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We computationally investigate polarized second-harmonic generation (SHG) of a spectrally broad femtosecond
pulse following transmission through traditional quarter wave plates (QWPs). Because the sideband modes of
a broadband pulse can interact through sum-frequency generation processes, the SHG responses for several
experimentally relevant cases exhibit asymmetries between individual sideband modes, spectral peak shifts,
and, critically, artificial chiral signatures. Remarkably, errors in the various sum-frequency sidebands are
found to compensate for each other so that the total SHG response approaches the ideal narrowband response.
This occurs in the absence of significant axis misalignment in a compound QWP. Hence, our results suggest
that polarized femtosecond SHG can be remarkably tolerant against the broad bandwidth of ultrashort pulses.
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1. INTRODUCTION

The use of ultrashort pulses in optical measurements is
opening new realms of physical phenomena regarding
light-matter interactions for investigation. Femtosecond
(fs) pulses have provided the ability to probe molecular
chemical reactions, excited state evolution, and cis-trans
isomerization in real time with time-resolved
spect:roscopy.1 Ultrashort pulses also offer extremely high
peak power densities, an advantageous attribute from the
viewpoint of nonlinear optical phenomena, such as the
generation of high-order harmonics.? High repetition
rates coupled with short-pulse durations impart low ener-
gies per pulse, which can also be particularly useful for
nonlinear optical studies of fragile samples, such as bio-
logical matter and highly absorbing dyes. Metal nano-
structures are at present another fragile system of par-
ticular interest. Although even fs pulses may cause
irreversible material changes in metallic nanopar‘cicles,?’*5
nondamaging nonlinear optical measurements can also be
performed.®® Hence, ultrashort laser pulses occupy a
strategic niche in nonlinear photonics research.
Traditional pulsed laser sources, such as nanosecond
(ns) Nd:YAG and picosecond (ps) dye lasers, have com-
paratively long-pulse durations with narrow spectral
bandwidths (BWs) of less than 1 nm. Thus, it is often jus-
tified to treat their optical fields as having a single fre-
quency. In the sub-ps regime, on the other hand, the field
consists of a large number of oscillating modes, and short-
pulse laser operation is usually attained by mode
locking.9 The presence of these additional modes compli-
cates nonlinear optical processes, because the sideband
modes can behave differently, and their contributions to
the nonlinear response have to be treated separately.10
The broadband (BB) nature of fs pulses also has signifi-
cant consequences for second-harmonic generation (SHG).
Because of the broadness of the fundamental spectrum,
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group-velocity dispersion restricts the nonlinear fre-
quency conversion region to thin systems. Distribution of
the pulse energy into sidebands further hampers conver-
sion efficiency, necessitating phase- and/or group-velocity
matching schemes to increase the SHG output.''™* In
BB-SHG, the sidebands contribute to the total SHG re-
sponse by coupling through sum-frequency
generation'® 7 (SFG).

BB frequency conversion has been considered from
various approaches.lg_24 However, because of its tensor
nature, SHG is highly sensitive to the state of
polariza‘cion,25 a facet that has often been overlooked in
these studies, although a few polarized BB-SHG and SFG
measurements have been reported.%_28 The behavior of
polarization-control optics with BB pulses is thus a vital
concern. Calcite laser polarizers are natural BB linear po-
larizers, although poorly cut or aligned crystals proscribe
good linear polarization.29 Retardation optics such as
wave plates (WPs), on the other hand, are normally de-
signed for a single wavelength centered within a limited
spectral acceptance range specified by the tolerance, over
which the deviation from nominal retardation falls within
certain limits. Tolerances for commonly used crystal
quartz WPs, for instance, correspond to ranges of just a
few nm,° making them dubious choices for dealing with
spectrally broad, ultrashort pulses.

Moreover, WPs may contain certain errors and defects
that detrimentally affect the polarization, such as mis-
aligned crystal, elliptical axes, retardation that varies
across the clear aperture, or even partially polarizing
Wps. 293132 wp properties have thus also received their
share of attention.?3*5 The basic message is that one
should not simply rely on manufacturers’ specifications
and instead always test any new optic to verify its behav-
ior before use in experiments where precise performance
is required.

