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Abstract 

 
Leakages and valve faults are among the most common faults in hydraulic systems. This paper studies the real-time 

detection and isolation of certain leakage and valve faults based on the results obtained in part one. In the first part, the 

mathematical model of a hydraulic test bed was analyzed with Global Sensitivity Analysis to facilitate a systematic and 

verified approach to model-based condition monitoring. In this paper, an Unscented Kalman Filter-based Fault 

Detection and Isolation scheme for leakage and valve faults of a generic servo valve-controlled hydraulic cylinder is 

devised. Compared to existing literature, the leakage and valve faults are decoupled from cylinder static and dynamic 

loading which makes the results generic and applicable to any servo valve-controlled hydraulic cylinder. Moreover, a 

more comprehensive set of fault patterns for the detection and isolation of leakages and valve faults with experimental 

and simulation results are presented. We show that detecting an external leakage of as small as 0.17 L/min is possible in 

some cases, but the accuracy of the method varies considerably. We also report why the isolation of valve faults from 

leakages is very difficult. 
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1 Introduction 

The idea of model-based condition monitoring is 

to create a model output ŷ(k), which is subtracted from 

actual measurement y(k) to create a residual r(k) 

revealing the health of the system (Isermann, 2006). If 

the model is ideal, the residual remains at zero when 

the system is operating correctly. But when a fault is 

introduced, the residual deviates from zero, which is 

noticed by the fault detection process. Then the fault 

isolation process takes over and localizes the cause of 

the fault. The scheme as a whole is called Fault 

Detection and Isolation (FDI), see Fig. 1:. 

 

 
Fig. 1: The model-based FDI scheme. 

 

In practice, measurements are noisy and perfect 

plant models are not possible. Therefore discrepancy 

between measured and modelled outputs is to be 

expected. For this reason state estimators (or Kalman 

Filters) which can consider modelling errors, 

measurement noise, and utilize measurements to 

correct model predictions are common in condition 

monitoring (An et al., 2008; Sepasi et al., 2010). 

Previously, An and Sepehri (2008) proposed a 

method using a fault-free Extended Kalman Filter 

(EKF) to detect leakages with actuators under 

unknown external loading. Using the EKF to estimate 

the external force, they showed that external leakages 

out of the system and internal leakages across cylinder 

chambers as small as 0.25 L/min could be detected and 

isolated. Their approach was proven to work well with 

sinusoidal and fairly well with pseudorandom inputs. 

More recently, Sepasi and Sassani (2010) applied 

the Unscented Kalman Filter (UKF) to detect leakages 

and load changes from a hydraulic system with a 

constant, known external force. They could detect and 

isolate leakage faults and load changes. However, 

results were provided using only sinusoidal inputs. 

Chen (2010) devised a scheme to detect and isolate 

internal leakage and sensor offsets. The possibility of 

decoupling external force from state equations by 

considering velocity as an input was also proved. 

Tan and Sepehri (2002) used the parameters of a 

nonlinear Volterra model to detect and isolate internal 

leakage, external leakage, incorrect supply pressure, 

and contamination in the fluid. Experimental results on 

the detection of incorrect supply pressure were shown, 

but the method was offline, which hampers its use for 

early fault detection. A similar issue affects the fault 

detection system by Le et al. (1998) where a neural 

network approach was shown to be sensitive to 
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relatively high leakages of over 1 L/min. 

As opposed to model-based approaches, the use of 

the wavelet transform by Goharrizi et al. (2010a, 

2010b) has produced good results by allowing the 

detection of an internal leakage of 0.124 L/min. But 

when external leakages were considered in Goharrizi et 

al. (2011), it was reported that external leakages of 

0.30 L/min could be isolated from an internal leakage 

of 0.48 L/min, and furthermore external leakages 

cannot be localized to either side of the actuator, which 

has been proven to be possible with model-based 

approaches (An et al., 2008). 

In this paper, we extend the methods of Sepasi and 

Sassani (2010), and An and Sepehri (2008) by treating 

a more extensive set of faults than those papers and 

adopting a similar method as Chen (2010) to obtain 

independence from varying load. The latter is possible 

as we have a sufficient quality position measurement 

from which we differentiate velocity, which eliminates 

the need to estimate them. Thus, we do not need to 

know the external force nor the load mass, as the 

information of the mechanism is included in the 

position and velocity measurement. Therefore, this 

scheme is more viable in generic hydraulic systems 

where the load can vary during operation. This paper 

utilizes the model and Global Sensitivity Analysis 

(GSA) that was presented for our test bed in (Nurmi 

and Mattila, 2011). This combines into a systematic 

approach to model-based condition monitoring 

compared to the ad hoc approaches currently present. 

An adaptive threshold is also proposed and 

experimental results are given with random control 

signals that are more plausible than sinusoidal inputs. 

The paper focuses on common leakage and valve faults 

(Watton, 2007). 

This paper is organized as follows. In Section 2, 

the applicability of the method and the test bed are 

briefly discussed. In Section 3, the UKF algorithm is 

introduced and the reduced-order UKF is applied to the 

test bed. In Section 4, the capability of the UKF and 

the adaptive threshold scheme are experimentally 

tested in detecting and isolating leakages and with 

simulations in detecting and isolating valve faults. 

