ1+λ2+λ3=1. Consequently, the

barycentric coordinates can be considered as weights for the known RSS values in the triangle vertices, and

they can be calculated as
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The accuracy of the linear interpolation method is greatly affected by the shape of triangles in the tessellation,

and therefore, by the geometry of known data points locations.

A.2Minimum Method Extrapolation
In the minimum method extrapolation all the extrapolated RSS values are estimated using a single

constant defined as the minimum of the observed RSS values of the considered AP and floor as

{ },

, , where

arg min
i AP

extrap AP AP

AP ap
i

P K

K P

=

=
(3)

for each AP. Since the minimum method extrapolation is performed using a constant value, it is not able to

reach the average accuracy of the gradient based method, presented in Part A.4, with moderate fingerprint

removal percentage, as seen later in Section IV. However, as stated further in Section V, from the positioning

accuracy point of view, the minimum method is able to provide better performance than the gradient method,

since the errors originated from these are not as critical as the errors originated from the gradient method.

A.3Mean Method Extrapolation
Similar to the minimum method extrapolation, the mean extrapolation method estimates the missing RSS

values with a single constant, but in this case using a mean of the observed RSS values as

,

, , where
1 ,

i AP

extrap AP AP

AP ap
i

P K

K P
N

=

= å
(4)

where N is number of RSS values
,i APapP . Whereas the mean value extrapolation can generate better estimates

near the true AP location, the minimum value extrapolation works generally better when the extrapolated

area is far from the true AP location. As seen later in Section IV, the mean extrapolation method provides

smaller average error for the RSS estimates than the minimum method, but the error distribution is different.

With the mean method extrapolation the error distribution is concentrated in smaller range resulting in

smaller RSS error dynamics.

A.4Gradient Method Extrapolation
In [31] the triangulated surface is extended to semi-infinite rectangles on the convex hull exterior, which

makes the linear approximation discussed earlier in Part A.1 applicable. Similar approach was earlier used in



[32] as part of the interpolation solution for a smooth surface fitting. Nevertheless, to create a globally

defined extension of the surface outside the convex hull, it is intuitive to concentrate on gradients at the

surface edges. When considering indoor RSS measurements, the surface is not expected to be smooth, but it

is expected to vary strongly because of walls and other obstacles. This means that purely relying on the

convex hull exterior is not practically reasonable. Also, since the process is done separately for each AP

found in the fingerprint data set, computational complexity is desired to be maintained at reasonable level.

Therefore, the following simplified gradient based method inspired by [31] and [32] is derived for the

gradient based extrapolation.

The gradient at point (xg, yg, Pg) on the surface edge is defined as ( , )P x yÑ = D D , where Δx and Δy are the

gradient component values in direction of x and y coordinate axis. Now, based on both x-component and y-

component gradients, we can calculate component-wise RSS value estimates at point (x,y) outside the convex

hull as

( )
( )

x g g

y g g

P x x x P

P y y y P

= D - +

= D - +
(5)

where Px and Py are the estimates of the extrapolated RSS value based on x-component and y-component

gradients, respectively. Finally, the extrapolated RSS estimate is approximated by taking an average of the

two component estimates as Pextrap=(Px+Py)/2. Because of high deviation of RSS values in fingerprinting due

to harsh radio propagation environment, it is beneficial to include gradient information from multiple data

points. By this way it is possible to avoid errors in the extrapolation process caused by high RSS deviation in

the convex hull exterior. In this paper, based on performed coarse algorithm optimization, the extrapolated

RSS values are calculated by taking an average of separate gradient based estimates from three closest data

points with known gradients.

B. Joint interpolation and extrapolation

Apart from the two-fold process using separate interpolation and extrapolation algorithms, some

algorithms are not making any difference whether the estimated point is inside or outside of the convex hull.



This type of joint interpolation and extrapolation approach is naturally included, for example, in nearest

neighbor method and IDW method, which are presented next.