© 2007 Optical Society of America
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A quarter-wave plate (QWP) is often used to achieve
circular polarization (CP) states, which are important for
certain optical characterization techniques, both linear
and nonlinear.®*®® Circular dichroism in the SHG re-
sponse (SHCD), or a difference in SHG efficiency between
the two CP states (left and right), is a basic measure of
chirality.*3” High-quality polarization is required in
these measurements, so understanding the limitations of
a QWP is vital. A crystal axis misalignment, for instance,
means that true CP is unattainable, even for a monochro-
matic source; the transmitted polarization will always re-
tain some ellipticity because such a misaligned optic does
not possess well-defined principal axes.’® However, the
question of how typical narrowband retardation optics af-
fect the polarization of spectrally broad fs pulses and
their subsequent effects on BB-SHG has not been treated
in detail.

In this paper, we examine numerically the performance
of a traditional crystal quartz QWP illuminated by a BB
fs pulse. The pulse is approximated by multiple, closely
spaced discrete modes, and the retardation and final po-
larization state of each mode exiting the QWP is deter-
mined from the birefringence of quartz and the thickness
of the QWP. Dispersion of the birefringence is included in
the calculation. Increasing the thickness (i.e., a multio-
rder QWP) severely restricts the spectral acceptance
range of the QWP. Crystal axis misalignment in a homo-
geneous compound (two-crystal) QWP further complicates
the resulting pulse polarization.

The second-order response is investigated by modeling
several experimentally relevant cases, including achiral
rodlike molecules and an intentionally chiral sample. The
samples are assumed to be thin so that phase-matching
considerations and group-velocity dispersion can be ne-
glected. Despite the deviations in the fundamental pulse
polarization, distortions in the individual sidebands of the
SHG field are found to compensate for each other, causing
the total SHG response to approach more closely—
provided the pulse BW is not too great—the ideal re-
sponse of a true zero-order QWP with a narrowband
source. Deviations occur in the sidebands even with a true
zero-order QWP, but through sideband compensation the
total SHG response with a true zero-order QWP is found
to reproduce the ideal response. However, effective com-
pensation is also startlingly demonstrated for a moderate
BW with a multiorder QWP. For a larger BW, though,
compensation no longer balances distortion and the total
SHG response of the multiorder QWP can deviate sub-
stantially from ideal. Also of considerable import is the
fact that a crystal misalignment in a compound QWP can
introduce an artifical chiral signature to an achiral
sample, which may have significant experimental conse-
quences. Interestingly, increasing the thickness of the
compound QWP can nearly eliminate the artifical chiral
signature, implying that dispersion also plays a role in
helping compensate for polarization distortions in the to-
tal SHG response.

2. PULSE PROPAGATION THROUGH A
RETARDER

The nominal spectral acceptance range of a WP can be de-
termined from the specified retardation tolerance and is
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typically in the range of A\/500 to A/ 200.%° For example, if
No=1060nm, a zero-order QWP with tolerance A\/500
yields a range of just +9 nm. However, the BW of moder-
ately short fs pulses can extend tens of nm, which clearly
exceeds the range of a typical WP. The question of how a
WP handles such broad pulses then becomes extremely
important for measurements where precise polarization
control is necessary.

To understand the behavior of a WP with spectrally
broad pulses, we must propagate the pulse through the
WP and account for phase and polarization modifications.
To develop a basic understanding as to how the broad BW
associated with short pulses influences the polarization
properties, we use a simplified approach where group-
velocity dispersion through the WP (pulse chirp) is disre-
garded. The task is easily addressed as a matrix equation
of the form p’=Mp, where p and p’ are the input and
output polarizations in the laboratory frame, respectively,
and M is the system matrix that accounts for the changes
effected by the WP.

