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Abstract. Creation of virtual machine laboratories – simulated planning and 
learning  environments  demonstrating  function  and  structure  of  working 
machines – often involve a lot of manual labor. A notable source of the labor is  
the programming required due to changes in structural and functional models of 
a  system.  As  a  result,  rapid  prototyping  of  a  virtual  machine  laboratory 
becomes difficult, if not impossible. We argue that by using a combination of 
semantic  modeling  and  prototyping  with  a  web-based  system,  more  rapid 
development of virtual machine laboratories can be achieved. In this paper, we 
present  the  design  and  implementation  of  a  semantic,  web-based   virtual 
machine laboratory prototyping environment. Application of the environment to 
a case example is also described and discussed.
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1   Introduction

Virtual  machine  laboratories  (compare  [1])  are  simulated  planning  and  learning 
environments  demonstrating  function  and  structure  of  working  machines.  The 
creation of such environments has traditionally involved a lot of manual labor.  In 
essence, a developer needs to understand how the machine has been designed and 
what kinds of planning information and formats are used. In this task, information 
from  various  design  documents  such  as  CAD  drawings  and  models  need  to  be 
obtained and integrated. Especially in the context of working machines, it is often 
desirable  to  use  mathematical  modeling  based  real-time  simulations  for  added 
interactivity and realistic behavior of the machine, adding a next level of challenge to 
the creation process.

Since these design documents are primarily created for purposes of the machine's 
implementation, they often provide less semantic information than what is required to 
create functional prototypes in the form of virtual machine laboratories. Especially 



semantic  information  connecting  various  design  domains  –  such  hydraulic  and 
mechanical designs – is often informally or implicitly documented, since such pieces 
of information are more rarely needed for purposes of manufacturing.

Another aspect of this problem is that many perspectives of the data required for 
this task are largely missing in the designs. For instance, detailed system parameters 
required  for  simulation  model  generation  are  often  missing.  Similarly,  while  the 
functional model of the system is often implicitly understood by its designers, it may 
not be explicitly documented.  As a consequence, the information required for  the 
virtual  prototypes,  may  need  to  be  manually  re-written  by  a  virtual  machine 
laboratory developer. In the worst case, the developer may need to re-engineer or re-
design  some  parts  of  the  system.  As  such,  this  process  is  potentially  laborious, 
lengthy, rigid as well as prone to errors. 

In  Semogen  research  project  (Phase  I  during  2010-2011),  we  have  taken  an 
alternative approach to the virtual machine laboratory generation in seek of a more 
rapid development model. Since most of the problems could be avoided by making 
sure the design data produced by the primary design activities is complete, we have 
defined a semantic process for tracking data requirements and the related information 
objects  [2].  Instead  of  re-engineering  and  re-designing,  we  have  focused  on 
improving the machine-readability,  i.e.  the semantic quality  of  the primary design 
documents, by using semantic web technologies.

On  a  general  level,  this  approach  is  not  itself  a  novel  idea;  semantic  web 
technologies have readily been applied to other and related domains. For instance in 
neuromedicine, an ontology for semantic web applications has been readily defined 
[3]. Benefits for applying various knowledge representation languages to systems and 
software engineering practices has also been outlined [4]. Very related to our work is 
a recent effort of product modeling using semantic web technologies [5], as well as a 
work towards describing linked datasets with an RDF Schema based vocabulary [6].

Also within our domain of application, the need for rapid prototyping and more 
semantic design data has been also recognized in other ventures. In Simantics project, 
an open cross-domain modeling and simulation platform was implemented [7]. With 
an Eclipse Platform -based infrastructure, various simulation and visualization plug-
ins were integrated together, resulting in a toolkit for ontology based modeling and 
simulation. In an another project, TIKOSU, a data model, workflow and a prototype 
of database-based system was designed [8].

As according to the current machine and virtual laboratory design process, various 
aspects of the system are designed with a multitude of modeling applications and 
formats, both of which are often proprietary. Instead of changing these applications, 
our  semantic  process  provides  a  model  according  to  which  information  objects 
encoded to design documents can be tracked [2].

