
Unsupervised Classifier Selection
Based on Two-Sample Test

Timo Aho, Tapio Elomaa, and Jussi Kujala

Department of Software Systems, Tampere University of Technology
P. O. Box 553 (Korkeakoulunkatu 1), FI-33101 Tampere, Finland

{timo.aho,tapio.elomaa,jussi.kujala}@tut.fi

Abstract. We propose a well-founded method of ranking a pool of m
trained classifiers by their suitability for the current input of n instances.
It can be used when dynamically selecting a single classifier as well as in
weighting the base classifiers in an ensemble. No classifiers are executed
during the process. Thus, the n instances, based on which we select the
classifier, can as well be unlabeled. This is rare in previous work. The
method works by comparing the training distributions of classifiers with
the input distribution. Hence, the feasibility for unsupervised classifica-
tion comes with a price of maintaining a small sample of the training
data for each classifier in the pool.
In the general case our method takes time O

(
m(t + n)2

)
and space

O(mt + n), where t is the size of the stored sample from the training dis-
tribution for each classifier. However, for commonly used Gaussian and
polynomial kernel functions we can execute the method more efficiently.
In our experiments the proposed method was found to be accurate.

1 Introduction

The problem of dynamic classifier selection arises prominently in data stream
classification [1], but it is also present in, e.g., tracking recurring drifting concepts
[2,3], dynamical learning algorithm selection [4], and weighting or selecting the
base classifiers in an ensemble [5,6]. All of these situations are dynamic in the
sense that a classification algorithm has not been fixed beforehand in a separate
training phase. Rather, the instances that are observed online affect our choice.

For example, in concept drifting the distribution underlying the data keeps
changing over time. Often the states of the distribution reoccur after a while.
Thus, it is useful to store and restore the data and classifiers of the past. Most
of the practical restoring methods include choosing the classifier with the best
fit for the current input. This can be the case with a single classifier [2] and with
ensemble classifiers [6,7]. In the latter case the ranking information is used to
weight the responses of classifiers depending on their suitability for the current
input.

In either case, we have a set (pool) H = {h1, h2, . . . , hm} of varying kinds of
classifiers h : X → Y available. The classifiers are trained on dissimilar instance
distributions. Each classifier hi maps any instance x ∈ X to a class label hi(x) ∈



Y. Assume also that we can easily associate with each classifier a random sample
drawn from its underlying training set. Moreover, we have a sequence of new
instances (x) = x1,x2,x3, . . . ,xn available; they may be labeled (belong to
X ×Y) or not (belong to X ). Keep in mind that this sequence may only be the
first batch from a longer sequence.

How should we proceed when we want to obtain a good classifier for (x)? If
the sequence is labeled the most straightforward approach, of course, is to employ
the most suitable learning algorithm (see e.g. [8]), feed (x) as training set, and
take the resulting classifier as our choice. However, the set (x) may be small
when compared to the training sets on which the classifiers in H were trained.
Also, the classifiers in the pool may, e.g., be more general than is possible to
attain by training a new one.

Furthermore, if the classifiers are not of the same type, it is possible that
different types of classifiers are chosen to best suit the underlying distributions.
According to the “No Free Lunch” theorems [9] no single classifier type is su-
perior in all situations. Experimental evidence also supports this [8]. Because of
all these reasons, we concentrate on methods that choose the classifier from the
pool H.

The standard approach to choosing a classifier from H is to execute each
of them on the input sequence (x) and choose the most accurate one. This
is the traditional solution to the dynamic classifier selection problem and has
been used, e.g., by Watanabe [10]. Furthermore, the same method has generally
been used for weighting the classifiers in an ensemble [6]. Assuming linear-time
execution of classifiers, the time requirement of this procedure is O(mn) for
m classifiers and an example sequence of length n. In this case the sequence
(x) needs to be labeled. Thus, the method is infeasible for, e.g., uncategorized
web pages. We are aiming at an efficient solution that would also let us use
unsupervised learning.