In the laboratory frame, p and § designate, respec-
tively, the axes parallel and perpendicular to the plane of
incidence, and the propagation direction; the laboratory Z
axis coincides with the WP z axis, as depicted in Fig. 1.
For a WP oriented at an arbitrary angle 6 about the z
axis, the components of the input polarization must first
be projected into the WP coordinate system. This is ac-
complished through the standard rotation matrix, R(0)40:

cos(6) sin(6)
E(9) = —sin(f)  cos(d) |” 1)

The phase gained by each polarization component
through the WP depends on the birefringence and thick-
ness (optical path difference) of the WP material. The bi-
refringence and dispersion are specified by An(\)=n,(\)
-ny(\), where n,(\) (6) and n,(\) (€) are the ordinary and
extraordinary refractive indices, respectively. If the thick-
ness of the crystal is d, then upon propagation through it
the phase of each component is modified according t0®0

W= (2)

ei(277/}\)n0()\)d 0
0 ei(277/)\)ne()\)d .

The retardation by a compound WP consisting of two
homogeneous crystals is given by p(\)=2mAn(\)Ad/\,

Fig. 1. (Color online) Structure of a compound WP with a mis-
alignment a between the axes of the two crystals. Distances
along zZ are greatly exaggerated for illustrative purposes.
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where Ad=dy—d; is the thickness difference between the
two crystals.40 For a QWP, p=/2. Thus, the overall thick-
ness of a compound WP is ideally unimportant, at least
for monochromatic inputs. However, dispersion in thicker
WPs becomes significant for BB sources.

If an angular misalignment, «, between the crystal
axes in a compound WP is introduced (Fig. 1), the polar-
ization transmitted by crystal 1 must then be projected
into the rotated axes of crystal 2 with R(«) before the next
phase modification is carried out.?? As the final propaga-
tion step, the output polarization must be projected back
into the laboratory frame. Thus, the system matrix de-
scribing the polarization transmitted by a compound WP
is given by

M =R(- O)R(- a)W,R(a)W,R(6). (3)

For a single-crystal WP, the product R(-a)WyR(«) is sim-
ply removed to obtain the appropriate system matrix.

3. BROADBAND SECOND-HARMONIC
GENERATION

A real fs pulse contains a very large number of discrete,
equally spaced frequency modes. Consider a short pulse
centered at A\y=1 um with a spectral BW AA=20 nm. If we
assume an air-filled laser cavity of length L=1m, the
number of modes, N, contained in the pulse is given by’

2LAX
—— = 40,000. (4)
0

N=

It is computationally infeasible to address this entire
spectrum. However, the mode spacing is less than
1073 nm, so the spectrum can be reasonably approximated
as continuous. By describing a spectral band centered at
Ao=1060 with ~10% modes (mode spacing of ~0.03 nm),
we can again legitimately discretize this continuous spec-
trum to make a more tractable problem for calculation
purposes. Because the modes are evenly distributed in
the frequency domain but not in the wavelength domain,
it is thus necessary to perform the calculations in the fre-
quency domain. [However, the frequency terms w, and
2wo are commonly interchanged with the fundamental
and second-harmonic (SH) wavelength terms, and in view
of the following calculations it is therefore convenient to
adopt this nomenclature for discussing the results, except
where explicit reference to wavelength is more appropri-
ate.]

Our fundamental pulse thus consists of 103 evenly
spaced frequency modes distributed symmetrically about
the central frequency with a BW specified by the full
width at half maximum (FWHM). The mode spacing is
made a function of the FWHM in order to maintain the
number of modes for any pulse width. The total spectral
distribution of the fundamental pulse extends to either
side of wy by 4 X FWHM, and the spectral intensity at the
edges of the pulse is <0.5% of the maximum at o, ensur-
ing that the full sideband distributions of the fundamen-
tal pulse are taken into account.

The central experimental configuration investigated in
this work is depicted in Fig. 2. The configuration corre-
sponds to an actual experimental setup for single-beam
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QWP

(Color online) Core configuration of a BB-SHG
experiment.

