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Abstract:  We show that nonlinear optical signals generated by non-phase-
matched interactions are strongly suppressed when the interaction volume is 
finite and localized deep inside the bulk of a homogeneous material, as 
opposed to the case where the interaction volume extends across a boundary 
of the material.  The suppression in the bulk originates from destructive 
interference between the signals generated in the two regions where the 
interaction is gradually turned on and off and depends on the ratio of the 
coherence length to the characteristic length of the interaction volume. 
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1. Introduction 

Second-order nonlinear optical processes have applications in frequency conversion of light 
[1], optical signal processing [2], and in the characterization of surfaces and thin films [3]. 
Two fundamental issues are associated with such processes. First, second-order processes are 
only allowed in noncentrosymmetric materials [1]. Therefore, anisotropic materials with polar 
order are usually needed to take advantage of the processes. Second, the interaction needs to 
be phase-matched, i.e., a phase relation between the interacting fields needs to be maintained 
through the length of the nonlinear material [1]. 

The centrosymmetry rule is strictly valid within the electric-dipole approximation of the 
light-matter interaction [1]. Nonlinear processes involving higher multipole (in particular, 
magnetic-dipole and electric-quadrupole) interactions, on the other hand, are allowed also in 
centrosymmetric materials. This is of particular interest as such effects give rise to a second-
order response also in materials with high macroscopic symmetry, including isotropic 
materials with no polar order. 

Isotropic materials can also give rise to an electric-dipole-allowed second-order response 
if the material is chiral [4-9]. In such materials, however, only sum- and difference-frequency 
generation is allowed, whereas second-harmonic generation is forbidden. While early reports 
on these effects [5,6] stated that they are easily observable, more recent reports suggest that 
they are observable only under favorable near-resonant conditions [7-9]. The conflicting 
results lead to a discrepancy of several orders of magnitude regarding the nonlinearity of the 
material. 

A common feature of the electric-dipole-allowed and the higher-multipolar second-order 
response of isotropic materials is that they can only be accessed using two noncollinear input 
beams and proper polarization combinations [3,4]. The use of noncollinear input beams has 
two important consequences. First, the interaction has a very large phase mismatch even in an 
ideal nondispersive medium, which makes phase matching extremely difficult to achieve in 
real materials [1]. Second, the interaction volume will in practice be limited by the overlap of 
beams of finite transverse size. 

In this paper, we show that phase mismatch leads to a strong suppression of the generated 
nonlinear signals when the interaction volume is finite and localized deep in the bulk of the 
nonlinear material. On the contrary, localization near the boundary of the material is more 
favorable. Compared to the signal intensity obtained near the boundary, the suppression of the 

signal deep in the bulk is on the order of ( )2
cl L , where cl  is the coherence length of the 

nonlinear interaction and L  is the length of the interaction volume. We emphasize that the 
effect is not related to the surface nonlinearity of the material. Even in the proximity of the 
boundary, the nonlinear response originates from the bulk and the differences arise from 
phase matching considerations. 

2. Theoretical description 

To describe the effect, we consider the situation where two noncollinear input beams at 
frequencies 1ω  and 2ω  (same or different) are applied on a material with a second-order 

nonlinear response and occupying the region 0 z d≤ ≤  (Fig. 1). The fundamental beams are 
of finite transverse size but otherwise collimated and plane-wave-like with wave vectors 1k  

and 2k . The nonlinear response to the input beams gives rise to a nonlinear polarization at 

frequency 3 1 2ω ω ω= + , which acts as a source for the generation of a new beam at 3ω  with 
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wave vector 3k . The interaction is then characterized by the phase mismatch 

1 2 3Δ ≡ + −k k k k  [1], which we take to be along the z direction ( ˆ kΔ = Δk z ). 
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Fig. 1. Schematic diagram of noncollinear three-wave mixing. Two plane-wave-like input 
beams of finite transverse size intersect in a nonlinear medium occupying the region 0 z d≤ ≤ . 

The function ( )g z  describes the variation in the strength of the source polarization due to the 

overlap of the input beams. ( )g z  is expected to be a smooth, real function that grows from 

zero to the maximum and then decreases back to zero over the interval a z b< < . 

 
The generated field amplitude at 3ω  can be calculated by inserting the source polarization 

into the nonlinear wave equation and integrating over space. For infinite plane waves and 
undepleted input beams, the amplitude exiting the nonlinear medium is proportional to the 
integral [1] 

 ( )
0

1
1

d
i kz i kde dz e

i k
Δ Δ= −

Δ∫ . (1) 

This leads to the familiar oscillating behavior (Maker fringes) of the field amplitude as a 
function of d, with the coherence length cl kπ= Δ . 

In the present case of intersecting beams of finite size, however, the source polarization 
needs to be weighed by a function ( )g z , which describes the overlap of the input beams. 

