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Large two-dimensional electronic systems: Self-consistent energies and densities at low cost
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We derive a self-consistent local variant of the Thomas-Fermi approximation for (quasi-) two-dimensional
(2D) systems by localizing the Hartree term. The scheme results in an explicit orbital-free representation of
the electron density and energy in terms of the external potential, the number of electrons, and the chemical
potential determined upon normalization. We test the method over a variety 2D nanostructures by comparing
to the Kohn-Sham 2D local-density approximation (LDA) calculations up to 600 electrons. Accurate results are
obtained in view of the negligible computational cost. We also assess a local upper bound for the Hartree energy.
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I. INTRODUCTION

Orbital-free density-functional theory (OF-DFT) is a com-
putationally appealing method to deal with large systems
beyond the reach of conventional DFT. At present, OF-
DFT methods can handle systems up to a million atoms.1

These methods await to be fully explored in the context
of low-dimensional systems and nanoelectronic devices. In
two-dimensional (2D) physics one of the main challenges of
DFT is to deal with regions of the 2D electron gas2 comprising
hundreds or thousands of interacting electrons, e.g., in the
quantum Hall regime.3

As the name suggests, OF-DFT is free from the use
of the Kohn-Sham orbitals needed in the calculation of
the Kohn-Sham kinetic energy, and thus the only explicitly
needed variable is the electron density ρ(r). The earliest
OF-DFT method dates back to the Thomas-Fermi (TF) theory
employing the exact result of the homogeneous electron gas for
the kinetic energy, and the Hartree approximation for the e-e
interaction. In fact, most orbital-free schemes can be regarded
as modifications or improvements to the TF method.4

The crux of the problem inOF-DFT is to find an approxima-
tion for the (noninteracting) kinetic-energy functional thatmay
be generally applicable. For this ambitious goal, a promising
approach is an orbital-free formulation exploiting the potential
rather than the the density as the basic variable.5 In 2D the
TF approximation for the kinetic energy works remarkably
well—in fact, the gradient corrections to it vanish to all
orders.6–10 Moreover, for the 2D Fermi gas in harmonic trap
the TF kinetic energy yields the exact noninteracting kinetic
energy when the exact density is used as the input.6 In this
work we replace the Hartree term with a much simpler local
expression that significantly speeds up the calculations.
Recently, a 2D orbital-free expression for the energy was

shown to lead to a major improvement over the TF results
when applied to quantum dots and slabs up to 200 interacting
electrons.11 The energies were not obtained self-consistently,
but by using the electron densities from the 2D local-density

approximation (2D-LDA). The expression of the functional is

Etot[ρ(r)] = TTF[ρ(r)]+ W [ρ(r)]+
∫

dr ρ(r) vext(r), (1)

where

TTF[ρ(r)] = π

2

∫
dr ρ2(r) (2)

is the TF kinetic energy in 2D and the last term is the energy
contribution due to the external scalar (confining) potential
vext(r). The total electron-electron interaction energy is given
by

W [ρ(r)] = π

2

√
N − 1
2

∫
dr ρ3/2(r), (3)

which was obtained from a crude approximation by using
a Gaussian ansatz for the cylindrical average of the pair
density, and enforcing an overall linear behavior under uniform
coordinate scaling. This was also partially inspired by the
fact that an analogous Gaussian ansatz for the one-body
reduced-density matrix eventually leads to highly accurate
exchange energies.12

In Eqs. (1) and (3) it is apparent that for N = 1 the
functional reduces to the noninteracting TF approximation.
For N �= 1 the interaction contribution is similar to the form
of the exchange energy in the 2D-LDA, but with a different
prefactor

√
N − 1. This approximation completely eliminates

the computational burden of the Hartree term in the TF
approximation.We point out that Eq. (1) has been employed by
others to compute the total energy of a realistic semiconductor
quantum dot formed in gate- and etching-defined devices.13

The results confirm the good balance between accuracy and
efficiency of the functional.
In this work we verify that the same approach works well

in a fully self-consistent framework. In addition, an impor-
tant modification improves its performance. As remarked in
Ref. 11, the derivation of Eq. (3) employs, among others, a
Hartree-Fock expression for the pair density that leads to a
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particular choice for the overall coefficient. Here we propose
a different coefficient that has a nonempirical justification as
explained below. Our proposal also leads to an estimate for
a local upper bound of the Hartree energy in 2D systems.
Finally, we test the derived approximation self-consistently for
an extensive set of 2D systems. Remarkably accurate results
for the total energy and density are obtained in view of the
simplicity of the scheme and the negligible computational cost.