B.1  Nearest neighbor method
With nearest neighbor method, further referred solely as nearest method, the RSS value of a missing

fingerprint is defined using the RSS value of the nearest known fingerprint measured in Euclidian distance of

the coordinates. Again, denoting the set of known fingerprints for AP-th access point  as { },
, ,

j APj j ap j
x y P , the

extrapolated RSS value at point (x, y) is obtained as

ˆ ,, j APextrap AP apP P= , (6)

where the fingerprint index ĵ  refers to the fingerprint with minimum distance as

2 2ˆ arg min ( ) ( )j jj
j x x y y= - + - . (7)

The resulted RSS values for the whole interpolated and extrapolated area can be presented with Voronoi

diagram [30], where each Voronoi cell describes an area estimated based on one known fingerprint. The

algorithm is very simple to implement, but the discontinuities in the Voronoi cell edges reduce the estimation

accuracy.

B.2  Inverse Distance Weigthting (IDW)
Another approach which performs the interpolation and extrapolation tasks jointly is the IDW, sometimes

referred as Shepard’s algorithm [33]. Unlike in the other methods presented in this paper, each estimated data

point in IDW is affected by all  known data points.  The basic idea is  to provide weights for the data points

based on their distance to the estimated point. The closer is the known data point to the estimated point the

more weight is given to it. Hence, the IDW estimate for the unknown RSS value Pextrap at coordinate point (x,

y) can be given as

( ) ( )

,

2 2

, where

, and

.

j AP
AP

AP

extrap j ap
j

u
j

j u
j

j

j j j

P w P

d
w

d

d x x y y

ÎW

-

-

ÎW

=

=

= - + -

å

å
(8)



Here u is the exponent parameter, which associates weight wj with the distance dj. The higher is u the

relatively less weight is given for data points further away. In this paper, based on a coarse algorithm

optimization, the used value for the exponent is u=4.

IV. INTERPOLATION AND EXTRAPOLATION ERROR STATISTICS

Interpolation and extrapolation methods with high average estimation accuracy enable improved

positioning accuracy. However, the higher average accuracy does not directly imply higher positioning

accuracy. In some cases it is more important to allow a higher average error but to avoid making critical

errors.  For  example,  it  is  widely  recognized  that  higher  RSS  measurements  in  user  positioning  are  more

important for accurate positioning than lower RSS values. This is mainly because high RSS values point at

specific small area around the measured AP, whereas lower RSS values can be observed further around the

AP in all directions. Hence, in doing the interpolation and extrapolation of fingerprints in RSS based

positioning systems, it is not necessarily about choosing the best surface fit for the fingerprint data, but about

minimizing the user positioning error. Nonetheless, the recovery of missing data via interpolation and

extrapolation methods can improve the positioning performance as it will be shown in Section V.

The accuracy of interpolation and extrapolation methods can be evaluated only in locations where original

measurements are available, that is, in the fingerprints which were artificially removed from the original

fingerprint database. These specific fingerprints are further called as reference points, since they incorporate

information on the true RSS measurements besides the estimated ones. Based on the definition of

interpolation and extrapolation areas, discussed earlier in Section III, the estimation error statistics are

analyzed separately for the interpolated and extrapolated fingerprints. As an example, locations of the

reference points used to determine estimate error statistics for interpolation and extrapolation methods are

illustrated in Fig. 5.

Since the fingerprint removal process requires random procedures regarding the selection of the removed

fingerprints, all the results are given as an average of 100 separate fingerprint removal processes initialized

with different random number generator seeds. When comparing different interpolation and extrapolation

methods with each other, the same set of fingerprints is always used. The sufficiency of 100 averaging loops



was confirmed by observing the standard deviation of the results between different trials. For example, the

standard deviation of the presented average RSS error result between different random number seeds was less

than 0.5dBm for all the studied methods.

First, the average RSS estimation error was examined with different fingerprint removal block radii dblock.