Basically the method that we propose, MMDSel, compares sample distri-
butions. This is done by maintaining a small sample of the training data for
each classifier in the pool H. However, it is not always necessary to store the
samples explicitly. MMDSel gives the similarity of the samples drawn from the
training data with the input sequence (x). Thus, we can either rank the classi-
fiers or select the one having a training distribution most similar to the input
distribution. The main advantage of the method is that no classifier needs to
be executed. Hence, it is useful in at least three different situations. First and
most importantly, MMDSel can be used in unsupervised environments. Sec-
ond, it may be more efficient when execution of classifiers is inefficient. There
may also be other reasons — like privacy issues [11] — to prevent unnecessary
classification. Third, our method does not need extensive preparation operation
other than the sample storing (cf., e.g., meta-learning approaches [12]). Thus,
the method is feasible for dynamic setting where the pool H may change online.

Most earlier approaches are usable only in the supervised setting [2,5]. How-
ever, Ali and Smith [8] aimed to find the most suitable classifier types for different
kinds of distributions using fixed complexity measures. Some of the measures are



statistical and depend only on the distribution of the data. Thus, the approach
is also feasible for unsupervised learning. Nevertheless, Ali and Smith did not
really study dynamic selection of trained classifiers. Rather, they aimed to find
a rule-based classifier type selection grounded on prior knowledge of the prob-
lem. Moreover, Zhu, Wu, and Yang [1] gave a method in data stream model
that includes partitioning the whole instance space into subsets according to the
feature values. The approach uses class labels of instances only in finding the
classification accuracy of base classifiers for these subsets. Hence, the method
could partly be used under unsupervised conditions.

A field with some similarity with classifier selection is choosing with expert
advice [13]. Here the task is to minimize the amount of unsatisfactory decisions
for a sequence of tasks. Traditionally the experts and the distribution underlying
the decision are quite static. Similarly, we also aim to find the expert that is
the best in hindsight. However, in dynamic classifier selection framework the
distribution alters all the time and, thus, we are interested in single decision,
not in the decision sequence. We do not necessarily have any optimal classifier;
any single classifier would usually have been a poor choice for the whole sequence.
Rather the best classifier depends entirely on the current distribution. Also, the
set of classifiers H may alter.

The remainder of this paper is organized as follows. In Section 2 we briefly
examine the theoretical background of MMDSel. Then, in Section 3, we present
a way to compute our method efficiently with some kernels. Section 4 reports
on an empirical evaluation of the proposed approach. After that we give the
concluding remarks of this work.

2 Classifier Selection Using Samples of Training
Examples

The basic idea of MMDSel is to compare a kind of a fingerprint of the training
distribution of a classifier with the one of the input distribution. One could, of
course, use the classifier itself as a fingerprint. That is, we could train a new
classifier for the input examples (x) and search for the nearest one in the set H.
If the classifiers have an explicit weight vector that includes all the information
about the classifier, we can simply search for the most similar weight from the
pool. Support vector machines (SVMs) with a linear kernel are an example
of such classifiers. With the trivial search the best classifier can be found in
O(m+ f(n)) time and O(m+ n) space. Here the function f(n) is the average
time consumption of classifier learning a set of n elements. Nearest neighbor
methods [14,15,16] could be used to reduce the time requirement. This method,
though, is only usable for certain classifiers and only in the supervised setting.
Also, in our experiments the method appeared quite unreliable.

Instead, MMDSel rather stores a sample of the training set of each classifier.
The sample is in fact a fingerprint of the training distribution. If the input
sequence (x) is drawn from the same (or a very similar) distribution, we should
choose the classifier trained for it — most likely it is the most suitable one. To



be exact, let the set S = {s1, s2, . . . , sm} contain the training samples of size t
for the m classifiers in H. If we select the sample that is most similar with the
sequence (x) of length n, we should be able to find the classifier that best fits
the current input without executing any of the classifiers.

The methods that compare distribution similarity via samples are called two-
sample tests. For example, a two-sample test based on maximum mean discrep-
ancy (MMD) proposed by Gretton et al. [17,18] and Smola et al. [19] uses
O
(
(t+ n)2

)
time and O(t+ n) space. On the other hand, Borgwardt et al. [20]

propose computing MMD in linear O(t+ n) time by randomized approximation.
However, by our experiments, this leads to a significant reduction of accuracy.

MMD has previously been used for a somewhat similar application by Huang
et al. [21]. They use MMD values to solve the sample selection bias problem
where the test distribution differs from the training distribution.

There are several additional minor advantages in the two-sample approach
adopted in MMDSel. Firstly, due to statistical insignificance of the labels, mis-
labeled examples have only a minor impact on the result. Also, in some cases
this measure for the suitability of the classifier may be more appropriate than
the error rate of classifiers used in the traditional solution [8].

