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Abstract—Analysis and synthesis part of a cosine-modulated
M-channel filterbank (FB) contains two sections, a wdulation
block and a prototype filter implemented in a polypase
structure. Although, in many cases a linear-phase rptotype
filter is used, the coefficient symmetry of this fter is not utilized
when using the existing polyphase structure. In tlsi paper a
method is proposed for implementing a linear-phaserototype
filter building a nearly perfect-reconstruction cosne-modulated
FB in such a way that it enables one to partially tiize the
coefficient symmetry, thereby reducing the number brequired
multiplications in the implementation. The proposedmethod can
be applied for implementing FBs with an arbitrary filter order
and number of channels. Moreover, it is shown thain all cases
under consideration, the cosine-modulation part ofhe FB can be
implemented by using a fast discrete cosine transfom. The
efficiency of the proposed implementation is evaluad by means
of examples.

Index terms—Multirate system, cosine-modulated filterbank,
nearly perfect-reconstruction, FIR filter, linear-phase, fast DCT

I.  INTRODUCTION

During the last three decades, multirate systeme leen
used in various applications, e.g., adaptive sigmatessing,
compression, denoising, data transmissior[B]] One of the
basic building blocks of a multirate system is afanm M-
channel critically-sampled filterbank (FB) shownFRigure 1.
This FB consists of an analysis part (analysis EBhtaining
filters with the transfer functionsi(z) for k=0,1,...,M-1
followed by down-samplers by, and a synthesis part
(synthesis FB), containing filters with transfenétionsFy(2)
for k=0,1,...,M-1 preceded by up-samplers bi.
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Moreover, in this paper it is assumed that the g@gsing unit
does not modify the subband signals.

When synthesizing a FB, the goal is to generatgstes
that has either a perfect-reconstruction (PR) onearly
perfect-reconstruction (NPR) property. In the PRegathe
output signal[n] is a delayed version of the input signgd],
that is,y[n] =x[n-D] with D being the FB delay. In the NPR
case, this relation is only approximately satisfi¢iat is,
y[n]~#x[n-D]. By giving up on the PR property, FBs with
better overall performance can be designed, fomeie, the
same channel selectivity can be achieved by hdiliegs of a
lower order [4]. Therefore, for most applicatiorsstems
satisfying the NPR property are a better choickoag as the
distortions introduced by the FB are smaller tHam ¢hanges
caused by the application.
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Figure 1. M-channel critically-sampled filterbank.

Among different types ofM-channel FBs, the most
commonly used ones are modulated FBs. In a modukie
the filter transfer function$ly(z) and F(z) are generated by
properly modulating one prototype filterin this case only
one filter has to be designed and the implememtatansists
of a polyphase implementation of the prototypeefiland a
modulation block, thereby simplifying the design dan
implementation oM-channel FBs.

This paper considers the implementation of cosine-
modulated FBS with linear-phase FIR prototype filters.
Cosine-modulated FBs are modulated FBs with moduat
matrices based on cosine functions. In PR cosingdiated
FBs with linear-phase prototype filters of ordér 2KM-1,
with K being an integer, the prototype filters can beigfitly

! In some modulated FBs different prototype filtare used for generating
the analysis and synthesis FB. In this paper, wittass of generality, FBs
with only one prototype filter are considered.

2 For processing real-valued signals, cosine-moedl&Bs are one of the
more frequently used types of modulated FBs.
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implemented by utilizing a lattice structure {13]. In such
FBs the implementation of the prototype filter rizgs

(N+1)/2 multiplications peM input samples. However, this F(2) building an M-channel

where h[N-n] =h[n] for n=0,1,...,N, the impulse-response
coefficients of filters with the transfer functiont$(z) and
cosine-modulated FB are

implementation can not be used for NPR FBs. For NPRenerated by using the following modulation fungtio

cosine-modulated FBs with an arbitraty and M, the
currently most efficient implementation for the mtype
filter is achieved by using a polyphase structlmethis case
the implementation of the prototype filter requirds-1

multiplications perM input samples. The drawback of this

implementation is that the coefficient symmetryeaofinear-
phase prototype filter is not utilized, that is, eth
implementation complexity of the prototype filtarthe same
for linear-phase as well as non linear-phase §ilter

It has been shown in [5] that for NPR FBs with ptgpe
filters of orderN=2KM-1 the coefficient symmetry of the
prototype filters can be partially utilized. Howeythis order
selection is very restrictive due to the fact timathe case of
NPR FBs, prototype filters of any order can be usadpared
to the PR case where only filters of ord\er 2KM-1 result in
good FBs [4] [6], [7] (this is also illustrated byeans of an
example in Section VI). Therefore, in this papenethod is
proposed for implementing a linear-phase prototfjfper of
an arbitrary order in such a way that it enables torpartially
utilize the coefficient symmetry, thereby reducthg number
of required multiplications in the
Furthermore, it is shown that in all cases undersitteration
the cosine modulation part of the FB can be implaed by
using a fast discrete cosine transform (DCT). Ideorto
simplify the discussion, in this paper only FBs lwigven
number of channels and odd filter orders are cemsil
Similar principles presented in this paper can ppliad to
other cases.

The outline of this paper is as follows: SectiomdViews
the basic relations and properties of cosine-maedld&Bs.
This section also shows how the cosine-modulatarh gf the
FB can be efficiently implemented by utilizing asfaDCT
(the proof is given in the Appendix A). The implemetion of
the polyphase part of the FB is discussed in Sedtio The
proposed implementation method is given in Sectibrvith
the expressions for evaluating the implementatmmpulexity
given in Section V. In Section VI a comparison &fprmed
between the proposed implementation method and
polyphase one. Finally, some concluding remarkgasen in
Section VII.