The purpose of this was to find a reasonable level for the dblock parameter with respect to the dimensions of

the operated building. For example, the block area with dblock=10m and dblock=20m refer to approximately 3-

5% and 10-20% of one floor area. Here, the latter one completely removes many of the heard APs from the

database, and therefore, it does not serve the fundamental purpose of the study. However, the first case with

dblock=10m corresponds to scenarios where measurements are removed from certain parts of corridors or from

one or multiple rooms at a time. Hence, dblock=10m is used in the following results unless otherwise

mentioned.

All the results shown in this Section are for the 2.4GHz band. However, similar results were also obtained

for the 5GHz band, but because of very small differences in interpolation and extrapolation error statistics

between the 2.4GHz and 5GHz bands, the 5GHz band results were excluded from this Section. Nevertheless,

based on these results, it appears that there is no significant difference in interpolation and extrapolation error

statistics between the 2.4GHz and 5GHz bands.

The average RSS interpolation error as a function of fingerprint removal percent µ is shown in Fig. 6. As

expected, the interpolation error increases proportional to µ. Also, the linear interpolation with Delaunay

triangulation and the IDW method provide higher accuracy compared to the nearest neighbor method. The

same type of comparison is shown for the average RSS extrapolation error in Fig.  7.  Here,  it  is  possible to

observe larger differences between different methods. In addition, the studied methods are behaving

differently as µ increases compared to the curves in the interpolation case. For example, the minimum

method and the mean method are clearly less accurate than the IDW and nearest neighbor methods when µ is

small, but the gap is clearly reduced when µ is large. Moreover, the gradient method overcomes the minimum

and mean methods with small values of µ, but when µ gets larger the accuracy of gradient method collapses

down to the lowest accuracy method. The problem of gradient based methods in the RSS measurement

extrapolation is its assumption of continuation of the edge of the interpolated surface. However, because of



shadowing effects, especially in indoor scenarios, there might be rapid RSS value changes in the edge. As a

result, the slope of the gradient can be even positive and the extrapolated RSS values get larger when moving

away from the true location of the AP. This substantially decreases the average extrapolation error and the

positioning error as seen later in Section V. In terms of average RSS interpolation error, the linear

interpolation provides better accuracy than the nearest neighbor and IDW methods. However, the

corresponding RSS extrapolation error of the methods used with the linear interpolation are less accurate than

the nearest neighbor and IDW methods. As a result, the IDW method seems to provide the best performance

when both interpolation and extrapolation accuracy is taken into account.

Cumulative error distributions of interpolated RSS values for different interpolation methods and for two

separate values of µ are given in Fig. 8. From here it is possible to see that high error values are dominating

the average curves shown earlier in Fig. 6. For example, the linear method achieved 4dBm average error at µ

=10%, but from the cumulative error curve it can be seen that approximately 67% of the estimates have lower

error than the average error. It is also noticeable that the linear method and the IDW method have almost

identical cumulative error distributions. The corresponding curves for different extrapolation methods are

shown in Fig 9. Here, one noteworthy observation is the difference between the curves of minimum and

mean methods with µ =10%. Whereas their mean errors are approximately on the same level, as already seen

in Fig. 7, the minimum method provides more likely smaller error than the mean method, but at the same

time the minimum method has a higher probability for larger errors. As seen later in Section V, the lowest

average RSS estimation error does not necessarily provide the lowest positioning error. Hence, the

cumulative distributions give important insight into the details of RSS estimation error statistics regarding the

considered interpolation and extrapolation methods.

Another aspect in the fingerprint interpolation and extrapolation error analysis is the relation between the

estimation accuracy and the distance to the closest known fingerprint. This dependency is studied in Fig. 10,

where the average interpolation error of RSS is shown as a function of distance to the closest known

fingerprint. Here it is noteworthy that all the shown curves are saturated on some specific levels as the

distance is increased. Moreover, all the considered interpolation methods are always defining the estimates

inside the value limits of the known data points. For example, with linear interpolation the estimated RSS



values are evenly distributed between the RSS values of closest known data points. Assuming that the

interpolation distance is large enough, the saturated interpolation error is roughly at the same level as

shadowing standard deviation. In Fig. 10 the saturated level for the linear method is around 6dBm, which is a

common value for indoor shadowing standard deviation. One conclusion here is that if the data is missing in

several small areas, the deterioration is less than if the data is missing in a larger area, even if the total area of

the missing surface is the same.