2.1 Comparing Distributions with MMD

Let us now briefly introduce MMDSel and the measure MMD for executing it.
The measure was originally designed for two-sample tests in which the problem
is to find out whether two given samples come from different distributions. For-
mally we are given two samples X and Y drawn i.i.d. from distributions D1 and
D2, respectively, and we want to know whether D1 6= D2. In our application it
would be useful to know also the “distance” or dissimilarity d(D1, D2) between
the distributions because the distribution may have changed only slightly.

In fact, MMD is a measure of dissimilarity — or more specifically, discrep-
ancy — between the distributions. It is essentially the maximum difference be-
tween the mean of test function values on the distributions. Thus, informally, if
the MMD between two samples is near zero the distributions are very similar.
With the computed MMD value there are multiple methods to decide if we have
enough evidence to reject the null hypothesis D1 = D2 or not [17]. Because we
are only interested in rating the alternatives due to their similarity, the measure
for the discrepancy itself is enough for our needs.

Formally MMD is defined by Gretton et al. [17] as follows.

Definition 1 Let F be a class of test functions f : X → IR and let D1 and D2

be distributions defined on the domain X . Then the maximum mean discrepancy
is

MMD[F , D1, D2] := sup
f∈F

(Ex∼D1 [f(x)]−Ey∼D2 [f(y)]) .

We select F to be a reproducing kernel Hilbert space (RKHS) with an as-
sociated kernel k. The kernel selection lets us control which properties of dis-
tributions are emphasized. Thus, we should choose the kernel according to the



features in which we have an interest. Gretton et al. [17] also proved that, in
compact domains X , with so-called universal kernels [22] MMD attains zero
value if and only if D1 equals D2. In practice this means that, given that the
samples are large enough, two different distributions can be separated with a
universal kernel family. Steinwart [22] proved that, e.g., Gaussian and Laplacian
kernels are universal. Even if we are not interested in the two-sample test itself,
these kernels could be useful in some situations.

Gretton et al. [17] devised an easier way to calculate MMD owing to the
fact that in RKHS the function f can be evaluated by the inner product f(x) =
〈k(x, ·), f〉. Hence, let x and x′ be independent random variables with distribu-
tion D1 and, similarly, y, y′ ∼ D2. The square of MMD behaves identically as a
measure for discrepancy. For it a more useful form can be derived [17]:

MMD2[F , D1, D2] = Ex,x′∼D1 [k(x,x′)]− 2Ex∼D1,y∼D2 [k(x,y)]
+ Ey,y′∼D2 [k(y,y′)] .

(1)

In practice we are dealing with samples X and Y drawn i.i.d. from D1 and
D2, respectively. Let (z1, ...,zn) be i.i.d. random variables, where zi = (xi,yi)
and xi ∈ X,yi ∈ Y . Gretton et al. [17] proved that an unbiased empirical
estimate for MMD squared is

MMD2[F , X, Y ] =
1

n(n− 1)

n∑
i 6=j

h(zi, zj) , (2)

where h(zi, zj) = k(xi,xj) + k(yi,yj)− k(xi,yj)− k(xj ,yi). Using this we can
easily compute the MMD value.

Gretton et al. [17] also gave a biased estimate that can be computed under
some restrictions1 for the kernel function as

MMD2[F , X, Y ] =
1
n2

n∑
i,j=1

k(xi,xj)− 2
nt

n,t∑
i,j=1

k(xi,yj)

+
1
t2

t∑
i,j=1

k(yi,yj) ,

(3)

where n and t are the sizes of samples X and Y . The estimate is biased, but there
is an upper bound for the bias [17]. In our experiments we found this estimate
to be slightly more accurate.

To execute MMDSel and rank the classifiers in a pool of size m we have to
compute MMD for m pairs of samples. This results in the dissimilarity of each
classifier with the current input distribution. In other words we have ranked the
classifiers by their suitability for the current input. Thus we can easily either
weight the classifiers according to the rank or choose the most suitable one.

1 It is enough that for two i.i.d. random variables x, x′ ∼ D: Ex,x′∼D[k(x, x′)] < ∞
[17].



Because computing MMD for each sample pair takes O
(
(t+ n)2

)
time,

MMDSel can be executed in time O
(
m(t+ n)2

)
and space O(mt+ n). How-

ever, below we show that for some kernels the evaluation can be done much more
efficiently.