Our approach to extracting information from the design documents is based on the 
concept  of  adapters.  For  each  individual  modeling  format  and/or  tool,  a  specific 
adapter software is written. This adapter accesses the raw design data and outputs a 
machine-readable presentation of this information. The information is then integrated 
together into a semantic model that comprehensively defines the modeled machine. 
Based  on  this  integrated  semantic  model,  various  aspects  of  the  virtual  machine 
laboratory can then be generated.



Generating a virtual machine laboratory with our reference technology required us 
to  generate application-specific  configuration documents from the semantic model 
[9]. In an ideal case, a virtual machine laboratory generation could be approached as a 
configuration  management  problem.  However,  in  practice  creating  a  functioning 
prototype has  previously  required us  to  make changes to  the  underlying software 
itself.  For  instance,  introducing  a  new  attribute  type  to  a  component  requires 
programming.  As a  result,  even  with perfected  source  data,  the automated virtual 
machine laboratory generation could not be realized in many cases.

In order to support more rapid prototyping, a new environment was designed. The 
fundamental idea was to allow a  developer to generate a more light-weight virtual 
machine laboratory, directly from a semantic model. Technologies were chosen so 
that  they  would  support  easily  adding  new  features  to  the  system  with  no 
programming labor whenever possible.

In  this  article,  we  present  the  design  and  implementation  of  this  light-weight, 
virtual  machine  laboratory  prototyping  environment.  The  article  is  organized  as 
follows:  In  chapter  2,  use  cases  and  user  requirements  for  the  environment  are 
presented. Additionally a case example used during prototype creation is presented. In 
chapter  3  the  design  and  the  implementation  of  our  prototyping  environment  is 
presented. In chapter 4 we present and discuss the results of applying our prototyping 
environment to the case example. Finally, in chapter 5, we conclude our work.

2 Use  Cases,  User Requirements and a Case  Example

2.1 Use Cases and User Requirements

By  definition,  we  consider  virtual  machine  laboratory  (VML) to  be  any 
environment  that can be used to demonstrate a function and structure of a working 
machine. Different kinds of VMLs may be built for different purposes.  Especially 
three use cases have been identified:

• Design support. VMLs to support  designers (hydraulics, mechanics, etc.) 
and collaboration between design areas of the system, by providing a real-
time simulation based functional prototype.

• Educational use. VMLs for  educational  purposes  are  used for  providing 
understanding  of  the  phenomena  and  function  chains  of  mechatronic 
machine  systems.  In  additional,  educational VMLs may need to  consider 
integration to virtual learning environments as well as assignment of various 
learning tasks.

• User  guide.  VMLs  that  provide  interactive  maintenance  and  spare  parts 
guides

While details of the systems may change depending on its use case, they come to 
share many features. Several of our latest VMLs, including a harvester simulator for 
educational purposes have been developed using our M1 technology [9]. As such, we 
consider these prototypes and this technology as our reference and as a source for our 



user requirements. However, regardless of the use case in question, similar features 
are often requested.

Support for rapid prototyping. The ability to make changes to the underlying 
design and quickly apply these changes to the related virtual environment.

Dynamic real-time simulation.  Running real-time simulation of the system (or 
specific part of the system)  in action, including interacting with the model (using 
controls).

Web browser based user interface. Using the system running either locally or 
remotely with a web browser (device independence, effortless launch and use with 
software as a service).

Semantic  search. Locating  resources,  especially  components  based  on  given 
search criteria (for instance: “find components with a specific material” or “find all  
components of a given size range”).

Ability to use data with potentially complex and evolving schemata. Since data 
from multiple design domains needs to be integrated, the underlying schema for a 
VML is potentially very complex. Additionally, since new design domains may be 
introduced,  we  should  be  able  to  handle  some  schema  evolution  with  minimal 
additional work.

Support for dynamic 2D and 3D visualizations. The laboratory should be able to 
represent  designs  as  2-  and  3-dimensional  visualizations.  In  addition,  dynamic 
simulation data is often desired for visualizing function in the designs.

Functional  and integrated views.  Views that  representing how various design 
domains  integrate  together,  for  instance  to  form  a  chain  of  actions,  are  often 
requested.  As  machine  designs  are  potentially  very  complex,  provide  functional 
representations a valuable abstraction.