This section reviews the basic properties and implaation
structures for cosine-modulated FBs with syntheaisd
analysis filters derived by modulating one lineaage FIR
prototype filter. Moreover, the emphasis is putFBs with
even number of channels and odd filter orders.sltaliso
shown that for all cases under consideration, tbsine-
modulation part can be implemented by using aD&3t.

For a linear-phase prototype filter of orddrwith the
transfer function

H(z) = ih[n]z‘n ,

n=0

COSINE-M ODULATED FILTERBANKS

1)

implementation.

[8]-{10]:

h[n] = 2h] co:{(m1

T

M

n— %) L %} (2a)

T

2l
- £ [ A B s
fk[n]—2h[n]co{(k+2jM(n 2] -9 4} (2b)

for k=0,1,...,M-1 andn=0,1,...,N. In the above equation,
D denotes the FB delay. For a cosine-modulated RB wi
linear-phase prototype filter, the FB delay is ddqadhe filter
order, that isD=N. Moreover, as the emphasis in this paper
is put on FBs with even number of channels and fitit
orders, the filter order will be represented as

N =2KcM +24-1, (3a)

with Kg being an even integery being an integer, and
0<4<2M-1. Consequently,

N+1
Keg =2 3b
RSt on
and
A:NT”-KEM. (3c)

Parameter&e and A will be used later on when deriving the
implementation structures.

As briefly mentioned in the introduction, cosine-
modulated FBs have the following two main propettigirst,
instead of designiniyl analysis andM synthesis filters, only
one prototype filter has to be designed, theregpificantly
simplifying the FB design. Second, the FB can be
implemented as shown in Figure 2. This implemeaotati
consists of the prototype filter implemented in pzlyphase
form and a cosine-modulation matrix. The polyphssens
are generated by decomposing the prototype filteergby
(1) into 2V polyphase components as
2M-1

the H@= Y 26 (22"),
=0

(42)

where GA2) for ¢£=0,1,...,2M-1 is the £th polyphase
component defined as
N

G:(29) = Z h& +2Mn)z”"
n=0

with N; being the order of the&th polyphase component
defined as

(4b)

(4c)

The elements of the cosine-modulation matriceandC,
are given by the following equations {§10]:
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Figure 2. Polyphase structure for implementing sire@modulated filterbank.
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Figure 3. Efficient polyphase structure for implertieg an analysis filterbank wit = 2KeM+24-1.

(5a)

[Cly = Zcos{ﬁ[k +%j(| -%j +(-D* %j

[Calu =2co{ﬁ(k+%j(2lvl -1-1 —%j—(—l)k%j (5b)

for k=0,1,...,M-1 andl =0,1
the synthesis FB is implemented in a similar waytlaes
analysis one, in the rest of this paper only thalysis FB is
considered.

For FBs with prototype filters of ordét=2KM+24-1,
with K and M being even integers and<@<2M-1, the
implementation structure given in Figure 2 can heher
simplified to the one shown in Figure 3. In thiguie G(2)
represents the polyphase implementation of theopoe
filter as given in Figure 4 and the cosine-modolatmatrix
C; from Figure 2 has been decomposed into four parts

C,=ACPoT s (6a)
Here, A is the scaling factor defined as
1=(-DKe2IM . (6b)
c¥ is the DCT-IV transform defined as [1], [11]
2 /4 1 1
CO& 1y =4/ cog—| k+= | 1+= 6¢c
[Coer i M M > > (6¢)

fork,1=0,1,...,M-1. Matrix T of sizeM by 2M is defined as
TZ[IM_‘JM _(|M+‘]M)]’ (6d)

with Iy and Jy being the identity and counter-identity

matrices of sizeM by M. Moreover, matrixT is further
decomposed as

,...,2M-1. Due to the fact that

with
Imz =Imiz Omrz Owye
Ta= [o Omrz Jmjz | (60
M /2 M /2 Mz Imi2
Imrz —Imi2
Tg = {_J O (69)
M /2 M /2

and Oy, being a zero matrix of sizBl/2 by M/2. Finally,
matrix s of size M by 2M has the following form:

I 2M -4
OA,ZM—A ’
with Oxv_4 4 being a zero matrix of sizeM2-4 by A4 and 4

being defined by (3c). The proof for (6&ph) can be found in
Appendix A.
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Figure 4. Polyphase implementation of the protofyiper.
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TABLE | EQUATIONS DEFINING QUADRUPLETS USED FOR IMPLEMENTING THEFILTERBANK