Fig. 2.

continuous polarization variation measurements with
SHG.*! For all calculations, the input fundamental pulse
is always linearly polarized along p. According to its de-
sign parameters and rotation angle 6, the QWP transmits
the fundamental pulse with a specific modified polariza-
tion, which then undergoes frequency conversion in the
sample through SHG and SFG processes. We apply a sim-
plified conversion scheme in which the sample is assumed
to be thin compared with the coherence length. Propaga-
tion of the fields within the sample, depletion of the fun-
damental beam, and phase-matching and group-velocity
dispersion issues can thus be neglected.?®

We need to determine the response electric field at the
SH frequency for a given polarization. We describe the
fundamental pulse as a plane-wave packet with discrete
frequency modes o propagating in the Z direction. The
fundamental field of mode w at a given position z is ex-
pressed by E(w)=A(w)p(w), where A(w) represents the
complex scalar amplitude and p(w) is the optical polariza-
tion obtained in Section 2.

The upconversion of two fundamental field frequency
components at w; and wy yields a response field at the
sum frequency Q=w;+wy, such that E(Q) = E(w;)E(wy).?
For a monochromatic source operating at w;=wy=wy,
SHG occurs at Q)=2wy. However, with a BB pulse we also
must consider the sum-frequency contributions from the
sideband modes w;# wy to the total SHG response. We
can rewrite wy={) —w; and substitute this into the expres-
sion for E(wy). If the field magnitudes are normalized, we
can introduce expansion coefficients to account for all the
possible polarization combinations®” and then sum over
all modes w; that result in SFG and SHG contributions to
the polarized (i=p,s) response field at ():

E{(Q) = 2 [fiE,(0)E,(Q - ) + giE(0)E(Q - )

@1

+ hiEp(wl)Es(Q - (1)1)] (5)

The complex coefficients f;, g;, and &; depend in general on
frequency, but here we will assume that their dispersion
is negligible over the pulse BW. Expressed in this way, the
response field in Eq. (5) appears as a discretized
convolution.***3 From this point, it is straightforward to
calculate the spectral intensity from I;(Q)=|E;(Q)[%. As-
suming the detector is slow compared with the pulse du-
ration to avoid frequency beating, the total SHG response
is obtained from the sum of the spectral intensities, I;
=301;(Q).
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4. POLARIZATION IN THE LINEAR
RESPONSE

The shorter the pulse duration, the wider its BW be-
comes. We can relate the pulse’s temporal length, A¢, to
AN by9

BN

cAt’ ©
where B is the time-bandwidth product, a numerical fac-
tor that arises from the uncertainty constraint of Fourier
theory (8=0.315 for a transform-limited sech? pulse or
0.441 for a Gaussian pulse), and c is the speed of light. We
have chosen to model a sech? pulse, a shape typical of fs
laser pulses. Four different BWs centered at )\
=1060 nm were selected, representing a wide range of
typical pulse lengths reported (Table 1). Note that BW1
corresponds to a traditional narrowband (quasi-
monochromatic) ps source.

Several QWP configurations were investigated. All cal-
culations model a QWP comprised of crystal quartz, a
common birefringent WP material whose dispersion is
well known.** The basic parameters are listed in Table 2.
QWPT represents a true zero-order (single-crystal) re-
tarder and multiorder QWPM is also a single-crystal re-
tarder of order 8, both of whose thicknesses are deter-
mined from the birefringence of crystal quartz at the
central wavelength of 1060 nm and the retardation p(\).

The nominal thickness of quartz QWPs is listed as
1.0-2.5mm.*® We therefore examined three different
overall thicknesses in this range (Table 2) with compound
zero-order QWPC, where Ad is simply equal to the thick-
ness of QWPT. A perfectly aligned QWPC is thus equiva-
lent to QWPT regardless of d, but with QWPC we must
also consider an additional complication: an axial mis-
alignment between the two crystals. Misalignments of «
=0.1°-5° between the crystals were also studied. The re-
tardation properties of a misaligned compound quartz
QWP with a BB, continuous-wave source have been ad-
dressed previously, but the responses of single-crystal
QWPs were neglected.32 In our work, we also focus on the