Measurements.  Ability to measure and analyze both static (size, width, height, 
diameter) and dynamic (position, velocity, pressure) properties of a system and its 
components.  Especially  for  measuring  dynamic  properties,  measurement  tools 
recording history of changes is potentially very useful.

Support for controllers and hardware-in-the-loop. In order to interact with the 
dynamic  system  model,  at  least  some  controller  support  is  required.  Minimally 
controller  devices  can be simulated with a  graphical  interface.  Optionally various 
peripheral  devices  such  as  joysticks  can  be  used  to  emulate  controllers.  For  the 
scenarios requiring genuine hardware, the system should be able to provide support 
for hardware-in-the-loop (with other parts of the system being simulated). 

Simulation controls. While continuously playing real-time simulation is sufficient 
for many uses, it may be useful to be able to control the simulations. For this task, 
simulation controls  including  changing simulation speed as  well  as  recording and 
playing back are potentially useful features.

Our reference technology, M1, already provides many of these features. However, 
it  notably  meets  only  partially  the  following  requirements:  1)  support  for  rapid 
prototyping, 2) semantic search, 3) web browser based user interface (currently only 
partial),  4) ability to use data with potentially complex and evolving schemata, 5) 
support functional and integrated views. Since developing a full-scale alternative to 
our current technology would require a lot work, it would make sense to  aiming at  
creating a prototype specifically addressing these lacking features.



Case Example

In order to create a case example, we received real design information and expertise 
from the industry partners of the Semogen project.

In an attempt to understand and formalize how working machines are designed, we 
have analyzed the design process. As a result of this work, we have defined a model  
and methods for analyzing and designing semantic processes and manipulating design 
information through validation, transformations, and generation applications [10].

As according to this semantic process model, we have identified individual design 
activities  and  information  requirements as  dependencies  between  given  activities. 
Each of the design activities may produce design data using a designing application 
often specific for the given design activity. Design applications may use any  data 
formats as containers for the design information.

In  an  optimal  solution,  these  data  formats  are  based  on  open  and  standard 
specifications for which processing tools are readily available. Especially extensible 
markup language (XML) based formats are therefore favorable. As a second to best 
option, the designing application's export capabilities can be used to export the design 
data. As a last resort, the designing application's application programming interface 
(API) capabilities can be utilized in order to create an export format to capture design 
information.

A subset of the design data and process was chosen as a case example. As a scope 
of  the example,  we chose to  study a single functionality  (“boom lift”) within the  
studied machine. By doing so enabled us to include a heterogeneous and a covering 
sample of various design activities and materials that  potentially are linked by the 
case functionality in the level of design information. A listing of design activities, 
their outputs and designing applications used in the case example are provided in 
table 1.

Table 1. Design activities in the case example.

Activity Output(s) Designing application(s)

Conceptual design Conceptual and requirements design 
documentation.

PDF and Word 
documents

Hydraulic design Hydraulic circuit diagrams (2D) Vertex HD

Mechanical design Mechanical models (3D) Vertex G4, SolidWorks

Controller area network (CAN) design Network and object models Vector ProCANopen

Simulation design Simulation models Simulink

Also within the scope of the case example is some supplementary material. This 
includes some spare parts documentation and component information data sheets in 
Portable Document Format (PDF). It must be also noted that simulation models were 
not directly received from industrial partners, but instead were designed in-house.



3   Environment Design and Implementation

In this section, we will describe the design and implementation of our prototyping 
environment.  Firstly, the semantic process and model are described. Secondly, we 
will describe details of implementation of the associated semantic viewer application.

3.1 Semantic Process

As described, our approach is based on empowering designers to use the tools they 
are familiar with. In order to support generation of machine-readable, semantic data, 
we formalize design activities into a semantic process that produces a semantic model 
that captures created design information.

In a high level overview, the design activities are formalized into a process. The 
design  activities  in  our  case  example  includes:  concept  design,  hydraulic  design, 
mechanical  design, CANopen design, simulation design and system design. As an 
example of this process, let us consider the hydraulic design activity from our case 
example (Fig. 1). 