A Quadruplets
M u H (Z) G;H—A (_22) - GM —;4+A—1(_22) Xl“'A (Z) for M
0<A<—- = u=AA+1..,—-1
=as 2 |:UM/11(Z) Z_le+A+M (-2°%) Z_lGZM—;H-A—l(_ZZ) Xn-pra-1(2) 2 (%a)
U, Gua(-28) —ZCy_paa(-2A) [ X,u(d M ‘ M‘
1< A<M -1 . _ p+A M—p+4-1 H for lzo,l...,f—l—ﬂ——
|:U M—ﬂ—l(z):| |:ZIG/1+A+M (_Zz) _GA—,U—l(_ZZ) XA-H-J-(Z) f 2 2 (gb)
M 3M U, 26, ,(-7%) —7'Gy_psa(-2) [ Xpssn (2 M
—4l<A<Z 1 = #* #x * for y=|A-Ml|Ja-M]|+1...—-1
2 ’ 2 {UM ﬂ—l(z):| { Giawm (-2 ) —Ga—u—l(—zz) XA—u—l(Z) ‘ ‘ ‘ ‘ 2 (o)
U,(2 76, ,(-2%) Gy ma-Z%) [Xuam (@ M ‘ 3m
M+1<A<2M -1 * wrd A-p-M-1 # for y-o01..—-1-|4-=—"
UM ﬂ—l(z { Guiam (= %) _ZilGA#kl(—Zz) X4 p1(2) g 2 2 (90)
3M U”(Z) -G +A-2M (_22) GA— I—M—l(_zz) X;H—A—ZM (Z) f M
—t+1<4<2M -1 = “ 4 or y=2M - A,2M —A+1,....— -1
g TEAs |:UM/41(Z) ~2'Gam (7% —Z27G, (-7 [ Xspuma( 2 (9e)
Based on (6h), it can be seen that magi™) i I
(6h), i Big" is only a w,m | [1 -1 ulm ]
cross-connection network that connects outputs lod t W |~ |-1 —1fu [ml |~
polyphase filters with the inputs of matrix on one-to-one M-u-1 M-u-1
basis. Therefore, it is straightforward to implemematrix v, [m] 8
s as shown in Figure 5. Consequently, the relation 1 -11 -1 0 O] Vy_,alm )
betweenx, [m] andv[m] is given by {_1 —1}[0 0 1 J Vo [
W[l { X [ml  for k=0,...,.2M —4-1 @ Vom—u-a[M]
ktMf=49 <
~Xgsaom[M] for k=2M -4,...2M - 1. for ©=0,1,...,M/2-1. The implementation of (8) is given in

Figure 6.

There are four important observations related te th
modulation part that can be seen from {§ah), as well as
Figure 6. First, matrid (as well asT, andTg) contains only
Xolml vl additions (subtractions) and as such can be impitede
straightforwardly. Second, the DCT-IV transform ejiv by
(6¢) is of sizeM by M. This is half the original modulation

matrix of size ¥ by M. Third, matricesT and c(¥) depend

only on the number of channels and do not dependhen
filter order and consequently FB delay. Therefonden
deriving an efficient implementation for the FB,etlpart
related to the DCT-IV does not have to be consifl@®it is
identical for all FBs having the same number of ncteds.
Fourth, the DCT-IV is a well known transform thancbe

For FBs withN=2KM-1 with Kg andM being even integers,
vidm] = X [m] fork=0,1,...,2M-1, thatis,s@) = |

Vo 41[N]

Vav-a[m]

Figure 5. Implementation of the cross-connectiotrimas @) . efficiently implemented by using a fast DCT [1112].
The matrix T given by (6d) combines outputs of four 7 Udml] /)
polyphase filters by adding them or subtractingrttie order v j P vl
to build two inputs to the DCT-IV. As there ar®l Dolyphase Vieen[m] -
filters, there are altogeth&/2 such sets. Each of these sets is
defined by the following equation: Vi) _
M1 [M] () —pl
V. + T — d-/ Wi —a[m]
Ta (one sel Tg (one se’

Figure 6. Implementation for one set of maffix



R. Bregové, Y. J. Yu, A. Viholainen, and Y. C. Lim, “Implemtation of linear-phase FIR nearly perfect-recorgtam cosine-modulated
filterbanks utilizing the coefficient symmetry|[EEE Trans. Circuits Syst. I, vol. 57, pp. 139-151, Jan. 2010.

Il.  IMPLEMENTATION OF THE POLYPHASE SECTION OF The implementations for one quadruplet given by),(9a
THE FILTERBANK (9b), (9c¢), (9d), and (9e) are shown in Figureg,7{éb), 7(c),
7(d), and 7(e), respectively. As every FB undersoderation

X X can be decomposed by using these relations, tHengoais
FBs with even number of channélband odd filter orders, to derive efficient implementations for these fitygpes of

the relations between two inputs of the modulatioatrix quadruplets. This is shown in the next section.

CSQ and two inputs of the corresponding four polyphase

components, can be expressed inzli®main, depending on M4 ) () () il
A, by the equations given in Tabl2 With

wW,(2 | |1 - U, )
|:WM —y—l(z)i| - |:—1 - :||:UM—/1—1(z)i| (10) W-puraa[m]

. Unt—a[M] v o
and 4 given by (3c). HereX(2), U(z), andW(2) are thez 71 ©) _d_/WM [}

transforms ok[m], u[m], andw[m], respectively. In the rest of
the paper, each of these sets of four polyphaseaoents is (a)
referred to as a quadruplet. It should be pointedtioat in a

By combining the equations given in the previougisa, for

FB, quadruplets from one or two of the above satseho be odd Gua-7) (+) ) i
used. This is illustrated in Table II. " udm _
TABLE Il SELECTION OFEQUATIONS (9A)—(9E) DEPENDING
ON THE VALUE OF 4. X4l
A (9a) (9b) (9c) (9d) (%) Uni-peal ] Wiy al]
A=0 + > GA*,U*I (_22) — d_/ J d_/
1<A<M/2-1 + +
A=M/2 + (b)
M/2+1<A<M-1 + + Xl w, [
A=M + A Gud-2) ) ) ()
M+1<A<3M/2-1 + + 2 u u[m] w
A=3M/2 + -
3M/2+1<A<2M-1 + +
X[

In order to illustrate the relations (9é9e), as an example, Uni_peal] W]
the implementation of a FB wittiM=8 and N=33 is »| Gy (-2) —(t) —(+) >
considered. In this case, according to (3b) anjl (8s1 and
Ke=2. According to (9a)(9e), there are the following four (©
sets of equations: Xura -l ) T o w,[m]

A=1u=0-(9b)> 2 uf
L[Ue@]_[ a2y —zleA) @] (1)
U722 |27Gg(-2%) -Gy(-2) | Xo(D)] Xayevalm]
. Unt—-1[M] . |
A=l/1_:1—>§9a2—> N ] ey D Wha—-a[m]
LU 62 -6(-2) [X() (11b)
Us(@] |276y(-7%) 27Gis(-2%) | X+(2)] (d)
Xeera-om[] _ w,[m]
Aeu—2-5(93) 20028 L Gura o2 © " H)
L[U@] | G2 -Ge(-Z) [ X (11c) -
|Us(2) | _271611(—22) 271614(—22)__)(6(2)_
Anhunas G0 G e
{Ug(z)}: (7)) -Gs(-7) [X@] (1) R N
Us(d] |27G,(-2%) 77G(-2%) | Xs5(D) ] (e)
Figure 7. Implementation structure for quadruplets ghwen
relations (9a)(9e).