II. THEORY

A. Upper bound for the Hartree term

Lieb and co-workers have proved that the TF theory is
asymptotically exact for large quantum dots.14 In addition,
Burke and co-workers have pointed to the fact that successful
DFT approximations are those that become asymptotically
exact for the class of systems under investigation.15 It is
natural to follow the same principle in 2D, where semicon-
ductor quantum dots play the role of “artificial atoms.” The
fundamental question is whether the form in Eq. (1) can be
made, in some sense, asymptotically correct. We provide an
affirmative answer by exploiting the existence of a local upper
bound for the Hartree energy:

1

2

∫
dr

∫
dr′ ρ(r)ρ(r

′)
|r − r′| � 1

2
C

√
N

∫
drρ3/2(r), (4)

where C is a constant to be estimated.16 The latter expression
suggests that, for large N , we may be able to energetically
approach an exact (TF) theory “from above.” Of course sole
energy bounds do not allow us to directly control the behavior
of the functional derivatives of the obtained approximations.
This is expected to affect the accuracy of self-consistent
densities. Moreover, the considered bound does not allow size
consistency, which may have severe effects on the chemical
potentials as well as on “multicenter” systems with separated
confining potentials.
In order to find an “optimal” constant C in Eq. (4), we

consider a harmonically confined quantum dot, where the con-
finement potential is kept fixed while adding more electrons.
Eventually the density becomes relatively flat, resembling a
disk with radius R. In the large-N regime the Hartree energy
dominates over the exchange and correlation energy. For exam-
ple, for N = 6, 30, and 600 we have |Exc|/EH ≈ 0.33, 0.15,
and 0.03, respectively, with the oscillator strength ω = 0.5.
For a completely flat 2D density, the Hartree energy is given
exactly by17

Edisk
H = 8

3π

N2

R
. (5)

Combining Eqs. (4) and (5) we see that asymptotically Eq. (4)
tends to an equality with Cdisk = 16

3
√

π
. Previously, taking as

reference a Gaussian-like density,16 it was suggested that C =
3π√
2
, i.e., a value significantly greater than Cdisk. Therefore, we

could expect that our result may work as a good estimation for
the upper bound of EH .
Figure 1 shows the Hartree energy EH from a self-

consistent 2D-LDA calculation with respect to our upper
bound estimate Ebound. Three different quantum-dot systems
are considered: (i) Harmonic dots defined by vext(r) = ω2r2/2
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FIG. 1. (Color online) Hartree energy EH from a self-consistent
2D-LDA calculation with respect to our estimate for the upper bound
Ebound, i.e., the right-hand side of Eq. (4) with C = 16

3
√

π
. Results as a

function of N are shown for three different 2D systems.

withω = 0.5, (ii) circular dots defined by a hard-wall potential
[vext(r) = 0 at r � R with R = 10, vext(r) → ∞ at r > R],
and (iii) rectangular hard-wall dots18,19 with side lengths L

and 2L, where L = 10. We find that in all the cases, and with
different N , the Hartree energy is very close to our suggested
bound. However, it is noteworthy that our estimate does not
serve as a tighter upper bound (rather as an approximation for
it), as for for harmonic dots we obtain values above EH .