2 Applicability of the 
Scheme and Test Bed 

The FDI scheme used in this paper is applicable to 

a generic valve-controlled hydraulic cylinder that 

drives any of the n-DOF manipulator joints affected by 

any external force and inertia load (Fig. 2:). The 

scheme is considered to be suitable especially for 

detecting and isolating external and internal leakages. 

 

 
Fig. 2: A manipulator joint driven by a hydraulic cylinder. 

2.1 Test Bed 

As a case study to experimentally validate the 

scheme, the test bed, in Fig. 3: and Fig. 4:, is used in 

leakage fault study. It has a 4/3-directional valve that 

controls the joint cylinder, and three restrictor valves 

which emulate external leakages between the cylinder 

and the directional valve (‘External leakage A’ and 

‘External leakage B’) and internal leakage across 

cylinder chambers (‘Internal leakage’), for a list of 

system components see (Nurmi and Mattila 2011). 

 

 
Fig. 3: Illustration of the test bed. 

 

 
Fig. 4: The hydraulic diagram of the test bed. 

 

In (Nurmi and Mattila, 2011), the model and GSA 

of the test bed were presented. In this paper, we use 

that model to simulate valve faults and utilize the GSA 

results in the verification of the UKF process model 

and in the development of the fault detection scheme. 
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3 Unscented Kalman 
Filter 

In this section, an UKF scheme is devised to 

facilitate model-based FDI. The basis for the scheme 

originates from Sepasi and Sassani (2010) and An and 

Sepehri (2008). However, neither scheme is directly 

applicable to a generic hydraulic system where the load 

force and mass are not constant or known. Therefore, a 

modified version is used with decoupling of external 

force and load mass similar to (Chen, 2010). 

This section is organized as follows. In Section 

3.1, a generic discrete nonlinear system and its state 

estimation are introduced. Then in Section 3.2, the 

UKF algorithm is presented and implemented for the 

test bed in Section 3.3. Fault detection and isolation 

principles are discussed in Sections 3.4-3.5. 

3.1 Discrete nonlinear system 
with noise and state estimation 

The system is discrete with a nonlinear process f 

and measurement model h with noise vectors 𝒘 and 𝒗: 

 

𝒙k+1 = 𝒇(𝒙k, 𝒖k, 𝑡k) + 𝒘k 
𝒚k+1 = 𝒉(𝒙k+1, 𝑡k) + 𝒗k+1 

(1) 

 

where 𝒙 is a N x 1 state vector in which N is the 

number of states, 𝒖 is a Ux1 control vector in which U 

is the number of controls, 𝑡 is the time, 𝒘 is a Nx1 

process noise vector, 𝒚 is a Mx1 measurement vector 

in which M is the number of measurements, 𝒗 is a Mx1 

measurement noise vector and k is a prev. time instant. 

The process noise 𝒘k and measurement noise 𝒗k+1 

are assumed to be Gaussian (𝒩), white (uncorrelated) 

and additive with zero mean and covariances 𝐐k and 

𝐑k+1 with distributions: 

 

𝒘k ~ 𝒩(0, 𝐐k) 
𝒗k+1 ~ 𝒩(0, 𝐑k+1) 

(2) 

 

Hydraulic measurements can be noisy, pressures 

especially. Considering the noise in the state estimator 

ensures that residuals are closer to zero in the fault-free 

situation, hence improving fault detection. 

A Kalman-type state estimator for the nonlinear 

system in Eq. (1) is (Welch and Bishop, 2001): 

 

𝒙k+1 = 𝒇(𝒙k, 𝒖k, 𝑡k) + 𝐊k+1(𝒚k+1 − 𝒚̂k+1) 
𝒚̂k+1 = 𝒉(𝒙k+1, 𝑡k) 

(3) 

 

where 𝒙 is the state estimate vector of size (N - A) x 1 

with the positive integer A denoting order-reduction. 

The innovation gain 𝐊k+1 is chosen to minimize the 

mean squared error E[(𝒙k+1 − 𝒙k+1)
2]. The optimal 

gain is derived in Simon (2006, pp. 318-320). 

Nonlinear state estimation has no optimal solution 

since the innovation gain is dependent on covariances 

which are hard to accurately recover after the states are 

transformed through nonlinear functions. The non-

optimal EKF circumvents the problem of nonlinearity 

by linearizing nonlinear functions around the previous 

states so that linear estimation techniques from the 

Kalman Filter (KF) can be applied. However, in the 

process it introduces approximation errors depending 

on the severity of the nonlinearity in functions f and h. 

An approach for tackling the problems of the EKF 

is the UKF, published by Julier et al. (1995). In (Julier 

and Uhlmann, 1997; Wan and van der Merwe, 2000) it 

is shown that the UKF approximates the true mean and 

covariance of the states more accurately than the EKF 

with Unscented Transformation (UT). The UT 

approximates the state distribution with 

deterministically chosen sigma points assuming that 

state variables are normally distributed. 