3 It should be pointed out that the relations gibgn(9a)-(9e) are somehow
similar to the ones derived in [9] for describingetPR requirements.
However, the ones introduced here are more usefuldriving an efficient

implementation because all signals are organizeidh a way that they can
be directly used as inputs into a DCT-IV. No furthearrangements are
needed.
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IV. PROPOSEDIMPLEMENTATION METHOD In the next two sections it is shown, how to efidly

In order to derive an efficient implementation fbe five implement each of those quadruplets.

quadruplets given in the previous section, and eguently TABLE Ill FILTER ORDERS FORGIVEN VALUES OF A.
derive an efficient implementation for the FBs unde Type 1 Type 2
consideration, it should be observed from Figures-7(e) A Ry Ry R Ry R, R
that there are, in principle, only two differentagluuplets to -0
be implemented. Namely, the quadruplets shown guréss 1= A<M/2-1 Ke-1 | Kg-1
7(a), 7(c), and 7(e) are from the implementationinpo _A :_M/2 Ke Ke—1 Ke
simila*. The same applies for the ones shown in Figuries 7( M/2+1< A<M-1
and 7(d). Therefore, in this paper, only the imgeanation for =M Ke Ke
guadruplets given in Figures 7(a) and 7(b) is am!sa'd. Mtl<A<3M/2—1

In order to simplify t_he notations, in I_:|gure 8t_1e two 1=3M/2 Ke+1 Ke | Ke+1
quadruplets under consideration are depicted agiim the BMI2H1=A<2M-1 | Ke+1 | Ket1

transfer functionﬁl(—zz) from Figures 7(&)7(e) replaced by
generic transfer functions(-2), B(-Z), C(-Z), and D(-Z)

defined as: Xo[m] wlnj
Ro
A= a,z" (12a)
n=0
R
B(z) =) b,z" (12b)
n=0 U1[TT] R
R
C(2=> 2" (12¢) (@) i
- ) W
R -
D(2)=> d,z" (12d)
n=0
with Ry andR; being the filter orders of these generic transfer il
functions. These orders are calculated accordin@¢p and
are related to the paramet&y, based o, as shown in Table -I D(Z) () wim
lll. ParameteR given in the table will be used later on. The
relation between order®, and R, and parameters and (b)
could also be expressed by using equations butatble is Figure 8. Implementation structure for quadruplets undesideration.
more self-explanatory. Moreover, due to the linghase (a) Type 1. (b) Type 2.
property of the prototype filter it turns out tHat all cases
under consideration A. Typel
d, =ag_n for n=01...Ry (13a) A Type 1 quadruplet depicted in Figure 8(a) is uedi by the
following input-output relation:
C,=bg_, for n=01..,R,. 13b
CoRr e (30 Uo@|_| A-z%) -C(-2°) |[Xo(d (14)
A proof for the above relations is given in AppenBi. As an U,(2) 71B(-22) zD(-22)|| X1(2)

example, a FB wittM =8 andN=233 is considered. Fqr=0,
the quadruplet given by (9b) (see also (1la)) dosta Inthe case under consideration (see Tablé Ill),
polyphase component=[ho hie hl]a ggz[hg he], g§=[h8 hg], Ry=R =Kg-1. (15a)
and g;=[h; hyg ho] corresponding to filters with transfer ] ) _
functionsA(z), B(2), C(2), andD(2), respectively. For this case N order to keep the equations compact, in the oéshis
the filter orders ard},=2 andR;=1. It is obvious that the sectionRwill be used instead d€e-1, that is,

symmetries given by (13a) and (13b) hold. Same lwan R=Kg-1. (15b)

shown for all other quadruplets.
a P Moreover, a¥g is evenRis in this case odd. By taking (15)

into account, (14a) can be written in the time diones (16a)
(see next page, top). After applying the coefficigymmetries

4 For example, the structure in Figure 7(e) is actuallysthecture in Figure defined by (13a) and (13b), the time domain reprg®n is
7(a) multiplied with—1. Consequently, the structure in Figure 7(e) can be.: :
implemented as the structure in Figure 7(a) with thetimpwoutput signals given by (16b) (see next page, tOp), with

multiplied by-1.
® The part related to (10) is omitted from these fig@eghat part consists ° As seen in Table IlI, for quadruplets shown in Fig{ges and (9e)Ro=R;
only from two additions. is equal tdKe andKe+1, respectively.