3 Computing MMD Efficiently

We now discuss some ways to improve the efficiency of MMDSel. As mentioned
the choice of a kernel affects the value of MMD. Thus, we should choose the
kernel that is able to track the essential attributes of distributions — i.e., those
that determine the similarity. For example, with a linear kernel MMD clearly
indicates the difference between expected values.

3.1 Polynomial kernels

For often-used polynomial kernels (1) can be simplified significantly. This leads
to efficient computation of MMDSel.

The main idea of the optimization is the following. For example, for a sym-
metric and linear (e.g., Euclidean inner product in IR) kernel (1) can be computed
by

MMD2[F , D1, D2] = k(Ex∼D1 [x],Ex∼D1 [x])− 2 k(Ex∼D1 [x],Ey∼D2 [y])
+ k(Ey∼D2 [y],Ey∼D2 [y]) .

(4)

Hence, we do not need to store the sample for each classifier explicitly. It suffices
to store the expected values. Moreover, it is enough to compute the expected
value of input examples only once during the test. The time and space require-
ment for these preparations is clearly O(mtd) for d dimensional data. On the
other hand, during the actual selection process only a constant amount of inner
products are calculated, yielding a time requirement of O((m+ n)d).

The optimization can be generalized to all the polynomial kernels (〈·, ·〉+ c)p

of a finite integer degree p, where c ≥ 0 is a constant. Using the technique
introduced by Raykar et al. [23] polynomial kernels can be calculated in

rpd =
(
p+ d

d

)
time and space. Hence, MMDSel can be executed in O((m+ n)rpd) time and
space with O(mtrpd) time and space preparation. With the natural assumption
that p� d, the value rpd can be upper bounded by O(dp).

Compared to the brute force solution inO
(
md(t+ n)2

)
time andO(d(mt+ n))

space, the optimized MMDSel is useful for low values of p (e.g., quadratic or
linear kernel) and for very large values of t or n.



3.2 Gaussian kernels

Simple polynomial kernels may not be enough for our needs. Steinwart [22]
defined kernel classes to be universal if they are dense on compact domains.
These kernels can approximate any other kernel if the sample sizes are increased
enough. If we want to use a universal kernel, e.g., a Gaussian one, a similar
optimization method can be used to approximate them.

Yang et al. [24] and Raykar et al. [23] present an improved fast Gaussian
transformation (IFGT). Their approach is based on calculating only the first
terms of the Taylor series representation of Gaussian kernel. In our case the
basic idea of IFGT is to approximate the Gauss transform at a chosen point y∗

G (xj) =
t∑

i=1

exp
(
−‖xj − yi‖

2
/σ2
)

=
t∑

i=1

exp
(
−‖yi − y∗‖

2
/σ2
)

exp
(
−‖xj − y∗‖

2
/σ2
)

· exp
(
2 〈xj − y∗,yi − y∗〉 /σ2

)
.

(5)

However to gain accuracy they cluster the space and replace the vector y∗ with
the centers of these clusters.

With IFGT the Gaussian kernel can be approximated in

O
(
nk′r(p′−1)d + nk

)
time with

O
(
t log k + tr(p′−1)d

)
time preparation. Here k < t is the number of clusters in the example space
and k′ < k the maximum number of neighbor clusters and p′ the number of
Taylor series terms to be computed. Both the p′ and k′ depend on the desired
error bound ε > 0 and k′ also depends on Gaussian kernel bandwidth. The space
usage is O

(
kr(p′−1)d + t+ n

)
. Recall that rpd = O(dp).

The procedure is interesting in our application, because if we cluster the
whole instance space at once, we can reduce the running time significantly. If
the values corresponding to y∗ in (5) are same for every classifier on the pool
H we have to compute the terms including yj in equation only once during the
computation of MMDSel.

Hence, when computing (1) we can calculate the term Ey,y′∼D2 [k(y,y′)]
completely for all the samples in S beforehand in the preparation phase. When
Ex∼D1,y∼D2 [k(x,y)] is expressed using (5) this is also the case for parts including
y. Thus the preparation phase takes

O
(
mt
(

log k + dp′
))

time.