Besides the accuracy advantage of UKF over EKF, 

UKF is also derivative-free, which is useful since 

calculating and writing long derivatives is error-prone. 

The given advantages motivate the choice of UKF. 

3.2 Unscented Kalman Filter 
Algorithm 

The recursive UKF algorithm can be described in a 

step by step manner as follows (Wan & van der Merwe 

2000): 

 

1. Initialize the filter, Eq. (4) 

2. Estimate the a priori state vector 𝒙𝑘+1
−  

(prediction) 

a. Generate sigma points around 

the previous estimate, Eq. (5) 

b. Propagate the sigma points 

through the nonlinear functions, 

Eq. (6) 

c. Calculate the state mean, Eq. (7) 

3. Calculate the a priori error covariance 

𝐏𝑘+1
− , Eq. (8) 

4. Estimate the a posteriori state vector 𝒙𝑘+1 

a. Unscented transformation for 

measurements (mean and 

covariance), Eq. (9) 

b. Calculate the cross-covariance 

between predicted states and 

measurements, Eq. (10) 

c. Calculate the Kalman gain, Eq. 

(11) 

d. Update state estimate, Eq. (12) 

5. Calculate the a posteriori error covariance 

𝐏𝑘+1, Eq. (13) 

6. Return to step 2 



 

Step 1 is executed once and steps 2-6 are repeated. 

Steps 2 and 3 constitute the first UT, and step 4a the 

second. The steps correspond to the following 

equations: 

 

𝒙0 = E(𝒙0) 
𝐏0 = E[(𝒙0 − 𝒙0)(𝒙0 − 𝒙0)

T] 
k = 0 

(4) 

𝒙k
(0)

= 𝒙𝑘 

𝒙k
(i) = 𝒙k + 𝒙(i), i = 1,2,3, … ,2N 

𝒙(i) = (√(L + λ)𝐏k)
i

T

,       i = 1,2,3, … , N 

𝒙(i) = −(√(L + λ)𝐏k)i
T,    i = N + 1,… ,2N 

(5) 

𝒙k+1
(i) = 𝒇(𝒙k

(i), 𝑢k, 𝑡k) (6) 

𝑤(mean)
(0)

=
λ

L + λ
 

𝑤(mean)
(i) =

1

2(L + λ)
,        i = 1,2,3, … ,2N 

𝒙k+1
− = ∑ 𝑤(mean)

(i)
𝒙k+1

(i)

2N

i=0

 

(7) 

 

𝑤(cov)
(0)

=
λ

L + λ
+ (1 − α2 + β) 

𝑤(cov)
(i) =

1

2(L + λ)
,        i = 1,2,3, … ,2N 

𝐏k+1
−

= ∑ 𝑤(cov)
(i) (𝒙k+1

(i) − 𝒙k+1
− )(𝒙k+1

(i) − 𝒙k+1
− )

T
2N

i=0

+ 𝐐k 

(8) 

𝒚̂k+1
(i) = 𝒉(𝒙k+1

(i) , 𝑢k, 𝑡k) 

𝒚̂k+1 = ∑𝑤(mean)
(i) 𝒚̂k+1

(i)

2N

i=0

 

𝐏yy

= ∑𝑤(cov)
(i)

(𝒚̂k+1
(i) − 𝒚̂k+1)(𝒚̂k+1

(i) − 𝒚̂k+1)
T

2N

i=0

+ 𝑅k+1 

(9) 

𝐏xy

= ∑𝑤(cov)
(𝑖)

(𝒙k+1
(i) − 𝒙k+1)(𝒚̂k+1

(i) − 𝒚̂k+1)
T

2N

i=0

 
(10) 

𝐊k+1 = 𝐏xy𝐏yy
−1 (11) 

𝒙k+1 = 𝒙k+1
− + 𝐊k+1(𝒚k+1 − 𝒚̂k+1) (12) 

𝑷k+1 = 𝐏k+1
− − 𝐊k+1𝐏yy𝐊k+1 

T

= 𝐏k+1
− − 𝐏xy𝐏yy

−1𝐏xy
T  

(13) 

 

where E is the expectation operator, 𝑤 is a weighting 

coefficient, L is the dimension of the state vector and λ 

is a scaling parameter, satisfying λ = α2(L + κ) − L. 

The parameter α is a tuning factor which determines 

the spread of the sigma points. A typical value is 10-3. 

The constant κ is a secondary tuning parameter. 

Usually it is chosen as zero. The constant β affects the 

weight of the first error covariance term. An optimal 

value is β = 2 for normally distributed states. The 

matrix square root in Eq. (5) should be calculated with 

Cholesky decomposition for computational efficiency. 

If the measurement equations in function h are 

linear, steps 4a and 4b can be simplified. The equations 

in step 4a reduce to (Welch and Bishop, 2001): 

 

𝒚̂k+1 = 𝐇𝒙k+1
−  

𝑷yy = 𝐇𝐏k+1
− 𝐇T + 𝐑k+1 

(14) 

 

Then step 4b reduces to: 

 

𝑷xy = 𝑷k+1
− 𝑯T (15) 

 

where H is a measurement matrix of size M x N.  