Table 1. Spectral BWs (AN) and Equivalent
Durations (A#) Studied

AN At
Pulse (nm) (fs)
BW1 0.1 104
BW2 6 200
BW3 25 50
BW4 120 10

Table 2. Basic QWP Configurations®

d Range
QWP Type (mm) (nm)
T True zero 0.030 1009-1117
M Multiorder 8 1.005 1058-1062
C Compound zero 1.0, 1.5, 2.0 1009-1117

“The intended operation wavelength (wg) is 1060 nm in all cases.
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Fig. 3. (Color online) Phase deviations from CP (90°) for QWPT
and 3°-misaligned QWPC for thicknesses of 1 and 2 mm. The
shaded region indicates the 5° tolerance condition.

BB-SHG response and how it is affected by polarization
errors. Elliptical QWP axes were not modeled, although
they may be another common but overlooked source of po-
larization error.?

The spectral acceptance range of each QWP (Table 2) is
determined by the phase deviation between the polariza-
tion state transmitted by the QWP when set to pass CP
(i.e., #=+45° in Fig. 2) and the ideal quarter-wave retar-
dation of 90°, because this QWP orientation effectively
yields the maximum modification of the input polariza-
tion state. The allowed phase deviation is =5°, corre-
sponding to a relaxed retardation tolerance of \/72. Both
the true zero-order QWPT and aligned QWPC accept a
very wide range of 108 nm under this tolerance, so they
are certainly applicable to longer fs pulses. However,
there is a limit to the pulse width that even QWPT can
pass within tolerance: for a pulse BW smaller than 26 nm
(pulse duration longer than 45 fs), the phase deviation of
the entire pulse BW just falls within the 5° criterion, but
for greater BWs (i.e., shorter pulses), the phase deviation
begins to exceed the tolerance at the sideband edges. Of
course, the tighter the tolerance applied, the narrower the
range will be: for the manufacturer-specified retardation
tolerance of N\/500, the acceptance range of QWPT is a
mere 16 nm (75 fs). The much larger phase difference ac-
cumulated through the thicker multiorder QWPM se-
verely restricts its nominal usage range to just 3 nm(
~400 fs). Actually, QWPM exhibits multiple widely sepa-
rated narrow bands distributed across the entire funda-
mental spectrum (e.g., the nearest neighboring bands are
1003-1005 and 1121-1124 nm).

The overall thickness of an aligned QWPC has no effect
on its range; it behaves exactly like QWPT, as expected.
However, crystal misalignment has serious consequences
for the transmitted polarization,® and thickness can thus
become a sensitive factor. Figure 3 shows the phase de-
viations as a function of the frequency relative to w, for a
3° crystal misalignment in the minimum- and maximum-
thickness QWPCs, as compared to the reference QWPT.
Misalignment introduces oscillatory behavior to the po-
larization phase. Note also that the minimum phase de-
viation location shifts away from the central frequency
with increasing thickness. This shift results from the
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phase differences accumulated through the thicker, dis-
persive crystals of QWPC. It is possible that the range can
shift so far that the QWP will no longer even operate
properly at wg. Indeed, for the 2 mm QWPC, the mini-
mum deviation occurs at 1072nm (range of
1055-1089 nm), which means that pulses centered at
1060 nm will never achieve high-quality CP at wy. How-
ever, even with a misalignment of =5° in a 1 mm QWPC,
the minimum shifts just 1 nm, although the range is con-
siderably restricted (1041-1078 nm).

The combined effects of misalignment and thickness in
QWPC also lead to acceptance range splitting as with
QWPM. For a misalignment angle of «=2.4° in the 2 mm
QWPC, the usable range begins to split apart at approxi-
mately 1041 nm. A 4° misalignment shifts the range so
that wy no longer lies within it. However, for the 1 and
1.5 mm versions, the range remains intact at approxi-
mately oy, although it shrinks from the shorter-
wavelength end while the minimum deviation shifts to-
ward longer wavelengths. This suggests that the thinner
the QWP, the better. True zero order is best, as may be
expected, but a QWPC of 1 mm or less does not appear to
be very sensitive in the case of small misalignments.