( )g z  need not be specified in detail but is expected to be a smooth, real function, which 
grows from zero to the maximum value of unity and then decreases back to zero over the 
interval a z b< <  (Fig. 1). In several practical situations, the extent L b a= −  of the overlap 
region is much larger than the coherence length cl . The field amplitude exiting the nonlinear 
medium is then proportional to the integral 

 
00 0

1 1
( ) ( ) '( )

d dd
i kz i kz i kzg z e dz g z e g z e dz

i k i k
Δ Δ Δ= −

Δ Δ∫ ∫ , (2) 

where partial integration has been used. The properties of the weighing function ( )g z  imply 

that its derivative '( )g z  is also a smooth function with a maximum value on the order of 

'( ) 1g z L≈ . The second term in Eq. (2) can then be approximated as 
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which is weaker than the first term in Eq. (2) by a factor on the order of cl L . The second 
term can therefore be neglected unless the first term vanishes. 

The first term in Eq. (2) depends on where the beam overlap is localized with respect to 
the nonlinear material. We first consider the case where the overlap region is large compared 
to the length of the material (a << 0 and b >> d). The function ( )g z  can then be taken as 
constant across the material, and the generated field amplitude becomes proportional to 

 ( )1
(0) 1i kdg e

i k
Δ −

Δ
, (4) 

which again leads to Maker fringes as in Eq. (1). 
We next localize the overlap near a boundary of the nonlinear medium, i.e., we take 
0a < , 0 b d< <  (front surface) or 0 a d< < , b d>  (back surface). As ( ) 0g d =  in the first 

case and (0) 0g =  in the second, the generated field amplitudes become proportional to, 
respectively, 

 
1

(0)g
i k

−
Δ

    and    
1

( ) i kdg d e
i k

Δ
Δ

, (5) 

Two interesting observations can be made from Eqs. (5). First, the amplitude is proportional 
to the value of the overlap function at the boundary. In other words, when the overlap is 
translated across the boundary, the amplitude reproduces the shape of the function ( )g z . The 
maximum amplitude is obtained when the beam overlap is centered at the boundary, and 
corresponds to half of the Maker-fringe maximum of Eq. (4). Second, not only the magnitude, 
but also the phase of the generated amplitude is determined by the position of the boundary. 
This corroborates the idea that the signal from the bulk of a well characterized material can be 
used to determine the phase of the signal from its surface or from a thin film deposited on it 
[10]. 

We finally consider the situation where the input beams overlap deep inside the bulk of the 
nonlinear material ( 0a >  and b d< ). In this case, (0) ( ) 0g g d= =  and the first term in Eq. 
(2) vanishes identically. Since only the second term in the equation survives, the generated 
field amplitude is suppressed by a factor on the order of cl L  as compared to the signal 
obtained when the beams overlap at the boundary. 

3. Experimental results and discussion 

In our experiments, a Q-switched Nd:YAG laser (1064 nm, up to 20 mJ, 10 ns, 30 Hz) was 
used as a source for two-beam second-harmonic generation [11]. The laser output was split 
into two beams of nearly the same intensity. A weak lens (f = 50 cm) was placed before the 
beam splitter. The spot size of the beams at the sample was approximately 0.5 mm and their 
confocal range was on the order of 50 cm, which is much larger than the extent of the overlap 
region and the thickness of any of the samples studied. The input beams were therefore plane-
wave-like except for their transverse profiles. Second-harmonic light generated by the sample 
was detected in the transmitted direction by a photomultiplier tube. 

We first investigated a 12 mm thick glass (BK7) plate, whose bulk response is electric-
dipole-forbidden and arises from the higher multipole contributions to the second-order 
nonlinear response [12-15]. The incident angles of the fundamental beams were 35° and 50°. 
One beam was polarized in the plane of incidence (p-polarized) and the other perpendicular to 
it (s-polarized), as the bulk contribution is best accessed in this configuration [12-15]. The 
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extent of the overlap region and the coherence length were estimated to be, respectively, L ≈  
5 mm and cl ≈  20 μm. The second-harmonic signal was recorded when the glass plate was 
translated through the overlap of the fundamental beams (Fig. 2). One can clearly observe that 
the highest signal is obtained when the center of the beam overlap is localized near the front 
or the back surface of the sample. 
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Fig. 2. Second-harmonic (SHG) signal obtained by translating the overlap of the input beams 
across a 12 mm thick glass plate (BK7). The signal is strongly suppressed when the beams 
overlap deep in the bulk of the material. The surfaces appear to be closer than the physical 
thickness of the sample because of refraction. 

 
We realize that the results of Fig. 2 could be interpreted as a proof of surface origin of the 

nonlinearity. The interpretation is tempting because the bulk response of glass is electric-
dipole-forbidden and therefore relatively weak. However, we [12,13] and others [14,15] have 
recently shown that polarization analysis allows the bulk and surface contributions to be 
addressed separately. Such measurements reveal that our signal arises almost entirely from the 
bulk [12,13]. One could also argue that the results are due to different propagation directions 
of the signals generated deep in the bulk and near the surface. When the nonlinear response is 
localized in the bulk, the wave vector of the generated field 3k  is expected to be parallel to 

1 2+k k . When the interaction volume extends across a boundary of the material, however, 

the generated field propagates along a direction which can slightly deviate from 1 2+k k  [16]. 
Although the change is small (0.3° in our geometry) and within the acceptance angle of the 
detector, we scanned the detector to make sure that the signal is truly suppressed in the bulk. 