3.3 Unscented Kalman Filter 
implementation for the test bed 

The online estimation of unknown load variables 

is possible (An et al., 2008), but not very feasible for 

FDI purposes because the UKF might compensate a 

fault by incorrectly estimating the load variables, hence 

making the fault undetectable. The problem is solved 

with the inclusion of position and velocity 

measurements to control vector u (Chen, 2010). The 

control vector then becomes: 

 

𝒖 = [𝑥, 𝑥̇, 𝑢c, 𝑝s] = [𝑢1, 𝑢2, 𝑢3, 𝑢4] (16) 

 

where 𝑥 is the position, 𝑥̇ is the velocity, 𝑢c is the 

valve control signal and 𝑝s is the supply pressure. The 

position and velocity measurements could also be 

included to the state vector for filtering. 

In the test bed, boom angle was measured and 

converted to piston position from which velocity was 

differentiated. 

3.3.1 Process model 

The task of the UKF is to estimate pressures 𝑝A 

and 𝑝B, spool position 𝑥s and spool velocity 𝑥̇s. The 

reduced-order state vector is thus: 

 

𝒙 = [𝑝A, 𝑝B, 𝑥s, 𝑥̇s]
T = [𝑥1, 𝑥2, 𝑥3, 𝑥4]

T (17) 

 

Consequently, the discrete-time state space 

representation from (Nurmi and Mattila, 2011), Eq. 

(22), reduces to: 

 

[
 
 
 
𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)

𝑥3(𝑘 + 1)

𝑥4(𝑘 + 1)]
 
 
 

=

[
 
 
 
𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)

𝑥4(𝑘)]
 
 
 

 

+𝑇

[
 
 
 
 
 
 

𝐵effA

𝐴A𝑢1(𝑘) + 𝑉0A
(𝑄A(𝑥1(𝑘), 𝑥3(𝑘))−𝑢2(𝑘)𝐴A)

𝐵effB

𝐴A(𝑥max − 𝑢1(𝑘)) + 𝑉0B
(𝑄B(𝑥2(𝑘), 𝑥3(𝑘))+𝑢2(𝑘)𝐴B)

𝑥4(𝑘)

𝐾𝜔n𝑢3(𝑘) − 2𝜔n𝑑r𝑥4(𝑘) − 𝜔n
2𝑥3(𝑘) ]

 
 
 
 
 
 

 

(18) 

 

In the GSA in (Nurmi and Mattila, 2011), the 



 

effective bulk moduli 𝐵effA and 𝐵effB were shown to be 

somewhat influential in transients, so effort was used 

to correctly identify them. They were found to be 

dependent on piston position. In particular, 𝐵effA was 

quite small when the piston was completely retracted 

but gradually grew as the piston extended. The 

following equations taking the flexible volume of the 

hoses into consideration gave a good approximation: 

 

𝐵effA =
𝐵o𝐵h(𝐴A𝑢1(𝑘) + 𝑉0A)

(𝐴A𝑢1(𝑘) + 𝑉0A)𝐵h + 𝑉h𝐵o

 

 

𝐵effB =
𝐵o𝐵h(𝐴B(𝑥max − 𝑢1(𝑘)) + 𝑉0B)

(𝐴B(𝑥max − 𝑢1(𝑘)) + 𝑉0B)𝐵h + 𝑉h𝐵o

 

(19) 

 

where 𝐵o is the bulk modulus of oil, 𝐵h is the bulk 

modulus of the hose and 𝑉h is the volume of the hose. 

The flow coefficients, shown to be sensitive 

parameters and treated as constants in the GSA (Nurmi 

and Mattila, 2011), were not constants but nonlinear 

functions of spool position. To improve modelling 

accuracy each flow coefficient was fitted to a third-

order polynomial (Muenchhof and Beck, 2008): 

 

𝐾v(𝑥3) = 𝑎3𝑥3
3 + 𝑎2𝑥3

2 + 𝑎1𝑥3 + 𝑎0 (20) 

 

Flow coefficient sample points were obtained 

offline by applying nonlinear parameter estimation 

techniques to step responses of the valve. Fitting a 

third-order polynomial to the sample points gave the 

best compromise between accuracy and complexity; 

see Root Mean Square Errors (RMSE) in Table 2:. The 

fitted polynomials are shown in Fig. 5: with the 

polynomial coefficients given in Table 1:. 

 

 
Fig. 5: Flow coefficients of the valve. 

 

Table 1: Flow coefficient polynomials.  

KvPA (-5.121*10-8𝑥3
3 + 1.556*10-7𝑥3

2 - 1.377*10-

7𝑥3 + 2.256*10-7)*m3/(s*Pa1/2) 

KvPB (9.003*10-8𝑥3
3 + 2.242*10-7𝑥3

2 + 1.73*10-7𝑥3 

+ 2.291*10-7)*m3/(s*Pa1/2) 

KvAT (1.031*10-7𝑥3
3 + 2.118*10-7𝑥3

2 + 1.423*10-

7𝑥3 + 1.986*10-7)*m3/(s*Pa1/2) 

KvBT (-2.371*10-8𝑥3
3 + 7.573*10-8𝑥3

2 - 6.588*10-

8𝑥3 + 1.91*10-7)*m3/(s*Pa1/2) 

Table 2: A comparison of the goodness-of-fits 

between 1st and 3rd order polynomials. 