B. Self-consistent scheme

First, for largeN we have
√

N − 1 ≈ √
N , and therefore—

and according to the above analysis—Eq. (1) can be modified
as follows:

Eα
tot[ρ(r)] = TTF[ρ(r)]+ αW [ρ(r)]+

∫
dr ρ(r) vext(r),

(6)

where α = 8
3 (
2
π
)3/2 ≈ 1.35453. It is apparent that the modified

form fails to to recover the size consistency of the TF ap-
proximation. An immediate consequence (that can be verified
analytically for, e.g., rectangular quantum dots) is that the
fundamental relation μ = dEtot/dN is not fulfilled.
In order to find the ground-state density we have to

minimize Eq. (6) for a fixed number of particles. We may
first express the total energy in a single integral as

Eα
tot[ρ(r)] =

∫
dr F [ρ(r)]

=
∫

dr
[

π

2
ρ2(r)+ πα

2

√
N − 1
2

ρ3/2(r)

+ ρ(r) vext(r)
]
. (7)

We have to find a stationary value for the functional F [ρ(r)]
with respect to variations in ρ(r). To take the electron number
conservation into account, we introduce another functional
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G[ρ(r)] = ρ(r) so that∫
dr G[ρ(r)] = N. (8)

This constraint introduces a Lagrange multiplier μ in the
variational equation, which can be written as

dF

dρ
− μ

dG

dρ
= 0. (9)

Substituting F and G to this equation yields

πρ(r)+ 3πα

4

√
N − 1
2

ρ1/2(r)+ vext(r)− μ = 0. (10)

As this expression is quadratic in ρ1/2, we find an explicit
expression for the density,

ρ(r) =
(

− 3α

8

√
N − 1
2

+ 1

2

√{
9α2

32
(N − 1)− 4

π
[vext(r)− μ]

}
+

)2
. (11)

This shows that the density can be solved instantaneously
for any external potential vext and any N . The only variable
to be determined numerically is μ that follows from the
normalization condition in Eq. (8). The symbol [· · ·]+ in
Eq. (11) represents an additional constraint that no sign
changes under the square in Eq. (11) (leading to unphysical
“nodal lines” in the density), nor negative values under the
square root (leading to complex densities) are allowed. Once
ρ(r) is determined from Eq. (11), the total energy is finally
obtained from Eq. (6).
Let us emphasize the difference between the present and

and the TF approximation in a practical sense. In the latter
the variational procedure applied to the total energy leads
to an integral equation for the density. The TF scheme then
transforms into a differential equation (which in 3D leads to
the Poisson equation). Instead, our functional is free from this
complexity due to the simple expression for the interaction
energy [Eq. (3)] in comparison with the Hartree integral
utilized by the TFmethod. Although the Hartree term is simple
to calculate in most applications, it may become a bottleneck
in large 2D systems. In any case, it is appealing to have a
method for the first approximation of the electronic density
and energy with a negligible computational cost.

III. APPLICATIONS AND ANALYSIS

Next we test the self-consistent scheme of the previous
section for a set of 2D quantum dots and rings including
the e-e interactions. We use DFT with the 2D-LDA20 as our
reference method; in the range of systems and parameters
considered here the LDA has been shown to provide—for
the present purpose—sufficiently accurate total energies and
densities (see, e.g., Refs. 21 and 22 for quantum dots and rings,
respectively). The LDA calculations are performed using the
OCTOPUS code23 as well as another code exploiting circular
symmetry.24
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FIG. 2. (Color online) (a) Electron densities in harmonic quantum
dots containing N = 6, 56, and 600 electrons, respectively. The
dashed lines denote the DFT results within the 2D-LDA. The solid
lines correspond to the results of the present orbital-free functional.
(b) The same as in (a) but for two quantum rings containing N = 12
and 38 electrons, respectively.