Another way to illustrate the deviation of Fig. 3 is
through the eccentricity, €, of the polarization, obtained
from the ratio of the semiminor axis, b, to the semimajor

axis, a (Ref. 45):
b 2
€= 1- (—) . (7
a

Note that the value of € lies between 0 (CP) and 1 (linear
polarization). Figure 4 displays e for QWPT and several
misaligned angles of the 1 mm QWPC. The oscillations re-
sulting from misalignment indicate that the polarization
azimuth direction also varies throughout the sidebands.
To emphasize this variation, we have chosen to apply a
sign convention to € based on the orientation of the polar-
ization ellipse, ¢, defined as the angle between a and the
p axis.*” The convention is such that >0 indicates that
the projection of @ is greater along p, while e<0 means
that a is more closely aligned to §, corresponding to Fig. 5.

T T T T T T T T T
QWPT — |
0.6F 1 mm QWPC
0.1° —-
1.0° ——-

=
(el
T

=>

Signed Eccentricity, €
<
“— —
w>

-0.2 -0.1 0 0.1 0.2
Relative Frequency Difference
Fig. 4. (Color online) Signed eccentricity of the polarization for
QWPT and 1 mm thick QWPC with misalignments of 0.1°, 1°,
and 3°. The sign of e indicates whether the projection of a is
greater along P (positive) or § (negative) in Fig. 5.
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Fig. 5. (Color online) Polarization ellipse orientation for the
QWP configurations in Fig. 4.

For all cases in Fig. 4, the extreme edges of the sidebands
approach linear polarization, and approximate CP occurs
only very near wq. A thicker, misaligned QWPC results in
more frequent oscillations, but even with QWPT, the
transmitted polarization varies strongly throughout the
pulse spectrum.

As Fig. 5 shows, the polarization ellipse is oriented dif-
ferently in the sidebands. For QWPT, the polarization at
wq is circular, but moving into the lower sideband causes
the polarization to become slightly elliptical and oriented
along p. In the upper sideband, however, the ellipse is ori-
ented along §, resulting in the discontinuous step through
wo. The orientation remains constant throughout each
sideband, though, which means that the phase difference
between the individual p and s components depends lin-
early on frequency. However, the misalignment-induced
fluctuations in the polarization direction of QWPC mean
that the phase difference here no longer depends linearly
on frequency. This may, in turn, result in reduced SHG ef-
ficiency, because harmonic generation efficiency has been
shown to depend on the ellipticity of the polarization.*
The distortion worsens with both increased misalignment
angle and QWP thickness, but for small misalignments in
a thin QWP the retardation of each frequency mode is not
significantly affected. No misalignment is, of course, best;
but if one exists, it should be less than «=0.5° to avoid
significant distortion.

5. POLARIZATION IN THE SECOND-ORDER
RESPONSE

We now proceed to examine in detail the SHG responses
resulting from the modified polarizations discussed in the
previous section. Three variations of the coefficients fgh
from Eq. (5) were selected, representing realistic experi-
mental samples (Table 3). Set S1 corresponds to the de-
tection of an s-polarized SHG signal from an isotropic sur-
face or thin film. Set S2 describes an isotropic thin film of
one-dimensional rodike molecules wusing p-polarized
detection.*” S3 intentionally generates a chiral signature,
an SHCD response, through the phase shift introduced by
the small imaginary f.