Flow coefficient Polynomial degree RMSE 

[m3/s Pa-1/2] 

KvPA 1 7.11*10-9 

KvPA 3 3.94*10-9 

KvBT 1 3.76*10-9 

KvBT 3 1.49*10-9 

KvPB 1 9.21*10-9 

KvPB 3 4.96*10-9 

KvAT 1 5.38*10-9 

KvAT 3 1.64*10-9 

 

In reality, the flow coefficients are also dependent 

on fluid temperature since the viscosity of the fluid 

changes with temperature. This modelling was omitted. 

3.3.2 Initialization 

The UKF is initialized as follows: 

 

𝒙0 = [0,0,0,0]T 
𝑷0 = diag([1012, 1012, 10−3, 10−3 ]) 
𝑹 = diag([1010, 1010]) 
𝑸 = diag([108, 108, 10−10, 10−10]) 
α = 0.001 
β = 2 
κ = 0 

(21) 

 

where 𝒙0 is the initial state, 𝐏0 is the state covariance 

matrix, R is the measurement noise matrix and Q is the 

process noise matrix. 

The tuning parameters α, β and κ were chosen 

according to existing literature (Wan and van der 

Merwe, 2000). R was chosen to represent measurement 

noise. The standard deviations of the pressure sensor 

readings were roughly 0.1 MPa. 

The process noise covariance matrix Q represents 

modeling errors. It proved important to find a balance 

between process and measurement noise. The 

variances of process noise were chosen slightly smaller 

than the variances of measurement noise. 

The measurement equations were linear, so the 

algorithm was reduced according to Eq. (14) and (15). 

The measurement matrix H was: 

 

𝐇 = [
1 0 0 0
0 1 0 0

] (22) 

3.4 Fault detection principles 

Pressures A and B residuals were calculated for 

detecting faults, which was justified on the basis of the 

GSA results provided in (Nurmi and Mattila, 2011). 

The residuals 𝑟(𝑘) were calculated as follows: 

 

𝑟(𝑘) = 𝑝(𝑘) − 𝑝̂(𝑘) (23) 

 

where 𝑝(𝑘) and 𝑝̂(𝑘) are the measured and estimated 



 

pressures, respectively, and k denotes the current time 

instant. The residuals were averaged within a moving 

5-second window to remove the effect of brief 

estimation errors. The residual average 𝜇𝑟(𝑘) was 

calculated recursively with (Muenchhof and Isermann, 

2005): 

 

𝜇r(𝑘) = 𝜇r(𝑘 − 1) +
1

𝑁
[𝑟(𝑘) − 𝑟(𝑘 − 𝑁)] (24) 

 

where N, the sample size, was 5000. The recursive 

formula, although computationally efficient, requires 

that N samples are stored in memory. 

Because the process model cannot be tuned to 

perfection, a threshold is needed that ensures that the 

ratio between false alarms (false positives) and 

undetectable faults (false negatives) is as low as 

possible. To clarify, the threshold should be 

constructed in a way that that false alarms are 

minimized, but at the same time the threshold should as 

low as possible so that small faults can be detected. Of 

course to achieve this, the most important factor is the 

accuracy of the UKF process model. 

It is usually enough to use a positive, constant 

threshold. In this case, the constant positive threshold 

was not sufficient. A negative threshold was needed so 

that negative residuals could be used in fault isolation. 

Also a constant threshold did not work, since the 

residuals in a faultless situation were larger in chamber 

A than in B. The reason for this was the load force 

causing a higher A than B pressure. Consequently, a 

pressure-dependent threshold was created. A smooth 

threshold was obtained by averaging both pressures 

within a moving 5-second window. 

Through careful experiments, the following 

threshold polynomial produced the best results in terms 

of few false alarms and satisfactory fault detection: 

 

𝑡pos(𝜇p(𝑘)) = 0.012 + 4 ∗ 10−4𝜇p
2 (25) 

 

The unit of the threshold was MPa. The magnitude 

of the first term was based on the accuracy of the 

model. The second term ensured that the threshold 

increased at a suitable rate. The negative threshold was 

simply 𝑡neg(𝜇p(𝑘)) = −𝑡pos(𝜇p(𝑘)). 

3.5 Fault isolation patterns 

Leakage and valve faults were studied (Fig. 6:). 

The leakage faults were divided into ‘External leakage 

in chamber A’, ‘External leakage in chamber B’, 

‘External leakage in chambers A and B’ and ‘Internal 

leakage’. The valve faults were divided according to 

relative opening into ‘Stuck to closed position’, ‘Too 

small an opening’ and ‘Too large an opening’. 

 

 
Fig. 6: Fault tree (according to Isermann, 2006, p. 52). 