Fig. 1. Semantic process implementation example

Hydraulic  diagrams were  designed  using  a  domain-specific  application,  Vertex 
HD. Following the design similar to data processing and visualization pipelines [11], 
we  can  now process  the  design  data  in  various  ways.  In  the  first  step  (A1),  the 
diagrams are  then  exported  to  an easily  accessible format  (SVG; Scalable  Vector 
Graphics). Use of SVG enables us to further process the data with standard XML 
tools.

In  the  second  step  (B1),  semantic  data  from the  hydraulics  SVG can  then  be 
extracted.  In  our  case  example  we  realized  this  by  creating  a  custom  XSL 
transformation. With the transformation, the semantic data encoded into the SVG file 
was captured and modeled in RDF [12] with a canonical XML serialization [13]. Use 
of a canonical serialization enabled us to process and validate the data with standard 
XML tools.  For instance,  rudimentary input data validators  could be written with 
Schematron (http://www.schematron.com/).  Note  that  as  an input  to this  step,  any 
SVG  file  containing  required  information  may  be  used.  Thus,  other  design 
applications  producing  conforming  SVG  can  used  in  the  making  of   hydraulics 
designs as well.

Similar to hydraulic design, other design activities may also produce input data 
(steps B2, …, Bn). The semantic model of a target system can then be simply formed 



by collecting together the RDF documents generated by the pipeline. RDF data model 
enables us to trivially aggregate these documents together to form a cross design-
domain semantic model of the target system. By convention, we have chosen to store 
this aggregated instance data in a single document (system.rdf). For convenience, 
the definition of a related, domain ontology is passed along as well (schema.rdf).

Once the semantic model is generated as a result from running the data processing 
pipeline, it can be used to generate various portions of a VML. One important use 
case for the semantic model is generation of simulation models and their templates 
(step  C1). Simulation models are required in order to provide VMLs with real-time 
simulations that enable various dynamic visualizations. While details of simulation 
model generation are outside the scope of this paper, they are discussed in our other 
works ([10], [2]).

3.2 Semantic Model and Ontology

The semantic model forms the core of our prototyping environment. The semantic 
model  integrates  together  design  information  from  various  activities.  Very 
importantly, it provides us a standardized mechanism for not only creating machine-
readable representations of design data inside the design domains, but also to connect 
these domains together. We strive at creating a comprehensive semantic model that 
could  be  used  to  generate  any  aspects  of  a  VML  as  well  as  provide  basis  of 
integrating design data from many of the disciplines participant machine design. With 
a schema, we can also provide validation and integrity checks to the data.

Initially, the semantic model was created as an ad hoc aggregation of various RDF 
files  from  design  data  adapters.  A  semi-formal  schema  was  written  with  SKOS 
(Simple  Knowledge Organization  System; [14]).  This  approach  was sufficient  for 
environment bootstrapping as well as for some rudimentary use cases such as using 
SKOS broader concept to interconnect design domains.

In order to effectively manage instance data, features of RDF Schema [15] were 
used. We added rdfs:Class,  rdfs:subClassOf,  rdf:Property,  rdfs:domain 
and  rdfs:range assertions  to  create  classes  and  their  hierarchies  as  well  as 
properties associated to classes. Adding these assertions was important to provide the 
semantic  model  with  rudimentary  schema-based  validation  capabilities,  including 
checking for valid properties and valid property values.

Our desire was to provide engineers with a graphical user interface for schema 
development. While modeling-wise RDFS would have provided us with most of the 
features  required  for  schema  writing,  we  could  not  find  suitable  tools  for  easily 
managing an RDFS-based schema. The most suitable software for this purpose was 
Protégé-OWL ontology editor (http://protege.stanford.edu/). Thus for mostly practical 
reasons, the original schema file was maintained in Web Ontology Language (OWL) 
format [16].



3.3 Environment

In terms of a practical implementation, we used a set of tools on Eclipse Platform [17] 
along with some specific conventions.