First, we consider the multiorder QWPM. Figure 6 de-
picts the SHG responses for the chiral set S3, BW3 at the
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central SHG frequency 2wq and in the sidebands at i%
FWHM of the SHG spectrum. Because its acceptance
range is so small, QWPM strongly distorts the polariza-
tion of the fundamental pulse, resulting in unusual,
asymmetric SHG responses at the individual frequencies.
However, by accounting for all contributions to the total
SHG response, we discover an astonishing result: the
sidebands compensate for each other, as seen in the excel-
lent agreement with the reference response generated
with QWPT and BW1, shown in Fig. 7. Sideband compen-
sation occurs provided the pulse BW does not exceed
QWPM’s range too greatly. For the very wide BW4, the
sideband compensation is no longer effective and the
SHCD is almost completely eliminated in Fig. 7. The de-

Table 3. Coefficient Sets from Eq. (5) Studied

Set f g h
S1 0 0 1
S2 1 0.33
S3 0.1i 0 1
T » 1 T 1 T
1 = -
081 .
2
& 0.6 il
B
=
—
O 04} B
o
w2
0.2+ 200, — .
upper ——
0 = -
1 " 1 1 1 " 1
-90 -45 0 45 90
QWP Angle, 6 (deg)
Fig. 6. (Color online) Normalized SHG responses at 2w, and in

the sidebands generated from coefficient set S3 with QWPM,
BW3.

SHG Intensity
s 2 ¢

=]
3%
T

QWP Angle, 6 (deg)
Fig. 7. (Color online) Normalized total SHG responses gener-
ated from coefficient set S3 with QWPT, BW1 and QWPM, BW3,
and BW4.
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Fig. 8. (Color online) Normalized SHG responses at 2w, and in
the sidebands generated from coefficient set S2 with QWPT,
BW4.
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Fig. 9. (Color online) Spectral shift of the SHG peak generated
from coefficient set S2, BW4 with QWPT and 1°-misaligned
QWPC for thicknesses of 1 and 2 mm.

gree of compensation also depends on the sample condi-
tions specified by fgh. Set S1 is relatively insensitive to
BW and shows good compensation even for BW4, al-
though some slight asymmetry appears near the CP
states. With set S2, on the other hand, the magnitude of
the deviation around the CP states grows with increasing
BW.

Deviations in the sidebands occur for large BWs even
with QWPT, although the deviations are small compared
to QWPM. Set S2, shown in Fig. 8, evinces the greatest
difference between the sideband responses. However, full
sideband compensation occurs for all coefficient sets with
QWPT, even with BW4, yielding essentially exact dupli-
cates of the references obtained with BW1. The behavior
of misaligned QWPC appears similar to QWPT, but dif-
fers in detail: The magnitudes of the sideband deviations
are larger for all sets, and a small angular phase shift
also occurs, compared with QWPT. This would affect fit-
ting analysis by yielding different fgh values. 3437

If the fundamental pulse BW exceeds the acceptance
range of the QWP, the SHG spectral peak can shift away
from 2w, even with QWPT, as Fig. 9 depicts for set S2.
This shift results from different sideband modes preferen-
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tially coupling to the fgh coefficients. Misalignment in
QWPC again introduces asymmetry to the response, with
differing shifts between the two nominal CP locations at
0= +45°. Dispersion in the thicker QWPC adds a small,
overall offset. Set S3 shows the most sensitivity at ap-
proximately 0°, but with both SI and S3, the spectral shift
disappears at +£45°. If the pulse BW is less than or equal
to the QWP range, the spectral shift generally amounts to
less than 1 nm. However, for broader BWs, spectral shifts
of up to 15 nm are observed for set S1 when QWPC is set
to transmit linear polarization (i.e., #=+90°,0°). Such
large differences in the expected and actual SHG peak lo-
cations could easily affect SHG measurements adversely
by reducing or even eliminating the detected response for
these orientations, depending on the detector’s range (for
instance, an interference filter with a BW of #10nm
would reject a significant part, and would certainly lead
to polarization-dependent errors in the measured signal,
of Sl-type SHG responses at —90°, 0°, and+90°).