6
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[uo[m]}z{ao 0-a 0..0-a3g 0 -c,0¢ 0 ..ckq O }xgi{zml[m] (162)

{uo[m]}z[ao 0O-a 0..0 -ag O -bgObgy, O ..by O }{xgzm[m]l

(16b)
wu[m| | 0by 0 -bj..bg; 0 —bg 0 ag 0 —agy...0—ay | X e[

As an example, the implementation for a Type 1

X[m=k] quadruplet foM =8 andN =233 is considered. As can be seen

X[m—k-7] from (9a)-(9e), there are 3 Type 1 quadruplets in this FB
xfgz’l[m] =| %[m-k-27] a7) generated fo=1,2,3 (see also (11bj11d)). The one for
: u#=1is considered here. After applying the aboveva¢ion
x[m-k—17] on the quadruplet given by (9a), the following syst of

equation is obtained:
for mk,l, 7€ 2, andt=0,1. In order to derive an efficient uy[mi
implementation, (16b) can be rewritten as [ }

ug[m+1]
Ug[m -
O[ ] _ Xz[m]
u;[m+1] ,[m-2]
(18) 0 00 0] 2 21a
8- 8y...ap1 -~ 8g—bg bgy ...—by by || xS0l 1 21 o1%% xo[ M = X, [M—2] (21a)
@ ' 00-h;hg 00 ’
bO_bl---bR—l_bR aR —a.R_l... al _ao XOVZ’R[m] O 1 —1 O 0 0 0 f f Xz[m—z]—X7[m]
1 '0]
Here, the delays™ in (14) have been moved to the left side of X7 [m
the equation, based on the following set of idesit | X[m-2]
U(2) = 2X(2) @ uml=xm-1] © um+1]=xm]. (19) with
Therefore, in (18),u[m+1] instead of um] has been & =hy +hy, & =-hs -y (21b)
evaluated. Moreover, the columns containing onlpzédave
been removed. fo =y —hy, Ty =-Mys+hy. (21c)

By utilizing the efficient way of doing the complex The implementation structure is shown in FigureS@nilar

multiplications (see for example [13]), systemsegi\by (18) implementation can also be derived for 2 andu=3.
can be efficiently implemented as

i elm
im ] 711 o],
| U [m+1] 0 1 -1
[epe,...eg 0 00 0 000007 xPeIm | (20a) (i\
000 0-byby...~bgybg 0 00 0 | xR .
10000 000 0 O fg...fyfy] x&[mi &
with a
€ =8y +by, € =-8,-b,...eg =—ag - by (20b) ~
fo =ag—by, f, =—a, +by, ..., fr = —ag +bg (20¢) xifmi
and Figure 9. Proposed implementation structure foypeTl quadruplet for=1
that is part of a filterbank with1=8 andN=33.
XolM—=Ko] = X [M—ky —1y771]
m—Kq —175] — X[m—k; — (I, -1
Xléztlllo—[m] _ %ol /) 1[ 1= (=D . (20d) B. Type2
’ A Type 2 quadruplet depicted in Figure 8(b) is dedl by the
XolM— Ko —lg0] = X [M—ki] following input-output relation:

The coefficientss, andf, depend only on the prototype filter Uo(2)
coefficients and as such can be pre-calculatedh&umore, it {U (z)}
should be pointed out that for the case wWith2KM-1, all 1
quadruplets in the FB are of Type 1. Thereforehia special

case, that is, foN=2KM-1, the proposed implementation is

similar to the one reported in [5].

{A(—zz) —z‘lc(—zz)}[xo(z)

z1B(-z?) -D(-Z%) Xl(z)}' (22)
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In the case under consideration (see Tabl€ I1),
Ro = Kg
R =Kg-1.

(23a)
(23b)

The difference between the ord&gandR; is due to a non-

complete polyphase decompositidw+-(#2KM with K being

Xo[Mm =Kol + X [m—ky —1y7,]

ket ] = Xo[m—Ko —170] + X4[M =Ky — (I = 1)74]

Ko 710l ' (27d)

Xolm=Ko —lom0] + X4[M— k]
As in the case of Type 1, the coefficieat@andf, depend only

an integer), that is, some polyphase terms haveemopn the prototype filter coefficients and as such be pre-

coefficients than others. Again, in this sectiBrinstead oKg
will be used, that is,

R=Kg. (23c)

calculated.

As an example, the implementation for a Type 2
guadruplet foM =8 andN=33 is considered. As can be seen
from (9b), there is one Type 2 quadruplets in Bis that can

By taking into account (23a)23c) as well as the coefficient |, generated fop=0 (see also (11a)). After applying the

symmetries given by (13a) and (13b), (22) can bi¢tewr in
the time domain as given by (24) (see page bottamit)

X,ﬁ‘vfzvl defined by (17). In order to derive an efficient

implementation, (24) can be rewritten after remgwinlumns
containing only zeros and by utilizing (19), asegivby (25)
(see page bottom).

Such system can be split into two parts as

Ulml | | %[m-2R] Uo[m
{uﬂmﬂ]} B aR[— x[m+1] } +[Ul[m+1]} ' (262)
with
Uo[m] _
Oy [m+1]|
26b
|:aﬂ_a1a2---_aR—1_bR—1 bro ...=b by } Xg,JZ),R—l[m] . (26b)
by —byb,...-bry ary —ar ... & —3 X:E%R[m]

The fist part can be implemented straightforwarfiging
only two multiplications), whereas the second pginen by
(26b), can be implemented by following the approaséd for
Type 1, that is,

[ Oolm] | [1 -1 0
|G[m+1]| [0 1 1 8

above derivation on the quadruplet given by (9b)ofving
system of equation is obtained:

[ o[ }:h{ x[m-4] }
u;[m+1] — Xo[m+1]

X [m]
7 x[m-2]
11 0] &0 0 00 xmog | %
01 1[209%%-N 00 x,[m—2]+ x,[m-1] |’
000 0 f fof "
- Xo[m—1]
%o[m-3]
with
€ =hy +hg, & =—hg—hy (28b)
fo=hy—hg, f,=—hg+hy. (28¢)

The implementation is shown in Figure 10.