In order to simulate a “real-world” engineering process, our multidisciplinary team 
of  researchers  used  the  platform  for  collaboration  through  Subversion 
(http://subversion.tigris.org/).  Since  we  run  our  environment  as  “stand-alone”,  a 
version  control  system  was  necessary  to  simulate  rudimentary  product  data 
management (PDM) system functionality (See e.g. [18]).

A new  Eclipse  project  was  used  to  represent  an  individual  VML  prototype. 
Individual design activities were modeled as folders. For each of the activities we 
further  defined (information) requirements,  and resources.  The resources managed 
outside  the  prototyping  environment  (original  CAD  drawings)  were  labeled  as 
external, while resources generated due to data processing were separated under  a 
folder labeled as generated.

We  implemented  data  processing  pipelines  using  Apache  Ant 
(http://ant.apache.org/). Each individual processing step was designed as a new target 
in  Ant.  By specifying dependencies  between these targets,  a  pipeline of  activities 
could then be executed in the environment. In addition to XSL transformations that 
Eclipse  supports  out-of-the-box,  we  also  configured  the  environment  to  enable 
adapter development with Python (http://www.python.org/).

The rest of the project was organized to following subsections (folders): 1) various 
tools and adapters required by the pipeline, 2) design application-specific libraries, 3) 
schema specification. We separated these items from the design activities since they 
all can be potentially shared between multiple projects.

3.4 Semantic Viewer Application

As a core component of the prototyping environment we implemented a semantic 
viewer application (“Semogen Player”). Key idea in the viewer application was to 
make it possible to directly use the semantic model, with no further data processing 
required for viewing and running a specified machine model.

After  reviewing  some suitable  technologies,  a  stack  consisting  of  open  source 
components written in Python was chosen. The application architecture was based on 
the common Model-view-Controller pattern.

Web server was implemented with Tornado (http://www.tornadoweb.org/). A key 
requirement that lead us to choose Tornado was the need for real-time simulation 
support. Sufficiently low-latency (10-100 ms) for the simulation interface could be 
achieved with WebSocket protocol [19], a technology which Tornado was found to 
readily support.

As for model, we decided to use RDFLib 3 (http://code.google.com/p/rdflib/) along 
with  SuRF  (http://code.google.com/p/surfrdf/).  With  SuRF,  RDF  triples  can  be 
accessed as resources representing classes, properties and their instances. The library 
also provides various methods for locating and accessing these resources, including a 
SPARQL  [20]  interface.  SuRF  also  enables  us  to  support  several  different  RDF 
triplestores including Sesame 2 (http://www.openrdf.org/) which may need to be used 



in larger data models. Thus, while we now chose to use RDFLib for practical reasons, 
other more efficient datastores could be used as well.

New functionality  of  the  system was  encapsulated  in  several  Python modules. 
Framework-like features of the system were placed as part of Semolab model. These 
features included semantic model bindings, real-time simulation interface as well as 
application model and various utilities. The main module (semoplayer) was used for 
providing controllers to various views of the system. For view generation, we used 
Tornado's built-in template engines (HTML with embedded Python code blocks).

User interface components were designed with JavaScript.  For interactivity  and 
Ajax  handling,  jQuery  (http://jquery.com/)  was  used.  In  order  to  create  a  more 
desktop-like  user  interface,  we  used  jQuery  UI  (http://jqueryui.com/)  and  jQuery 
UI.Layout  Plug-in  (http://layout.jquery-dev.net/)  as  well  as  several  other  jQuery 
plugins.  For  2D  diagrams,  SVG  was  used.  3D  views  were  implemented  using 
X3DOM (http://www.x3dom.org/).

4  Virtual Machine Laboratory Prototype

Based  on  the  source  design  materials  we  received,  the  defined  prototyping 
environment was used for adapting the source materials to the semantic model. As a 
result, various virtual machine laboratory views were generated from the design data. 
In this section we will describe how the semantic modeling and data processing was 
performed  for  various  design  materials,  as  well  as  how  these  materials  were 
connected together. As examples of the design domains, we have included hydraulics 
and CANopen network designs.  The described approach is similarly applied to other 
design domains such as mechanics, but for brevity are not covered in this paper.