 

Once a fault was detected, the residuals and other 

variables were tested against fault patterns that were 

verified with experiments or simulations to isolate the 

fault: 

 

Table 3: Fault patterns for leakage and valve faults. 
# Fault 𝑟𝑝𝐴

↑ 𝑟𝑝𝐴
↓ 𝑟𝑝𝐵

↑ 𝑟𝑝𝐵
↓ pA 

> 

pB 

Large 

𝑟𝑝𝐴
  

& 𝑟𝑝𝐵
 

uc 

> 

0 

1 External 

leakage A 

0 1 0 0 0 

/ 

1 

0 0 

/ 

1 

2 External 

leakage B 

0 0 0 1 0 

/ 

1 

0 0 

/ 

1 

3 Internal leakage 

AB 

0 1 1 0 1 0 0 

/ 

1 

4 Internal leakage 

BA 

1 0 0 1 0 0 0 

/ 

1 

5 Spool jamming, 

too small an 

opening 1 

0 1 1 0 0 

/ 

1 

0 1 

6 Spool jamming, 

too small an 

opening 2 

1 0 0 1 0 

/ 

1 

0 0 

7 Spool jamming, 

too large an 

opening 1 

1 0 0 1 0 

/ 

1 

0 1 

8 Spool jamming, 

too large an 

opening 2 

0 1 1 0 0 

/ 

1 

0 0 

9 Spool jamming, 

stuck to closed 

position 1 

0 1 1 0 0 

/ 

1 

1 1 

10 Spool jamming, 

stuck to closed 

position 2 

1 0 0 1 0 

/ 

1 

1 0 

 

where ↑ denotes the crossing of the positive threshold, 

↓ the crossing of the negative threshold, 𝑟pA
 is the 

pressure A residual, 𝑟pB
 is the pressure B residual and 

uc is the valve control signal. 

For example, an external leakage A causes the 

pressure A residual to cross the negative threshold (𝑟pA
 

↓ = 1), and the residual 𝑟pB
 to remain within thresholds 

(𝑟pB
↑ = 0 and 𝑟pB

↓ = 0). Considering the direction of 

the residual we could distinguish simultaneous external 

leakage A and B from internal leakage and from 

certain valve faults. 

The faults where the valve opens too wide or too 

little can be instantly isolated from internal leakage 

with a 50-percent probability when both are considered 

as likely. The possibility of instant detection depends 

on the test ‘pA > pB’. For example if the first four 

binaries of the fault code are 0110, and the fifth, the 

External 

leakage in 

chamber A

Leakage fault

OR

Valve fault

System fault

OR

External 

leakage in 

chamber B

Internal 

leakage

External leakage 

in chambers A 

and B

Spool 

jamming

Too large 

an opening
Too small 

an opening

Stuck to 

closed 

position

OR



 

test ‘pA > pB’ is false, there is offset in the spool 

position, so either the valve opened too little or too 

wide. If the test ‘uc > 0’ is true, the valve opening was 

too small. If it is false, the valve opening was too large. 

It is possible to isolate the valve fault when the control 

signal changes from positive to negative or vice versa 

by observing whether the residuals cross the opposite 

thresholds. Internal leakage, on the other hand, is not 

dependent on the sign of valve control signal. 

The rationales behind the patterns are as follows. 

Consider external leakage A as an example. The GSA 

(Nurmi and Mattila 2011) proved that both pressures 

are sensitive to a chamber A leakage. However, only 

the residual 𝑟𝑝𝐴
 crosses the negative threshold, since 

the pressure differential 𝑝̇A is missing a leakage flow 

term. The velocity also changes, as shown in the GSA 

(Nurmi and Mattila 2011). However, its effect to 

pressure residuals is minor. A similar description 

applies to external leakage B and internal leakage. 

However, in internal leakage faults a leakage is present 

in both chambers. In one chamber the leakage flow is 

negative, and in the other it is positive. 

When the valve is given a positive control signal 

and it fails to open as much as it should (fault #5), the 

flow rate to chamber A is too small compared to a 

fault-free situation. Thus the pressure A measurement 

is smaller than the UKF estimate and consequently the 

pressure A residual crosses the negative threshold. At 

the same time, the pressure B residual crosses the 

positive threshold because the measured B pressure, as 

a consequence of the restricting action of the smaller 

notch BT opening, is larger than the estimated B 

pressure. Similar explanations apply to faults #6-10. In 

faults #9-10, the valve is completely closed, so the 

magnitudes of the residuals reveal the cause. 

4 Results 

Experimental results for detecting and isolating 

leakages are given in Section 4.1. In Section 4.2, the 

detection and isolation of valve faults is studied with 

simulations. 

4.1 Experimental results 

The experimental results consist of external 

leakage A, external leakage B, simultaneous external 

leakage A and B, and internal leakage. The valve was 

controlled with fairly random control signals (Fig. 7:). 

 

 
Fig. 7: Example control signal to the 4/3-directional valve 

that was used in the external leakage B experiment. 

 

In the residual figures, the black vertical line 

shows the time when the fault was added, the solid red 

line the residuals, and the dashed black lines the 

thresholds. 