In Fig. 11 the average extrapolation error of RSS values as a function of distance to the closest known

fingerprint is studied for the extrapolation methods. Unlike in the interpolation case,  similar types of

saturation levels are not visible, since the estimated surface is not limited by a known data point in the edge

of the extrapolated area. Nevertheless, since RSS values are physically restricted to some dynamic range, for

example due to receiver sensitivity, the maximum extrapolation error is also limited to this range assuming

that the estimates are not exceeding the limits. Furthermore, the behavior of the minimum method makes an

exception compared to other methods. It appears that the average RSS error is decreasing as the distance

increases. This is actually reasonable in case of RSS extrapolation, since low RSS levels are expected at far

distances from the AP, where the extrapolated minimum value has most likely been used. In addition, there

are usually more low RSS values in the database, for which reason their estimation has larger emphasize in

the average error results. On the other hand, the extrapolation accuracy of the minimum method near the AP

can get very poor, if there is at least one very low RSS measurement available elsewhere in the fingerprints.

On the contrary, the mean method does not follow the behavior of the minimum method curve, although it is

also estimating the fingerprints with a constant value. The mean method acquires better estimates at close

proximity of AP, but fails to have proper RSS estimates with long distances.

V. POSITIONING RESULTS

The positioning results are obtained using the well-known K-Nearest Neighbor algorithm (KNN) [13],

which is widely used for RSS fingerprinting based positioning. The fundamental idea behind the

fingerprinting based positioning algorithms is to compare the user measurement data with the fingerprint

database based on certain specified metrics.



For each user measurement, a set of RSS measurements from the heard APs is given as

1 2 Nhearduser ap ap apP P Pé ù= ë ûP L , where Nheard is  the  number  of  heard  APs.  For  all  the  APs  which  are  not

heard, a bogus RSS value can be used, for example as done in [12]. In this paper, the bogus value is

determined as -95dBm, which is 1dBm lower than the lowest observed RSS value in the fingerprint database.

Now, the Euclidian distance of RSS values can be calculated as

2
,( )

k k

i

i i ap ap
k

D P P
ÎW

= -å (9)

where , ki apP is the RSS value for AP index apk in the ith fingerprint. Now, the position estimate is obtained by

taking the average of K nearest (i.e., smallest Euclidian distance) fingerprint coordinates as

1ˆ ˆ ˆ( , , ) ( , , )
nearest

k k k
k

x y z x y z
K ÎW

= å (10)

where Ωnearest is a set of fingerprint indices with K smallest Euclidian distance. For simplicity, only static user

position estimates are considered and no filtering or other signal processing methods are used to improve the

position estimates. In this paper five nearest neighbors, i.e. K=5, is considered as a result of coarse

optimization process. It is worth of mentioning that the parameter K had quite a small effect on the

performance with values K<10. In addition, the effect of the parameter K appeared to be consistent on all

results.

Positioning accuracy is studied using 12 different tracks inside the building, including measurements from

both the 2.4GHz band and the 5GHz band. Nonetheless, user positioning results are shown separately for

both of the bands, so that there is no interaction between the 2.4GHz and 5GHz measurements. Each user

track is tested with each realization of the fingerprint database after the fingerprint removal process described

in Section II. Consequently, the positioning accuracy is averaged over 100 different database realizations,

where the databases are the exact ones that were earlier studied in Section IV for interpolation and

extrapolation error statistics. The results are given in forms of positioning accuracy, which refers to floor-

wise (2D) Euclidian distance based estimation error, and floor detection probability, which refers to



probability of estimating the correct user floor. The floor is determined to be detected correctly, if the true

floor of the user is closest to the estimated z coordinate.