4.1 Hydraulics

For the case example, a simplified hydraulic diagram of the boom lift functionality 
was  drawn  with  Vertex  HD.  The  diagram  was  carefully  designed  for  machine-
readability (Fig.  2) as follow: 1) for  each hydraulic component,  a title as well  as 
model  name  was  specified,  2)  hydraulic  ports  were  associated  with  individual 
components, 3) hydraulic pipes were connected semantically into various ports in the 
components.

Unique identifiers for hydraulic resources (components, ports and hydraulic pipes) 
were  readily  available  in  the  exported  design  data.  Only  local  uniqueness  (per 
diagram)  of  the  identifiers  was  guaranteed.  In  order  to  generate  globally  unique 
identifiers, a document specific prefix (X) was generated by combining a predefined 
project  URI with  the  filename.  Thus,  for  instance  the  full  URI  of  the  cylinder 
presented in figure 2, would resolve to http://project-url/file/#comp-3_21. 
In addition to URIs, the resources were identified with Dublin Core identifiers [21] 
containing local ID in textual format.



     Fig.  2. Excerpt  from  hydraulic  diagram  and  extracted  RDF  content      

In  terms  of  references,  we  also  encoded  model  names  of  various  hydraulic 
components into the design data. Any URI can be specified as a reference to a model  
name. The component model identifier specified in the source data  resolves to two 
assertions in RDF 1) as  an  rdf:type assertion as  well  2)  as a  semogen:model 
assertion. While model properties could be obtained via the type assertion, the latter 
was found more practical, since – due to type inference – a component may contain 
multiple type definitions, from which usually only one refers to a component's model.

   
   Fig. 3. Semogen Player user interface for hydraulic diagram with semantic search

Based on the exported SVG diagram and extracted RDF data, the data could be 
then viewed in our viewer application (Fig. 3). The viewer readily detects hydraulic 
diagrams from the input data (top-right corner). A semantic view (left side) can be 



used to list all components and pipes as well as their properties. Finally an interactive 
hydraulic diagram can be presented (right side).  A component can be selected by 
hovering over it with a mouse providing visual linking between the search and the 
diagram visualization. In addition, any component can be clicked to display all the 
available RDF data for it.

4.2 CANopen Design

CAN design for the boom (lift) functionality consists of three different CAN buses. 
These  buses  were  planned  using  ProCANopen  software  [22].  Each  bus  design 
includes all CAN nodes and their signal routing [23, 24]. This information was then 
converted from software's native output format (DCF) to an RDF model (Fig. 4). The 
designed RDF model includes buses, nodes, object and signals. 

    Fig. 4. A network in ProCANopen user interface annotated with related RDF data

In  terms  of  identifiers,  original  design  readily  had  unique  identifiers  for  CAN 
buses.  Further,  each  CAN  node  could  be  identified  by  its  NodeID 
(semogen:nodeid) similarly made available in the original design. As a NodeID was 
only  locally  unique,  a  project  specific  prefix  (X)  was  combined  with  busID and 
nodeID to create globally unique node identifier.As of nodes, each of them included 
object dictionaries, storing related data objects [23]. These objects are identified by a 
hexadecimal index number. CAN signals carries these object values to other nodes 
[23,  24].  So  we  generated  these  signals  to  RDF  model  and  linked  them  to 
corresponding CAN objects. 

The resulting RDF model was used to generate an SVG-based view of the CAN 
bus design (Fig. 5). Each component (node and bus) in the SVG contained an element 
which refers  to  the RDF model,  so the  user  interface can  be  used to  fetch more  
information and link to an RDF model on any component in the SVG diagram.



             Fig. 5. CAN network visualization with component (node) selection

The RDF data was also used in generation of simulation model. Generator creates 
Simulink model with CAN nodes and buses. In the future, objects and signals can be  
used to parametrize these simulated nodes as well. 

4.3 Connecting the Design Domains

While designs with various domains are typically created as “self-contained”, there 
are  several  reasons  why  cross-references  connecting  the  design  domains  may  be 
needed. Firstly,  an individual physical  component such as  cylinder  may appear in 
multiple designs, potentially in different roles. Secondly, we may need to describe 
function chains – processes that describe how the various parts of the design work 
together to implement a functional – for which connections between various designs 
need  to  be  provided.  Finally,  even  additional  cross-references  may  need  to  be 
provided especially for the generation of an integration simulation model.