Table 1. Summary of asymptotic time and space requirement of MMDSel.

Online Preparation
Kernel Time Space Time Space

Linear O((m + n)d) O((m + n)d) O(mtd) O(mtd)
Integer polynomial O((m + n)dp) O((m + n)dp) O(mtdp) O(m(td + dp))

Gaussian (IFGT) O
(

(m + nk) dp′
)

O
(
mndp′

)
O

(
mt

(
log k + dp′

))
O

(
mtdp′

)
General O

(
md(t + n)2

)
O(d(mt + n)) — —

General randomized O(md(t + n)) O(d(mt + n)) — —

Traditional method mnd nd — —

Finally in the online phase we compute the term Ex,x′∼D1 [k(x,x′)] and the
rest of the term Ex∼D1,y∼D2 [k(x,y)]. This takes time

O
(

(m+ nk′) dp′
+ nk

)
.

For Gaussian kernels there are also other optimization approaches. For ex-
ample Lee, Gray and Moore [25] give an approach based on space partitioning
trees. Also Herbster [26] presents a simple way to compute additive Gaussian
kernels even more efficiently.

A summary of the asymptotic time and space requirement of MMDSel
in different settings is presented in Table 1. The randomized general version
of MMDSel is based on the randomized linear time computation of MMD
proposed by Borgwardt et al. [20].

4 Empirical Evaluation

Let us now evaluate MMDSel experimentally. As a reference approach we use
the traditional solution of executing each classifier on the input and selecting
the most accurate one. The accuracy of a classifier is computed by counting how
many times it predicts the right label given by the data set. The experiments
are executed on domains of the UCI machine learning repository and MNIST
datasets. MNIST consists of images of handwritten digits from 0 to 9. From the
UCI repository we choose the classification datasets with the greatest number
of different class labels.

For every dataset with l different labels we create all the
(

l
2

)
different binary

classification tasks. The labels for each task are changed to ±1 and a SVM
classifier is trained for each task. A sample of size 20% from each of the training
sets for MMDSel is stored.

The test examples are divided similarly and for each test the best classifier
is chosen. Hence, for each test set there is exactly one trained classifier with the
same training distribution. We report how many times different methods select
this one correct classifier. The test set size is 20% of the training set size.



Table 2. Accuracy of different methods after at least 1 000 test tasks.

Data set SVM Classification MMDSel
Name Labels Dimension Gaussian Linear Gaussian Linear

mnist 10 784 4.3 95.4 100.0 100.0

abalone 14 8 5.8 8.3 18.2 10.1

ecoli 5 7 11.3 56.3 78.9 75.0

glass 5 9 38.5 39.5 46.2 36.3

letter 26 16 77.5 84.2 100.0 97.6

vowel-context 10 12 38.4 51.4 21.6 18.8

krkopt 18 6 26.8 25.6 32.9 28.0

led with 10% noise 10 7 32.9 51.0 93.1 87.3

mfeat 10 649 9.8 64.6 91.1 74.1

pendigits 10 16 28.0 76.9 100.0 100.0

Mean — — 27.3 55.3 68.2 62.7

In UCI datasets some labels are removed due to small number of examples.
Also some textual values are changed to numerical ones. In addition all the
datasets are randomly permuted. Due to efficiency the size of training set is
restricted to 1 000 instances.

We have implemented the introduced methods in Matlab with both linear
and Gaussian kernel. The kernel width for Gaussian kernels is chosen with the
rule-of-thumb

σ =
√

median distance between points/2 .

In the experiments MMDSel chooses the classifier with the smallest distribution
discrepancy, regardless of the value. For MMD computation [17] we use the
biased estimate of (3), because it is slightly more accurate than the unbiased
one of (2). The reported MMDSel versions are tried for unlabeled data because
removing labels does not affect the accuracy.

The accuracy of the methods in at least 1 000 separate tasks are reported in
Table 2. Each task results in either a right or a wrong answer for a method.

In the overall performance MMDSel prevails. In nearly all of the data sets
MMDSel with a Gaussian kernel seems to take the lead with the linear kernel
version being slightly worse. However, with the traditional SVM classification
the linear kernel version surpasses the Gaussian one.

There are, however, some interesting exceptions. The vowel data set includes
features of English pronounced vowels. The traditional method is better on this.
The glass data set contains the chemical composition of different glass types.
The traditional method overtakes linear MMDSel version also on this set.