A. 2.4GHz Band Results

First, the effect of different interpolation methods on the positioning accuracy is studied at the 2.4GHz

band. Considering all user tracks the mean positioning error as a function of fingerprint removal percent µ is

given in Fig. 12. The results are shown separately for original fingerprints, partial fingerprints (with removed

fingerprints and no interpolation or extrapolation), and different interpolation methods. Here the fingerprints

are recovered only for the areas inside the convex hull of the remained fingerprints. The results show that

interpolation alone does not improve the performance compared to using the partial fingerprint database. On

the contrary, the outcome of floor detection probability, shown in Fig. 13, indicates that the floor detection

performance can be improved with the interpolation.

In case also the extrapolated areas in the fingerprint recovery process are taken into account, the results

begin to change. The corresponding mean error considering also the extrapolated areas, for different

extrapolation methods is shown in Fig. 14. Here, when µ is increased, compared to the partial fingerprints,

the mean error is clearly reduced for all other extrapolation methods except for the gradient method. For

cases with µ>50%, the mean error is roughly 15-20% smaller with the best extrapolation methods compared

to the partial fingerprint set. As discussed earlier in Section IV, here it can be clearly seen that better average

extrapolation error does not necessarily mean better positioning accuracy. For example, comparing the

performance  of  the  minimum  method  and  gradient  method  in  Fig.  14  and  in  Fig.  7,  it  can  be  noticed  that

minimum method is clearly lacking the performance in average extrapolation error, but overcomes the

gradient method in positioning error accuracy. As a result, it is very important to recognize that in practice

the  position  solution  is  originated  from  a  fairly  complex  network  structure,  and  certain  type  of  errors  in

interpolation and extrapolation algorithms, such as the ones created with gradient method, might have a huge

impact on the positioning solution. Besides the horizontal positioning accuracy, the floor detection

probability can also be clearly improved with the extrapolation as shown in Fig. 15. Again, the gradient based

extrapolation is not able to compete with the other extrapolation methods.



In the end, the impact of the presented fingerprint removal scheme with respect to positioning accuracy

and floor detection probability are illustrated in Fig. 16 and Fig. 17. In both of the figures, the uniform

removal refers to fingerprint removal with uniform probability distribution. For simplicity, results are only

given for the IDW method with extrapolation because of its consistent performance in all of the studied

scenarios. Here, it should be emphasized that all the fingerprint removal methods remove exactly the same

number of fingerprints based on the value of µ. Nevertheless, the performances of partial fingerprint sets and

the IDW method differ considerably between different removal approaches. From fingerprint removal point

of view it is more important where the fingerprints are removed, not how much is removed. For example,

with uniform fingerprint removal approach the mean 2D positioning error can be up to 30% in lower level

than with block removal approach using dblock=20m. Comparable observations can be seen in the floor

detection probability also. For this reason, it is essential that when interpolation and extrapolation methods

are studied for recovering and estimating missing fingerprint data, the missing data should be modeled

according to basic principles discussed in Section II.

B. 5GHz Band Results

The average horizontal positioning accuracies at the 5GHz band for different interpolation methods are

compared in Fig. 18. All the considered interpolation methods result in approximately the same average

positioning error. However, none of interpolation methods are able to provide better or equal performance

compared to using the partial fingerprint database. On the other hand, in terms of floor detection probability,

the performance can be slightly improved by the interpolation when µ is small, as shown in Fig. 19. Unlike

with the corresponding results in the 2.4GHz band, the effect of the removal percentage µ on the floor

detection accuracy is very small.

The results for the average positioning error including also the extrapolation are shown in Fig. 20. Similar

to the positioning error results for the interpolation, none of the extrapolation methods are able to introduce

any improvement into the positioning accuracy compared to the partial fingerprint database. However, as

shown in Fig. 21, the floor detection probability for the extrapolated fingerprints can be improved even with

removal percentage µ values over 50-60%.