In some of the current industry practices, engineers use arbitrary mapping tables, 
for instance implemented as Excel tables (or lists) of references. In the simplest case, 
these tables contain rows that provide mappings between domain-local identifiers as 
well  as  optionally  define  a  global  identifier.  Additionally  the  mapping  table  may 
encode  design  information  that  either  is  not  defined  elsewhere  or  is  scattered  or 
otherwise hard to locate from the other design materials.

In  order  to  provide  similar  mappings  within  our  semantic  model,  a  more 
formalized approach was needed: the cross-references need to be defined by using full 
identifiers (URIs). For a rudimentary approach to this mapping, we added an RDF file 
containing  mapping assertions (mappings.rdf). 

As an example, let us consider mapping various roles of a physical component, a 
hydraulic cylinder present in examples of sections 4.1 and 4.2. The cylinder appears 
both in hydraulic design diagram (&X;comp-3_21) as well as in CANopen design 
(&X;node-1-in-bus-1)  resulting  in  two  different  URIs  describing  the  same 



component. If a mapping assertion between these identifiers is to be defined as an 
RDF triple,  its  predicate depends on which relationship it  describes.  For instance,  
mapping  from hydraulic  component  (role)  into  a  CAN component  (role),  can  be 
defined with specific predicate (semogen:hasACANRole).

Functions, abbreviations and other meta data that may be embedded into mapping 
tables  can  instead  be  described  as  new  resources  inside  the  mappings  file.  For 
instance,  each  new functionality  of  the  machine  can be  created  as  an instance  of 
semogen:function for  which  additional  attributes  can  be  defined.  For  each 
function,  references to  various components  depending on their  roles  (for  example 
semogen:isControlledBy) can be added as well.

4.4 Discussion

Rather than creating the data model by firstly designing a normalized schema, we 
created  the  environment  from  features  rising  from  actual  design  documents  and 
processes.  In this design, an interactive process model was employed. During this 
process,  various  adapters,  semantic  models  as  well  as  features  of  the  viewer 
application were iteratively developed.

In  terms  of  VML  features,  our  environment  is  already  able  to  provide  the 
rudimentary aspects of the required features. Firstly, it has proven to support rapid 
prototyping  with  the  ability  to  use  data  with  potentially  complex  and  evolving 
schemata as somewhat demonstrated with the implementation examples.  Secondly, 
the environment provides limited support for semantic search, as well as functional 
and  integrated  views  to  the  data  (mapping  table  view).  Thirdly,  while  not 
demonstrated in this paper, rudimentary support for real-time simulations as well as 
measurement views have been implemented in the viewer, covering all of the most 
requested features for a virtual machine laboratory.

In terms of scaling our approach to full machine models and genuine engineering 
environments,  some  further  work  needs  to  be  done.  Especially  data  integration 
between various domains is seen as a challenge. In principle use of globally unique 
identifiers  allows  us  to  create  cross-references  between  any  designs.  In  practice, 
manual creation of cross-references is potentially cumbersome and thus impractical, 
requiring us to look into more automated solutions for scalability. For instance by 
providing a graphical user interface for the mapping generation, technical details of 
the  RDF data  model  could  be  hidden from the  system's  designer.  In  addition,  to 
reduce the manual work required for the mappings, the designer could be allowed to 
provide some general purpose rules for the mappings (for instance: “map together all  
hydraulic and CAN components that have identical titles”).

Another  problem  with  our  approach  is  that  in  order  to  integrate  new  design 
domains, new adapter needs to be written per new input data format. However, since 
our data model is based on use of standard RDF, a sophisticated designing application 
could  overcome  this  problem by  readily  providing  RDF export  capabilities,  thus 
leaving only the challenge integrating of the various data models.

Some important lessons were learned during the implementation process. Firstly, it 
seems that technically semantic web modeling and implementation tools are readily 
usable and mostly mature. What came as a partial surprise is the lack of well-defined, 



open vocabularies, schemata and ontologies for the modeling domains in question. 
For  a  wider  application  of  semantic  modeling,  these  definitions would  be  clearly 
needed. Finally, while some best practices and design patterns for semantic modeling 
especially in the domain of product modeling, have been defined [5], they are needed 
in a more wider deployment. 