=

[epe,...€r4 0 0 0 0 0 00 07 xDe,lml |+ (27a)
000 0 by-b...bg; 0 00 0| xz5r3"[ml @
1000 0 000 0 fry...fyfoll xB,[m]
with
-2
& =ay+hy, & =-a -by, ...y =-8r3-bry  (27D) z
fo=ag+by, fi=—8-by, ..., fry=-ag1-bgy, (27¢) Figure 10. Proposed Implementation structure fer Bype 2 quadruplet that
is part of a filterbank wittM=8 andN=33.
x{) | defined by (17), and
w V. COMPLEXITY EVALUATION
The complexity of the proposed structures will baleated
through the number of multiplications and number of
[uo[m]}_{ao 0-a 0 ... 0 ag ~bry; O ..b, O } XS or (24)
wu[m| [Oby 0 —b ...—bg; 0 —ag 0 ag;..0 -ag||xPnq
- — ”rfuo[...] }m{:a%—al_a%_..q.ga)aﬁ_l a,T? 0 -bgy br, ...-Dy bo} xS gl (25)
S seen In l[able ,. 10 u showp | ) an are
equal toKe+1 andKe, rié;ﬂ:f{ﬁhtaﬁ By =B, 'b; % bR s 0 “dg Ary —8rp .. & —ag ) xY,alm]
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additions perM input samples denoted & and C',
respectively. First the complexities for Type 1 ahgpbe 2
structures are given, and then a generalizatipnegsented for
any combination oM andN. In the complexity evaluation,
the given formulas take into account the prototfifter and
matrices s®™) and T, as given in Figure 3. The

implementation of DCT-IV is omitted from the evalioa as
it is the same for all cases under consideration.

For a Type 1 quadruplet the implementation compjexi
can be evaluated by

Cr1(R) =3R+3 (29a)

C#(R) = 4R+5. (29b)

As discussed in IV.AR is equal toKg—1, Kg, or Kg+1 for
the structure given by Figure 7(a), Figure 7(c)Figure 7(e),
respectively.

For a Type 2 quadruplet the implementation compjexi
can be evaluated by

Cr,(R) =3R+2 (30a)

Ci,(R) = 4R+3. (30b)

As discussed in IV.BR is equal toKg or Kg+1 for the
structure given by Figure 7(b) or Figure 7(d), extjvely.

For an NPR cosine-modulatdd-channel FB, withM
being even, synthesized by using a linear-phaséotype
filter of order N, with N being odd, the implementation
complexity can be evaluated by using one of théofidhg
expressions:

0<4<M -1
sz‘A_MC'I)'(l(KE_lﬁ'L A D+
2 M /2 (31a)
M M
(7—‘4‘—7‘JC$2(K5)
M<A<2M -1
cx=4—3ﬂc$l KE{LJ +
2 3M /2 (31b)
M 3M
(7_A_TJC'I)'(Z(KE +1)

with Kg and 4 being related to the filter order by (3a). In the

above equation,x' stands for ' or ‘+’, that is, the same
equation is used for evaluating the number of mequi
multiplications and additions.

For prototype filters with even ordeN, the above
expression can be used to get a close enough @éstintay
evaluating them for ordeN+1. FBs with odd number of
channels are not of interest in practice due toféloe that a
FB with even number of channels, having one chammaike
than the FB with odd number of channels, can introases
be implemented more efficiently than the one wittido
number of channels. Therefore, complexity estinmafior M
odd can be evaluated by using the above equatamisl£1
instead oM.

VI.

This section shows by means of an example the heéthe
proposed implementation method. The section isddiiinto
two parts. First, the proposed implementation isgared to
the polyphase implementation, and, second, it abahted
why having efficient implementation methods for NIFBs
with an arbitrary prototype filter order is benddic It should
be pointed out that the complexity evaluation isfqrened
only for the implementation of the prototype filtemd

matricess@) andT. In both cases, the proposed one and the

polyphase one, in addition to the prototype filtke DCT-IV
has to be implemented. It is omitted from the failog
comparison because the implementation cost of tB&-I¥/ is
equal for both approaches.

In order to compare the proposed method with the
polyphase one, a family of FBs has been designethda
following properties:M =32, maximum allowable aliasing
and amplitude distortionsd,=83=0.01, stopband edge
ws=7IM, andN=95,97,...,319. The FBs have been designed
by using the method presented in [6], that is, sta@pband
attenuation of the prototype filter is minimizedbgact to the
given FB constraints. For these FBs, the achietedband
attenuations are shown in Figure 11. It can becedtthat the
attenuation is increasing in a monotone, continuoasner,
when the filter order is increasifighis is not the case for PR
FBs where designs other thalr 2KM-1 result in FBs with
poor performance [14].

The implementation complexities by using the preugbs
implementation and the polyphase one are showiguré& 12
with the relative comparison given in Figure 13e3é figures
show that the number of required multiplications tbe
proposed implementation is always lower than thiathe
polyphase one. The number of additions in the pmego
method is higher than that of the polyphase oneMig
addition independently of the filter order. This i®t a
problem as the difference is small, particularly filters of
high order, compared to the overall number of aoidiand
the fact that adders are less costly to implemdatn t
multipliers. The number of required multiplicatiorend
additions in the polyphase case has been evaluatetthe
following two expressions:

Cp=N+1

EXAMPLES

(32a)

Ch=N+1. (32b)

As already mentioned before, (32b) also includes 2
additions required for implementing matrice§") andT as

given in Figure 3. In order to make the compariswre fair,
it was assumed that both implementation structutbs,
polyphase one and the proposed one, are implemented
according to Figure 3. The only difference is thae
polyphase one goes one step further and utilizes th
coefficient symmetries, as described in this paper.