C. Comparative Notes between 2.4GHz and 5GHz bands and Summarization

It can be clearly seen that the positioning accuracy and the floor detection probability at 5GHz band is

generally on much lower level than in the 2.4GHz band. This is mainly because of the fact that the

availability of APs at the 5GHz band is yet very poor. Unlike at the 2.4GHz band, the results at the 5GHz

band indicate that the interpolation and extrapolation methods without enough original fingerprint data are

not able to improve the positioning performance compared to the partial fingerprints. However, the

comparison between different interpolation and extrapolation methods seems to be consistent for both of the

frequency bands. Thus, it is assumed that if the number fingerprints at 5GHz band would be at the same level

with the 2.4GHz band, the positioning accuracies would be relatively close to each other. Combining

measurements from the two bands is left as an open issue for future research.

The presented results of horizontal positioning accuracy and floor detection probability for the considered

interpolation and extrapolation methods have shown that being able to estimate the RSS in missing areas of a

building with high accuracy is not a warrantee for a high positioning performance. In fact, interpolation and

extrapolation approaches which behave well in terms of RSS estimation, have rather poor performance in

positioning the mobile. This observation can be very important for positioning system designers, since

contrary to the intuition, reducing the average RSS estimate error in the missing areas does not necessarily

reduce the positioning error.

When areas of a building are not accessible for fingerprint collection, it is desirable to use proper

interpolation and extrapolation methods to estimate the missing fingerprints. The best interpolation and

extrapolation methods from the point of view of the positioning accuracy and floor detection probability

proved to be the IDW and the linear interpolation with minimum extrapolation. From these two the IDW

method  is  a  bit  more  flexible,  since  it  can  be  tuned  for  different  type  of  environments  by  modifying  the

exponent parameter u in (8). Also, the interpolation and the extrapolation in IDW are performed jointly

without the need of constructing a triangulation and defining the areas for interpolation and extrapolation.



VI. CONCLUSIONS

In this paper we have studied recovery of fingerprints in database with considerable coverage gaps by

means of different interpolation and extrapolation methods. The results have been validated by using a large

set of data collected from one multi-floor university building. Furthermore, it has been shown that simulating

the coverage gaps cannot be done by removing a certain percentage of fingerprints according to uniform

distribution, but fingerprints should be removed in larger blocks, whose radii are scaled according to the

dimensions and properties of the studied area.

The average RSS estimation error for the considered interpolation and extrapolation methods has been

compared with each other for different loss rates of missing fingerprints. Besides to the average RSS error,

also the cumulative error distribution was studied. Especially, regarding the extrapolation methods, the

cumulative distribution helps to explain the differences in the positioning accuracy between the different

interpolation and extrapolation methods. Moreover, it was shown that the highest average interpolation and

extrapolation accuracy does not necessarily imply the highest positioning accuracy, but more important is the

error distribution. For example, whereas the gradient based extrapolation provides better average RSS

estimation accuracy than the mean based extrapolation, it does not reach the same user positioning accuracy.

The positioning accuracy was studied in terms of average horizontal accuracy and average floor detection

probability. In the case that the fingerprint database was to include considerable coverage gaps, it was shown

that the positioning accuracy can be clearly improved by proper interpolation and extrapolation methods,

namely IDW or minimum extrapolation with linear interpolation. However, by using only the interpolation

the performance gain was not as significant as by using both the interpolation and the extrapolation. On the

other hand, this was expected with the utilized KNN algorithm, since the algorithm is able to estimate the

user inside the coverage gap assuming that the K nearest neighbors are located around the gap borders. Also,

as expected, the size of the coverage gaps reduces the interpolation and extrapolation accuracy as well as the

positioning accuracy.