Another serious consequence of crystal misalignment is
the introduction of an artificial SHCD to the total SHG re-
sponse for the achiral set S1, in the form of an intensity
difference between 6=45° and 135° (recall that high-
quality CP cannot be obtained with a misaligned QWPC).
This result means that an achiral sample, which should
exhibit no such difference, could be misidentified as being
chiral 3637 Figure 10 shows this artificial SHCD for two
different thicknesses of a 3°-misaligned QWPC. Interest-
ingly, the thinner QWPC exhibits a larger SHCD (~6%)
and angular shift of the total response from the reference.
The greater dispersion in the thicker QWPC apparently
helps mitigate errors with this set and leads to more ef-
fective sideband compensation. Set S2 appears immune to
artificial SHCD, while for set S3 the total SHG response
develops slight asymmetric tilts at the peaks, most likely
the result of competition with the existing chiral signa-
ture. Unlike with QWPM, the intentional SHCD is not di-
minished here. However, the angular shifts in S2 and S3
are exacerbated, not compensated, by thickness, indicat-
ing that the polarization behavior of such complicated
configurations can be unpredictable, and therefore a mis-
aligned QWP should not be used in chiral measurements.
However, distortions are not substantial provided the
misalignment is less than «=0.5°.
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Fig. 10. (Color online) Normalized total SHG responses gener-
ated from coefficient set S1 with QWPT, BW1 and 3° misaligned
QWPC, BW4 for thicknesses of 1 and 2 mm.
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6. CONCLUSION

The broad spectral width of an ultrashort fs pulse can
lead to significant adverse polarization modifications
upon transmission through a QWP, which in turn affect
the SHG response. Dispersion of birefringence in quartz
and the specified tolerance limit the BW that even a true
zero-order QWP can transmit with nearly nominal retar-
dation. A misalignment of only 1° to 2° between the crys-
tal axes in a compound QWP induces serious, unpredict-
able distortions to the retardation of frequency modes in
the pulse, and good CP becomes unachievable. The accep-
tance range of the QWP shrinks and shifts away from the
design wavelength, and the phase shift between the po-
larization components no longer depends linearly on fre-
quency. Greater thickness, coupled with misalignment, is
more detrimental to the transmitted fundamental polar-
ization, possibly even shifting the QWP range so far that
the design wavelength is excluded. A multiorder QWP,
having a highly reduced usable range because of disper-
sion, modifies BB fundamental pulses in a highly undesir-
able manner.

Deviations in the polarization of a fundamental fs pulse
naturally affect the SHG response produced with it. How-
ever, the BB nature of the pulse means that the sidebands
interact through SFG processes and compensation of po-
larization errors results. The SHG responses at indi-
vidual frequencies in the sidebands differ with a true
zero-order QWP when the pulse BW exceeds its range, yet
for all samples the total SHG response, including side-
band SFG contributions, exactly reproduce the ideal re-
sponses generated with a narrowband pulse. In the case
of the multiorder QWP, good sideband compensation oc-
curs if the pulse BW does not strongly overlap neighbor-
ing acceptance bands.

Crystal axis misalignment causes the SHG spectrum to
shift away from the central frequency because of different
coupling efficiencies of the sideband modes. Small shifts
occur even with a true zero-order QWP for a very broad
BW, although with a misaligned compound QWP, the shift
can be an order of magnitude greater. Such spectral shifts
may inhibit or lead to errors in SHG signal detection. An-
other serious consequence of misalignment is the appear-
ance of an artificial chiral signature, which can lead to er-
roneous data interpretation. Thickness and misalignment
generally work together to increase the deviation of the
total SHG response from ideal. Interestingly, though, for
certain achiral sample types, dispersion in a thicker QWP
appears to compete against misalignment, bringing the
total response back in line with the ideal response. This
shows the unpredictable nature of the complex polariza-
tion behavior resulting from such imperfect optics.

Our results suggest that for the cases of single-crystal
and aligned compound WPs, the SHG techniques based
on continuous polarization variation with a QWP tolerate
polarization errors provided that the laser source BW lies
within the 5° phase error range of the QWP. Crystal axis
misalignment in a compound WP, on the other hand, is a
critical issue: the axes of the two crystals should be
aligned with each other to better than 0.5° for reliable re-
sults. Thus, in BB-SHG experiments the QWP sets clear
limits on the accuracy of a measurement.
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