To further exclude these alternative explanations and to highlight the universal character 
of the effect, we repeated the experiment using several nonlinear crystals (quartz, KTP, 
DKDP) with an electric-dipole-allowed response. Although the interaction had a relatively 
strong phase mismatch, the overall signal from the crystals was orders of magnitude larger 
than that from glass, and therefore clearly of bulk origin. Furthermore, the input beams were 
applied symmetrically on the crystals (incident angles of +10° and -10°) so that the second-
harmonic signal always propagates along the surface normal [16]. All measurements 
confirmed our theoretical predictions. The results obtained, for example, with a 16.4 mm thick 
DKDP crystal and orthogonally polarized input beams are shown in Fig. 3. 
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Fig. 3. Second-harmonic (SHG) signal obtained by translating the overlap of the input beams 
across a 16.4 mm thick nonlinear crystal (DKDP). The strongest signal is obtained near the 
crystal surfaces, whereas practically no signal is detected from the bulk of the crystal. 

 
To get more physical insight to the results, we consider the contributions of successive 

polarization sheets to the nonlinear signal (Fig. 4). Perfect phase matching would imply that 
all contributions are in phase leading to linear growth of the signal amplitude over the 
interaction length. On the other hand, phase mismatch leads to infinitesimal phase differences 
between successive polarization sheets. If the contribution from every sheet is of equal 
strength, the resulting field amplitude describes a circle on the complex plane and returns to 
the origin after two coherence lengths (Maker fringes). When the interaction is gradually 
turned on, however, the circle must be replaced by an expanding spiral centered at the origin. 
The spiral reaches its maximum size at the center of the overlap region (where the amplitude 
is exactly half of the Maker-fringe maximum) and starts contracting after that. As the 
beginning phase of the contracting spiral is determined by the final phase of the expanding 
spiral, the contracting spiral converges back to origin giving rise to no net signal from the 
whole interaction volume. In other words, the signals from the two halves of the interaction 
volume interfere destructively producing essentially no net signal. 
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Fig. 4. Nonlinear optical signal arising from a non-phase-matched interaction acting over a 
finite volume. Phase mismatch leads to infinitesimal phase differences between successive 
polarization sheets. As the interaction is gradually turned on, the resulting amplitude (A) 
describes an expanding spiral centered at the origin. The spiral contracts back to the origin 
when the interaction is gradually turned off. The field amplitudes (arrows) resulting from the 
two halves of the interaction volume are seen to interfere destructively producing essentially no 
net signal. 

 
We note that the effect described here has some similarities with harmonic generation by 

focused beams [1]. It is well known that even a single, tightly focused Gaussian beam cannot 
give rise to harmonic signals in bulk materials in case of negative phase mismatch (as 
typically occurs in materials with normal dispersion). The effect is related to the additional 
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(Gouy) phase shifts that Gaussian beams experience in passing through the focus and arises 
only when the confocal range of the beams is much shorter than the length of the nonlinear 
medium. In contrast, the effect described here also applies for the case of nearly collimated 
beams and does not depend on the sign of the phase mismatch. We also note that results 
similar to ours have been recently observed by others with two-beam second-harmonic 
generation [15]. 

We believe that our results have broad implications in several subfields of nonlinear 
optics. It is often difficult to separate the surface and bulk contributions to the nonlinear 
signals [17-20]. To isolate the bulk contribution, it would make sense to localize the 
interaction deep in the bulk to avoid any surface contribution. However, the present results 
show that even the bulk contribution is then suppressed because of phase matching issues. 
Conversely, when measuring the nonlinear response of a surface or an interface one needs to 
be especially concerned about the influence of bulk contributions, as these are maximized 
precisely in such geometry. Therefore, our results emphasize the importance of detailed 
polarization measurements in establishing the origin of the nonlinear signal [12-15]. 

As already mentioned, the early results regarding the strength of the electric-dipole-
allowed sum-frequency generation in chiral materials [5,6] have recently been challenged [7-
9]. Our results show that the measured signals can vary by several orders of magnitude 
depending on the experimental geometry and on whether the interaction is localized near the 
surface or deep in the bulk of the material. The various results should therefore be compared 
with due care and considering the details of the experimental geometry, which are not 
available from all the published work. 

4. Conclusions 

We have shown that nonlinear optical signals generated by non-phase-matched interactions 
are strongly suppressed when the interaction volume is finite and localized deep inside the 
bulk of a homogeneous material. Even when the nonlinear response has bulk origin, the 
strongest signals are obtained when the interaction is localized near the surface of the 
nonlinear medium. The effect is not limited to second-order nonlinear processes but applies to 
all phase-mismatched processes where the strength of the interaction is turned on and off 
gradually. This includes, e.g., processes that are driven by noncollinear input beams of finite 
transverse size or processes occurring in materials whose nonlinearity grows from zero to a 
maximum value and then decreases back to zero over distances that are much larger than the 
coherence length. Due to its universal character, the effect has broad implications in nonlinear 
optics and could explain contradictory results regarding nonlinear optical response of chiral 
liquids. 
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