Although the KNN is a very popular positioning algorithm, it would be important to study also other

positioning algorithms with the introduced interpolation and extrapolation methods. In addition, other



interpolation and extrapolation methods are also under interest, but the ever increasing number of WLAN

APs can make too complex methods inapplicable for practical systems. Nevertheless, the design of RSS

based interpolation and extrapolation methods should not be based on minimizing the average error of the

estimated RSS values, but on maximizing the user positioning accuracy.
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Figure 1.  Measurement coordinates at 2.4GHz band
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Figure 2.  Original full fingerprint database (Ωfull) with gint=5m for the first floor at 2.4GHz band
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Figure 3.  Example of partial fingerprint database (Ωpartial) with, µ=40%, dblock=10m, and gint=5m for the first
floor. Here circles indicate the removed areas randomly selected by the removal process. The red circle is
the last removed area, where part of the fingerprints has been retrieved in order to satisfy the desired µ
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Figure 4.  Illustration of interpolation and extrapolation areas and the considered Delaunay triangulation for
data points (fingerprints) originated from one imaginary AP in one floor
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Figure 5.  Illustration of reference points used to calculate interpolation and extrapolation error statistics
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Figure 6.  Mean error of interpolated RSS values as a function of fingerprint removal percentage µ at
2.4GHz band
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Figure 7.  Mean error of extrapolated RSS values as a function of fingerprint removal percentage µ at
2.4GHz band
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Figure 8.  Cumulative error distribution of interpolated RSS values at 2.4GHz band
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Figure 9.  Cumulative error distribution of extrapolated RSS values at 2.4GHz band

5 10 15 20 25
3

4

5

6

7

8

Distance to closest known point [m]

A
ve

ra
ge

R
SS

er
ro

r[
dB

m
]

m=50%, Linear
m=50%, Nearest
m=50%, IDW

Figure 10.  Average interpolation RSS error as a function of distance to the closest known fingerprint at
2.4GHz band
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Figure 11.  Average extrapolation RSS error as a function of distance to the closest known fingerprint at
2.4GHz band
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Figure 12.  Mean positioning error as a function of µ considering all user tracks for original fingerprints,
partial fingerprints (after removal process) and for different interpolation methods at 2.4GHz band
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Figure 13.  Mean floor detection probability as a function of µ considering all user tracks for original
fingerprints, partial fingerprints (after removal process) and for different interpolation methods at 2.4GHz

band
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Figure 14.  Mean positioning error as a function of µ considering all user tracks for original fingerprints,
partial fingerprints (after removal process) and for different extrapolation methods after interpolation at

2.4GHz band
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Figure 15.  Mean floor detection probability as a function of µ considering all user tracks for original
fingerprints, partial fingerprints (after removal process) and for different extrapolation methods after

interpolation at 2.4GHz band
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Figure 16.  Mean positioning error as function of µ considering all user tracks for original fingerprints,
partial fingerprints and IDW interpolated and extrapolated fingerprints for uniform fingerprint removal, and

block removal with dblock=10m and dblock=20m at 2.4GHz band
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Figure 17.  Mean floor detection probability as function of µ considering all user tracks for original
fingerprints, partial fingerprints and IDW interpolated and extrapolated fingerprints for uniform fingerprint

removal, and block removal with dblock=10m and dblock=20m at 2.4GHz band

10 20 30 40 50 60 70 80 90
10

15

20

25

30

35

40

45

m [%]

M
ea

n
er

ro
r[

m
]

Original
Partial
Linear
Nearest
IDW

Figure 18.  Mean positioning error as a function of µ considering all user tracks for original fingerprints,
partial fingerprints (after removal process) and for different interpolation methods at 5GHz band
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Figure 19.  Mean floor detection probability as a function of µ considering all user tracks for original
fingerprints, partial fingerprints (after removal process) and for different interpolation methods at 5GHz

band
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Figure 20.  Mean positioning error as a function of µ considering all user tracks for original fingerprints,
partial fingerprints (after removal process) and for different extrapolation methods after interpolation at

5GHz band
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Figure 21.  Mean floor detection probability as a function of µ considering all user tracks for original
fingerprints, partial fingerprints (after removal process) and for different extrapolation methods after

interpolation at 5GHz band