It is worth noting that the setting is quite unfavorable for the classification
approach. The behavior of a classifier depends essentially on the hyperplane
that is computed to separate training classes. Thus, in the testing phase we
are searching for the classifier with a hyperplane separating the test classes.
However, because of the test setting there could be multiple hyperplanes that



give similar classification for the test set. Hence, many hypotheses would gain
good classification accuracy. This could be partial explanation for the worse
performance of the classification method. However, in reality the classification
accuracies in our experiments seem to be quite diverse. Usually alone the chosen
classifier has the best accuracy.

Gaussian kernel SVM performed surprisingly poorly in these evaluations. For
example with the ecoli data set the result is only slightly better than a random
guess. This is also emphasized with high dimensional data. A natural reason for
this is the ’curse of dimensionality’ that affects the Gaussian kernel [27]. This
appears because of the small number of training examples compared to their
dimension. Interestingly MMDSel does not seem to be affected by this. Maybe
this is because MMDSel tracks down the underlying distribution instead of
single points.

However, in additional experiments optimizing the Gaussian kernel width
seemed to improve the SVM performance somewhat. Nevertheless, it did not
reach the performance of linear SVM version on the high dimensional data sets.
For example with ecoli data set the Gaussian SVM attained 44.0% accuracy
with a smaller kernel width.

In summary, MMDSel would appear to offer a viable alternative to the tra-
ditional method. Only a small stored sample of the training distribution suffices
to let us choose the correct classifier with high probability without even knowing
the class labels of instances.

5 Conclusions

In this paper we introduced a method of ranking a pool of classifiers by their
suitability for the current input. The MMDSel method is based on the similar-
ities of classifier training distributions and the current input distribution. Thus,
it is suitable for unsupervised learning. This advantage is, to the best of our
knowledge, rare in previous work. Also, classification algorithm outputs are not
used and thus the type of algorithms is entirely unlimited. Moreover, the pool
may consist of different types of algorithms. We also showed that the test can
be computed asymptotically efficiently with some optimization methods.

In our empirical evaluation the MMDSel with both linear and Gaussian
kernels seems to be accurate enough to be a viable alternative for solving the
given problem at least on some data.

There are some interesting open questions: Why the curse of dimensionality
does not seem to affect MMDSel on Gaussian kernel as seen in our experiments?
Also, surely different well-founded methods in addition to MMD for finding
distribution similarities are possible.

Acknowledgments

This work was supported by Academy of Finland project “ALEA: Approxima-
tion and Learning Algorithms.” Moreover, the work of T. Aho is financially



supported by Tampere Graduate School in Information Science and Engineering
(TISE) and the work of T. Elomaa by Academy of Finland project “Machine
Learning and Online Data Structures”.

References

1. Zhu, X., Wu, X., Yang, Y.: Effective classification of noisy data streams with
attribute-oriented dynamic classifier selection. Knowledge and Information Sys-
tems 9(3) (2006) 339–363

2. Klinkenberg, R.: Learning drifting concepts: Example selection vs. example weight-
ing. Intelligent Data Analysis 8(3) (2004) 281–300

3. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection. In
Bazzan, A.L.C., Labidi, S., eds.: Advances in Artificial Intelligence — SBIA 2004,
17th Brazilian Symposium on Artificial Intelligence. Volume 3171 of Lecture Notes
in Computer Science., Berlin, Heidelberg, Springer (2004) 286–295

4. Merz, C.J.: Dynamical selection of learning algorithms. In Fisher, D., Lenz, H.J.,
eds.: Learning from Data: Artificial Intelligence and Statistics. Volume 112 of Lec-
ture Notes in Statistics. Springer, Berlin, Heidelberg (1996) 281–290

5. Ko, A.H., Sabourin, R., Britto, Jr., A.S.: From dynamic classifier selection to
dynamic ensemble selection. Pattern Recognition 41(5) (2008) 1735–1748

6. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for
drifting concepts. Journal of Machine Learning Research 8 (2007) 2755–2790

7. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using
ensemble classifiers. In Getoor, L., Senator, T.E., Domingos, P., Faloutsos, C., eds.:
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, New York, NY, ACM Press (2003) 226–235

8. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Applied
Soft Computing 6(2) (2006) 119–138

9. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation 1(1) (1997) 67–82

10. Watanabe, O.: Sequential sampling techniques for algorithmic learning theory.
Theoretical Computer Science 348(1) (2005) 3–14

11. Wu, X., Chu, C.H., Wang, Y., Liu, F., Yue, D.: Privacy preserving data mining
research: Current status and key issues. In Shi, Y., van Albada, G.D., Dongarra, J.,
Sloot, P.M.A., eds.: Computational Science — ICCS 2007, 7th International Con-
ference. Volume 4489 of Lecture Notes on Computer Science., Berlin, Heidelberg,
Springer (2007) 762–772

12. Janssen, F., Fürnkranz, J.: On meta-learning rule learning heuristics. In: Proceed-
ings of the Seventh IEEE International Conference on Data Mining, Los Alamitos,
CA, IEEE Computer Society (2007) 529–534

13. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., War-
muth, M.K.: How to use expert advice. Journal of the ACM 44(3) (1997) 427–485

14. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, Los Alamitos, CA, IEEE Computer Society
(2006) 459–468

15. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, New
York, NY, ACM Press (2002) 380–388



16. Chan, T.M.: Closest-point problems simplified on the RAM. In: Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia,
PA, SIAM (2002) 472–473

17. Gretton, A., Borgwardt, K.M., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel
method for the two-sample-problem. In Schölkopf, B., Platt, J.C., Hoffman, T.,
eds.: Advances in Neural Information Processing Systems. Volume 19., Cambridge,
MA, MIT Press (2007) 513–520

18. Gretton, A., Borgwardt, K.M., Rasch, M., Schölkopf, B., Smola, A.J.: A kernel
approach to comparing distributions. In: Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, Menlo Park, CA, AAAI Press (2007) 1637–
1641

19. Smola, A.J., Gretton, A., Song, L., Schölkopf, B.: A Hilbert space embedding
for distributions. In Hutter, M., Servedio, R.A., Takimoto, E., eds.: Algorithmic
Learning Theory, 18th International Conference, ALT 2007. Volume 4754 of Lec-
ture Notes in Computer Science., Berlin, Heidelberg, Springer (2007) 13–31

20. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Schölkopf, B., Smola,
A.J.: Integrating structured biological data by Kernel Maximum Mean Discrep-
ancy. Bioinformatics 22(14) (2006) 49–57

21. Huang, J., Smola, A.J., Gretton, A., Borgwardt, K.M., Schölkopf, B.: Correcting
sample selection bias by unlabeled data. In Schölkopf, B., Platt, J.C., Hoffman, T.,
eds.: Advances in Neural Information Processing Systems. Volume 19., Cambridge,
MA, MIT Press (2007) 601–608

22. Steinwart, I.: On the influence of the kernel on the consistency of support vector
machines. Journal of Machine Learning Research 2 (2001) 67–93

23. Raykar, V.C., Duraiswami, R.: The improved fast Gauss transform with applica-
tions to machine learning. In Bottou, L., Chapelle, O., DeCoste, D., Weston, J.,
eds.: Large-Scale Kernel Machines. MIT Press, Cambridge, MA (2007) 175–201

24. Yang, C., Duraiswami, R., Davis, L.S.: Efficient kernel machines using the improved
fast Gauss transform. In Saul, L.K., Weiss, Y., Bottou, L., eds.: Advances in Neural
Information Processing Systems. Volume 17., Cambridge, MA, MIT Press (2004)
1561–1568

25. Lee, D., Gray, A.G., Moore, A.W.: Dual-tree fast gauss transforms. In Weiss, Y.,
Schölkopf, B., Platt, J., eds.: Advances in Neural Information Processing Systems.
Volume 18., Cambridge, MA, MIT Press (2006) 747–754

26. Herbster, M.: Learning additive models online with fast evaluating kernels. In
Helmbold, D.P., Williamson, B., eds.: Computational Learning Theory, 14th An-
nual Conference, COLT 2001. Volume 2111 of Lecture Notes in Computer Science.,
Berlin, Heidelberg, Springer (2001) 444–460

27. Bengio, Y., LeCun, Y.: Scaling learning algorithms towards AI. In Bottou, L.,
Chapelle, O., DeCoste, D., Weston, J., eds.: Large-Scale Kernel Machines. MIT
Press, Cambridge, MA (2007) 321–388