Figure 2(a) shows the radial densities obtained from
Eq. (11) for 2D harmonic quantum dots with ω = 0.5 and
N = 6, 56, and 600 (solid lines). The dashed lines show
the corresponding LDA results. As expected, the present
functional cannot describe the shell structure due to the
lack of orbitals. However, the overall shape of the density
profile is satisfactory in a qualitative fashion, and the cor-
rect radial extent of the density profile is obtained in all
cases.
In Fig. 2(b) we show the corresponding result for a quantum

ring modeled by vext(r) = ω2r2/2+ V0 exp(−r2/d2), with
ω = 0.5, V0 = 20, and d = 1. The model potential is the
same as the one used in Refs. 22, 25, and 26, the last
reference showing direct comparison with an experiment. We
find a reasonable qualitative agreement between the present
functional and the LDA. The qualitative agreement is similar
for both N = 12 and N = 38.
Apart from densities, it is important to assess the perfor-

mance of the present functional for total energies. Figure 3
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FIG. 3. (Color online) Relative error in the total energies of
harmonic quantum dots calculated with our self-consistent scheme
with respect to 2D-LDA results. The inset shows the obtained
chemical potentials μ(N ) = Etot(N )− Etot(N − 1) for N = 55–59
in comparison with the 2D-LDA.

shows the relative total-energy differences from the reference
2D-LDA results for a set of harmonic quantum dots up to
N = 600. Overall, the accuracy is remarkably good in view
of the negligible computational cost. Even for small N the
accuracy is well handled, e.g., with N = 12 the relative
error is below 8%. However, the main interest for practical
applications is in the large-N regime. For N = 600 our
approximation overestimates the total energy only by ∼3%.
According to Fig. 3 the error then increases with N , but most
likely saturates. It can be extrapolated that forN ∼ 10 000 the
error of our approximation is still under 5% (note the log-scale
in the x axis).
The inset of Fig. 3 shows the obtained (spin-compensated)

chemical potentials μ(N ) = Etot(N )− Etot(N − 1) for N =
55–59 in harmonic quantum dots. In view of the lack of size
consistency (see Sec. II B), our scheme yields surprisingly
accurate results in comparison with the 2D-LDA. We point
out, however, that due to the lack of orbital dependency (and
thus the shell structure) we can only obtain the qualitative
behavior of μ without any detailed features.
In Fig. 4 we compare our results for hard-wall circular

and rectangular quantum dots with 2D-LDA results. The
parameter values are the same as in Sec. II A. Overall, the
errors are slightly larger than for harmonic quantum dots.
On the other hand, the errors become smaller with N so
that we can expect reliable results at least within N ∼
103–104. We point out that real-space 2D-LDA calculations
are numerically tedious in those systems. Detailed assessment
of our scheme ought to be performed with respect to TF
results.
Finally, we discuss the relevance of α in terms of the

performance of our scheme. As described in Sec. II A, the
inclusion of α results from the limit of a circular and flat
2D density whose Hartree energy is known. Eventually α

appears in Eq. (6) as a prefactor of W . Instead, in a previous
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FIG. 4. (Color online) Relative error in the total energies for
circular and rectangular hard-wall quantum dots calculated with our
self-consistent scheme with respect to 2D-LDA results.

non-self-consistent formulation11 α was equal to one on the
basis of the Hartree-Fock expression for the pair density. For
completeness we have tested our self-consistent scheme also
with α = 1 and found drastically worse results. For example,
for a harmonic quantum dot with N = 600 and for a circular
hard-wall dotwithN = 200 the formulationwithα = 1 yields,
in both cases, a 20% overestimation of the total energy. In
contrast, and as shown above, the present approach [with
α = 8

3 (
2
π
)3/2 ≈ 1.35453] yields respective errors of 3.0% and

6.9%. Therefore, the inclusion of α can be also practically
validated.

IV. CONCLUSIONS

We have derived a self-consistent scheme to compute
approximate electron densities and total energies for confined
(quasi-) two-dimensional (2D) systems. Our scheme can
be applied to any number of electrons with a negligible
computational cost. In view of its extreme simplicity, we
have obtained appealing results for electron densities and
total energies in a variety of systems (such as harmonic and
hard-wall quantum dots and quantum rings). Preceding the
derivation of our self-consistent scheme, we have found a
good approximation for an upper bound of the Hartree energy
in 2D. The present scheme may be useful in negligible-cost
computational investigations of 2D systems such as quantum
Hall devices.
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