By using the proposed implementation method for NPR
FBs, systems with lower delays / complexity forieeg FB

8 Similar behavior was also observed for differemitres ofM.
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requirements can be achieved. This is important tduthe
fact that for many applications the delay introdlidsy the
system is limited by standards. As an example,abld IV,
numerical data of some characteristic designs vergi As
seen from the table, if a design with filters havif0 dB
stopband attenuation is desired with parametgrgy, andws
as defined above, then a filter with ordér 219 is required.
In this case 22% less multiplications are requirgd the
proposed implementation compared to the polyphase in
order to compare with the technique proposed in\\Bjere
the efficient implementation applies only to flh;em_/lth 050 100 150 200 250 300 350
N=2KM-1, the two nearest = 2KM-1 cases are given in the Filter order N

table. As it can be seen, the ordér191 has attenuation (b)

lower than 50 dB and as such it does not satisfy th _ ) ) ) I

. ts of this example. In order to meet gheen Figure 12. Implementation complexity for filterbanghown in Figure 11
requl_r_eme_m ) ) . when using the proposed metheek(--) and the polyphase method:---).
specification, the technique proposed in [5] hasuse an (a) Multiplication complexity. (b) Addition comptity.
over-designed filter with ordeMN=255. However, such
system has a 36 samples longer delay and a moreleom
implementation compared to the optimumlN=219 case.

w
o
o

200

Addition complexity C*

Therefore, the proposed method gives more flexjbithen N 0.85 E
selecting an appropriate FB for a problem at hand. ‘0 .
2
o 80 E' : -.
° i S 08-““:.“-5'.
5 g Do
g 8 Co
g =3 N s
kS E] . .
T 2 o075 : : - :
E : : : : 50 100 150 200 250 300 350
2 : : : : : Filter order N
n ; 5 : : (a)
20— : : : :
100 150 200 250 300 1.3
Filter order N 0
+
Figure 11. Stopband attenuations for 32-channel bi#dte-modulated ‘i
filterbanks withd,= & =0.01. =
3
350 E
. : 8
E=
250 2

1 " H " H "
50 100 150 200 250 300 350
Filter order N

(b)

Figure 13. Relative comparison between the proposttiod and the
polyphase method. (a) Multiplication complexity) @ddition complexity.

150

100

Multiplication complexity C

)]
o

50 100 150 200 250 300 350
Filter order N
(@) TABLE IV ATTENUATION AND IMPLEMENTATION COMPLEXITY FOR
FILTERBANKS WITH M =32 AND VARIOUS FILTER ORDERS INNUMBER OF
MULTIPLICATIONS (C*) AND ADDITIONS (C *) PEROUTPUT SAMPLE

Proposed 'vilr?t[g(])d Polyphase Comparison

Att | . « . « P s

N e C | C | Ca | Ga | Co| Co | CT/Cy| C/cy
2.332-1=191] 47.6| 144| 208| 144 | 108| 192 192| 0.75 1.08
219 50.2 172| 236| - — |220|220| 0.78 1.07
2.4.32-1=255]|58.1|192| 272| 192 | 272| 25 256| 0.75 1.06

1C
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VII.

In this paper an implementation method has beeposed
that reduces the number of required multiplicatiomsen
implementing a linear-phase prototype filter of ambitrary

CONCLUDING REMARKS

order used for building an NPR cosine-modulated FB.

Following remarks regarding the discussion preskimethis
paper should be made:

First, the method is useful only for NPR FBs. PRsEBnN
be implemented more efficiently by using a latt&teucture.
However, the PR FBs are restricted to orddrs2KM-1,
whereas the proposed method can be used with dnaayb
filter order.

Second, although this paper mainly concentrate®duh
filter orders and even number of channels, the atkttan
also be used to implement prototype filters of eveter as

addition to Type 1 and Type 2 quadruplets, someatri
relations have to be implemented.

Third, it is shown how to efficiently implement teesine-
modulated part of the FB for even number of chanreld
odd filter orders. This can be extended to othenimer of
channels and filter orders. The paper concentratedhe
above cases as those are the most useful onesafpyactical
viewpoint.

becomes an identity matrix because 0. This special order
will be denoted here a®k, that is, Ny=2KgM-1. The
corresponding modulation matrix denoted @gul, is given

by
4 1 N
C =2c08 —| k+= ||| -—K |+ ¥ 33
[Crx Ik {M( 2)( 2) J (333)
fork=0,1,...,M-1 andl=0,1,...,2M-1 andg, is
0, = (—1)"% . (33b)

The goal now is to show that the cosine-modulatimatrix
[Cilks of a FB with filter orderN = 2KgM +24-1 can be

implemented as
[Cilks =[Chi iy ST,

with s given by (6h).

In order to prove this, first the implementationr fo
N=Nk+2 is considered. For this case the modulationirgstr
given by

Nk +2
[Cil) = ZCO{ﬁ(k +%)(I —KTJFJ +9kj

(34)

(35)

Fourth, the proposed implementation does not depend for k=0,1,...,M-1 and 1=0,1,...,2M-1. By comparing

the properties of the FB or the method how the BB heen
designed. Therefore the proposed method can befosedy
existing or
prototype filter.

Fifth, as shown in the example section, in somes&Bs
with lower delay can be used without increasing ibenber
of required multiplications. This is very importaint many
applications.

Sixth, in this paper analysis-synthesis systems Hmen
considered. However, the proposed implementatiothode
can also be used for synthesis-analysis systesskabwn as
transmultiplexers.

APPENDIX A

This appendix shows that the modulation part ofoaire-
modulated FB with a linear-phase prototype filtéraa odd

newly designed FB having a linear-phase |

(33a) and (35), it can be observed that

_Ne.

_Ne+2_ C1-(-p -k
2 2

2
that is, matrices(s]x; and Cnk]k, have identical columns
[Cilkisa =[Cni k) (36Db)

for k=0,1,...,M-1 andl=0,1,...,2M-2. The only different
columns are the first column in matrig]y, given as

N 2
52 -

I (36a)

order having even number of channels can always b¢CNK]k,2M1=Zco{I\7;(k+;j(2M —1—’\g<j+9kj=

implemented by using a fast DCTAlthough, this appendix

concentrates on the above mention cases, a sipiilaiple
can be also applied for other filter orders andiomber of
channels.