4.1.1 External leakage in chamber A 

The external leakage A was added to the system at 

around the 35th second. The evolution of pressure A 

and pressure B measurements and estimates are given 

in Fig. 8:. The estimates are in blue and the 

measurements in red colour. 

 

 
Fig. 8: The evolution of pressure A and B estimate and 

measurement. 

 

Between the 35th and 50th second the difference 

between the pressure A measurement and its estimate 

is not clear-cut. From the 50th second onwards, the 

difference becomes clear and is indistinguishable 

between pressure B measurements and estimates (Fig. 

8:). 

The external leakage A was detectable two 

seconds later when the pressure A crossed the negative 

threshold at -0.04 MPa, see Fig. 9:. Therefore, 

according to the fault patterns in Table 3:, the fault 

could be isolated as external leakage A (fault #1). The 

magnitude of the residual indicates that the fault is 

severe. According to flow measurements, a detectable 

external leakage was close to 0.40 L/min, or 10 % of 

the flow rate passing the valve. 



 

 
Fig. 9: Pressure residuals (in solid red) with a varying 

external leakage in chamber A of average 1.40 

L/min. The thresholds are the dashed black lines. 

 

The residuals were momentarily decreased to zero 

since there were some non-fault related discrepancies 

between measurements and UKF estimates when the 

pressure B was close to zero or the boom angle was 

zero. Excluding these situations, the scheme worked. 

4.1.2 External leakage in chamber B 

The external leakage B was added to the test bed at 

around the 30th second. The fault was detectable a few 

seconds later when pressure B crossed the negative 

threshold, as illustrated in Fig. 10:. 

 

 
Fig. 10: Pressure residuals with an external leakage in 

chamber B with average 0.50 L/min. 

 

According to fault patterns in Table 3:, the fault 

could be isolated as external leakage B (fault #2). As 

pressure B was smaller than pressure A, the thresholds 

for B residuals could be considerably smaller allowing 

for a smaller leakage to be detected. At the time of 

detection, the threshold was -0.015 MPa and the 

minimum detectable leakage approximately 0.17 

L/min, or 5 % of the flow through the 4/3 directional 

valve, significantly smaller than the detectable leakage 

from chamber A. The leakage varied between 0.14 

L/min and 1 L/min (see the varying magnitude of 

residual), but on average it was 0.50 L/min. 

When the pressure A residual approached the 

threshold, the threshold increased, proving that the 

thresholds were indeed pressure dependent and so the 

proposed adaptive threshold worked. 

4.1.3 Simultaneous external leakage in 
chambers A and B 

An external leakage A and B were simultaneously 

introduced to the test bed at the 18th second, as shown 

in Fig. 11:. The external leakage A was detectable only 

a second later, but the external leakage B took over 30 

seconds to detect. The reason for the slow detection 

was the decreased pressure A that decreased pressure B 

causing a minor leakage from chamber B. The leakage 

in chamber B rose to 0.18 L/min before the actual 

detection of the fault, but a short leakage peak of this 

magnitude could not be detected. The leakage peaked 

at 0.52 L/min (average 0.30 L/min) and 0.60 L/min 

(average 0.34 L/min) at 50 and 65 seconds, and at 

those instants the threshold of residual B was clearly 

crossed. 

An external leakage A of 0.50 L/min could be 

detected as that was the leakage magnitude at the time 

of detection. The leakage averaged at 1.6 L/min 

between 40 and 70 seconds, but the residual during this 

period was well over the threshold. 

The isolation follows the patterns in Table 3:. For 

the reasons in Section 4.1.1, the residuals were 

momentarily forced to zero.  

 

 
Fig. 11: Pressure residuals with an external leakage in 

chambers A and B. An external leakage A of 11 % 

(average 1.60 L/min) and an external leakage B 

(average 0.30 L/min) of 5 % of flow through the 

valve were detectable. 

4.1.4 Internal leakage 

The internal leakage was added to the test bed at 

the 30th second, as shown in Fig. 12:. The positive 

threshold of pressure B residual was crossed roughly 

three seconds sooner than the negative of pressure A 

residual. The leakage varied between 0.35 L/min and 2 

L/min, and on average it was 0.94 L/min. During the 

experiment when the leakage dropped significantly 



 

below the average, the thresholds remained in the fault 

range, showing that an internal leakage of below 0.50 

L/min could be detected, or a leakage in the range of 5-

10 % of the flow passing the 4/3-directional valve. 

 

 
Fig. 12: Pressure residuals with an internal leakage of 

average 0.94 L/min. 

 

The isolation of the internal leakage was not 

entirely straightforward following Table 3:. Since pA > 

pB was always true, at the time of detection the fault 

was either an internal leakage (fault #3), or the spool 

had opened too wide (fault #7 and #8) or too little 

(fault #5 and #6). As time progressed, the residuals did 

not cross the other threshold as the control signal 

changed. Therefore the fault could be isolated as 

internal leakage. 

4.2 Simulation results 

The accuracy of the UKF process model in 

simulations guaranteed that the residuals stayed close 

to zero in a faultless situation. For consistency the 

adaptive threshold was used in simulations. White, 

normally distributed noise was added to simulation 

pressures so that they bore more of a resemblance to 

experimental measurements. In addition, the UKF 

parameters were retuned. The process noise variances 

of pressures were reduced to 104 Pa2 and the 

measurement noise variances to 105 Pa2. The 4/3- 

directional valve control signal used in simulations is 

shown in Fig. 13:. 

 

 
Fig. 13: The valve control signal in simulation experiments. 

4.2.1 Too small valve opening 

The ‘too small valve opening’ fault was introduced 

to the system at the 35th second, as is illustrated in Fig. 

14:. 

 

 
Fig. 14: The spool jams so that the opening is too small. 

 

After a second, the fault was detected but could 

not be immediately isolated since pattern was similar to 

internal leakage (#3). Once both residuals, as a 

consequence of the valve control signal change, 

crossed the other threshold at approximately the 42th 

second, the fault could be isolated as too small valve 

opening fault (#5-6). 

4.2.2 Too large valve opening 

The fault ‘too large valve opening’ (#7-8) was 

added to the system at the 35th second, as shown in 

Fig. 15:. The residual behaviour was reversed 

compared to fault case ‘too small valve opening’. 

Hence the isolation was possible immediately after 

detection. 

 

 
Fig. 15: The spool jams so that the opening is too large. 

 

If the internal leakage would have occurred from 

chamber B to A, this fault could have been isolated, 

although not instantly following detection. 



 

4.2.3 Valve gets stuck to closed position 

At the 35th second, the valve spool got stuck to 

closed position, shown in Fig. 16:. 

 

 
Fig. 16: The valve spool stuck to closed position. 

 

The residual behaviour was similar to internal 

leakage (#3), except that the residuals crossed the 

opposite threshold when the valve control signal was 

reversed at the 40th second. The magnitudes of the 

residuals revealed the cause as being a closed valve 

(#9-10). 

5 Conclusions and 
Future Work 

In this paper a real-time scheme based on a 

reduced-order Unscented Kalman Filter (UKF) for 

detecting and isolating leakage and valve faults from a 

generic valve-controlled hydraulic cylinder driving a 

manipulator joint in varying loading conditions was 

devised and applied to a hydraulic boom test bed. The 

method is a practical load-independent solution for 

detecting and isolating especially leakages. In the 

paper, a comprehensive set of fault patterns were 

presented, and an adaptive threshold facilitating fault 

detection was devised. The basis for this work was 

founded in (Nurmi and Mattila, 2011), where a Global 

Sensitivity Analysis (GSA) of the test bed was carried 

out. The results of the analysis were used in this paper, 

showing that GSA facilitates a systematic and verified 

approach to model-based condition monitoring. The 

usefulness of GSA increases with more complicated 

nonlinear models. 

The fault patterns were verified with simulation 

and experimental studies. The studies, with leakage 

patterns verified experimentally, showed the possibility 

of distinguishing external leakage A and B, and 

simultaneous external leakage A and B from valve 

faults (spool jamming to too large an opening, to too 

small an opening and stuck to closed position). 

The lowest detectable external leakage was 0.17 

L/min, but it varied between experiments. The pressure 

residuals alone were not enough to distinguish internal 

leakage and valve faults, so information from the sign 

of the control signal and the larger chamber pressure 

were used. The control signal test meant that the time 

from fault detection to isolation was considerably long 

in some valve opening or internal leakage fault cases. 

The fault patterns for those two different faults were 

found similar, and hence very difficult to distinguish. 

 The fault-to-isolation time could be shortened and 

the fault patterns could be expanded by utilizing a 

spool position measurement. This measurement, 

however, is not usually available. Moreover, the 

scheme already requires multiple measurements, and 

more measurements would increase the probability of 

sensor failures. The required measurements, however, 

are: cylinder chamber pressures A and B, supply 

pressure, valve control signal, piston position or boom 

angle, and piston velocity or boom angular velocity 

measurement. If a separate velocity measurement is not 

available, the velocity could be differentiated from 

position. 

The scheme will be extended to mobile valves 

using position and velocity sensors more suitable for 

application domain specific environmental conditions 

in the future. 
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Nomenclature 
 
𝜇p Pressure average [MPa] 

𝑟 Residual [MPa] 

𝑡pos,neg(𝜇p) Positive and negative 

threshold polynomial 

[MPa] 

H Measurement matrix [-] 

K Kalman gain [-] 

P Posteriori state covariance 

matrix 

[-] 

𝐏− Priori state covariance 

matrix 

[-] 

Pxy Cross-covariance matrix [-] 

Pyy Measurement covariance 

matrix 

[-] 

Q Process noise covariance 

matrix 

[-] 

R Measurement noise 

covariance matrix 

[-] 

x State vector [-] 

𝒙 State estimate vector [-] 

𝒙(i) Sigma point vector [-] 

y Measurement vector [-] 



 

v Measurement noise vector [-] 

w Process noise vector [-] 

 

Subscripts: 

k Discrete time instant 
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