It has been shown in [1] that for FBs with even bemof
channels and filter orders equalNe 2KcM-1, with Kg being
even,

[12]). In this special case, the cross-connectiatrin s

cosine-modulation matrix given by (5a) can be
implemented by using a DCT-IV transform as given by
(6a)-(6g)*° (DCT-IV can be implemented by a fast DCT [11],

(37a)
2co{”(k+1](— KeM —1j+ekj
M 2 2
and the last column in matric{x]x, given as
(37b)
2co{(2k+1)ﬂ+”(k+lj[- KeM -lj ek].
M 2 2
By applying the cosine transformationcosg + ) =
cosfx) cos(B) —sin(a) sin(#) on (37b) and noticing that
cos(Rk +1)z) =-1 (38a)
sin(@k +)7) =0, (38b)

(87b) becomes

T 1 1 k
C =-2c0§ — | K+= || - KgM == |+ 0" |,
° A similar proof for a different type of cosine mdation functions than the [Crcliam 1 {M ( 2)( F 2) j (39)

one used in this paper can be found in [18].
0 Similar relations can be derived fb\=2KoM-1, with Ko being an odd

integer. However, it has turned out that for thgcdssion in this paper, it is

beneficial to use only the relations #¢ even.

that is,

11
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[CNK]k,ZM—l = _[Cl]k,O' (40)

This means that fdl=Ng+2, all columns of matrix@,]x, are
shifted version of matrix Qng]x; with one of the columns
having a different sign. Therefore, by simply raaging the
input signals going into the cosine-modulation matthe

matrix [Cyk]ki can be used for both of those cases. The

required rearrangement can be expressed by thewfoly
matrix (see also Figure 3):
C, =Cpne SPW. (41b)

Sl(zM) ={
Following the some idea stated above, it can bdyeas
shown that the same principle can be applied fberofilter
orders up toN=Ng+4M-2. For example, fol =Ng+4,

OZM -11 I 2M -4

1 (41a)

OLZM -1
that is,

[Cilkir2 =[Crx ki (42a)
fork=0,1,...,M-1 andl =0,1,...,2M-3 and
[Chklkam-2 =1Cilko (42b)
[Crilk2m-1 =1Cylkz- (42c)
Consequently,
O [ om-
SéZM) _|Ym-22 Tam-2 (42d)
—l2 Ogomo2
and
C, =Cne SPW. (42e)

In the more general case, ftf = 2KgM -1+ 24, the cross-

connection matrixs®) becomes as given by (6h) thereby

proving (34).
Finally it should be pointed out that fdd=Ng+4M,
[Cl]k,| =_[CNK]k,| fOf kZO,l,...,M—l and

1=0,1,...,2M-1. Because all columns change sign, this ca
be implemented by changing sign of the input orpott
signals. In the implementation this is performedHsy scaling
factor A. Therefore, foN=Nx+4M,

[Cilks =[Cnk ki (43a)
fork=0,1,...,M-1 andl =0,1, ...,2M-1 with
A==k (43b)

and Ank corresponding to thid =Nk case.

Here, only the analysis modulation matrix is coasdl.
Same principle can be applied for deriving an im@atation
for the synthesis modulation matrix.

APPENDIX B

This appendix shows that the symmetry relationemiby
(13a) and (13b) hold for the quadruplet given byure 7(a),
that is, (9a). This corresponds to Type 1 quadtugileen by
Figure 8(a). For quadruplets given by Figures 7{g), that
is, (9b)-(9e), a proof similar to the one here can be done.

According to Figure 8(a), Figure 7(a), and (9apltows
that

A7) =G,.4(2) (44a)
B(2) = Guisem (2) (44b)
C(2) = Gump+41(2) (44c0)
D(2) = Gom—p441(2) (44d)

for 0<A<M/2-1 andu=A, A+1,...,M/2-1 with A given by
(3c). Combining the above relations with (13a) &hab), it
turns out that for the case under considerationfdahewing
relations have to be proven:

9uealNl = 9om_yssa[Ro—n] for n=01...R, (45a)

gM—,u+A—1[n]=g,u+A+M[R1_n] for n=0,],...,R1. (45b)

According to (4c), the orders of the polyphase congmts
can be derived as

N +1
N, = NAz{ﬁ-‘—l for £=0,1,...P-1  (46a)

Ng {';_I\ﬂ_l for £=P,P+1,..,2M-1, (46b)

P=N+1-2m| ML) (46¢)
2M
This means that the fir®? polyphase filters are of ordéi
and the rest I2-P polyphase filters are of ordddz. By
combining (3a) with (46c), it turns out that
P=2K:M +2A—2M{KE+AJ=2A. (47)
2M
The last equality in (47) holds becaudec M /2.
As discussed in [15]17], the polyphase filter coefficients

Rresent mirror image symmetries for polyphase rfiftairs.

More specifically,

g, =9gp g [Ny-n] for £=01...,P-1 (48a)

9Nl = 9om-1.p-c[Ng — 1]
for {=P,P+1...,.2M -1.

For the case under consideratiory;>A. Therefore,
u+A4>24=P and Ry=Ng=Nxg-1. Consequently, (48b)
shows that £+ A)-th polyphase filter is the reverse of the
(2M -1+ P - (u+ A) )-th polyphase filter. Since

2M =1+P—-(u+A)=2M -1+24—u—- A=

2M -1-pu+4,

(45a) is proven. (45b) can be proven in the exadlye way,
sinceu+A4+M =224+M =2 P.

(48Db)

(49)

VIIL.
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