We applied our semantic modeling and process approach to the domain of virtual  
machine laboratory. As a direction of extension, we see that this process and the tools 
could  be  well  generalized  for  other  design  and  engineering  practices  as  well. 
Especially  a similar  approach could be applied to  other  production modeling and 
engineering domains.

5   Conclusions

In  this  article,  we  presented  a  design  and  implementation  of  a  virtual  machine 
laboratory prototyping environment. The key approach in the presented environment 
was  the  use  of  understanding  machine's  and  its  virtual  laboratory's  design  as  a 
semantic process with defined information objects providing semantic links between 
various  design  activities.  In  the  core  of  our  approach  was  a  semantic  model 
implemented in RDF, RDFS and OWL as well as a viewer application for a using 
conforming data.

In terms of our case example, the given technologies were found as a feasible way 
to model the underlying data. We see that this semantic modeling approach provided 
us  with  some  fundamental  benefits.  Firstly,  by  using  a  design  of  adapters  and 
integrating model, we were able to manage the design data in various domain-specific 
designing  applications.  Secondly,  it  enabled  us  to  create  a  global,  comprehensive 
representation  of  the  all  design  data  with  references  between  various  resources 
regardless  of  their  design  domain.  By  doing  so,  we  were  –  in  overall  –  able  to 
understand  and build  formalized models  of  how various  engineers  understand  the 
designs. Thirdly, we recognized that by using an RDFS/OWL based data model, we 
can fairly easily and quickly adapt the prototype to changes in a data schema. For 
instance,  introducing  new  properties  or  classes  can  be  done  trivially,  with  no 
additional programming work required. Finally, we see that the use general-purpose 
semantic modeling maximizes data re-usability. For instance, simulation models as 
well as various aspects of a virtual machine laboratory, can both be generated from 
the same model.

A notable challenge in our approach is the management of the complexity arising 
from the heterogeneous process and modeling environment. As virtually any design 
tools or activities can be introduced to the semantic process, it can potentially become 
very complex. For instance, while implementation and use of various adapters for 
integrating data from the tools is often required, can exhaustive use of them result in 
unmanageable complexity in software design and maintenance. Similarly the design 
process  may become overly  complex,  resulting  in  inefficiency  in  form of  poorly 
manageable structures.

We see that the key in successfully applying this semantic process approach to 
machine design, requires identification and understanding of the concerns that cross-



cut through various design activities. These concerns include, but are not limited to 
management of global identifiers as well as representation of functional, machine-
level models. Without a systematic, process-oriented approach, the risk is that instead 
of integrating design information, we fall back to  ad hoc  methods of encoding the 
design data resulting in scattered, unconnected blocks of design data that hinders the 
re-usability of the data and scalability of the methods.

A lesson learned in the context of semantic web technology application is that 
while the technologies themselves can be considered mature, some known methods 
for efficient semantic modeling would have potentially proven to be valuable. We see 
further  room for  improvement  for  instance in  introducing an efficient  method for 
managing and integrating local and global identifiers. For industrial deployment of 
the  approach,  having  more  standard,  domain  vocabularies  would  be  crucially 
important. Also even though best practices and patterns have already been somewhat 
extensively recognized and described, we see a room for further studies. Especially 
since several parts of the modeling technologies (update language, rule languages) are 
still under standardization and development, a potential of benefit exists from having 
definitions of more general purpose design patterns.

Individual engineering organizations may not find the motivation for developing 
domain vocabularies and ontologies. As such, the whole industry would likely benefit 
from utilizing a more open, collaborative process in the development of these artifacts 
that are often a requirement for semantic model utilization. In our visions this work 
could lead to development of an open entity graph within the industry,  similar to 
collaborative databases like Freebase (http://www.freebase.com/).

Within the working machine industry, we see that successfully applying integrated 
semantic modeling would open up entirely new possibilities for organizing design 
work.  By  introducing  a  semantic  modeling-based  generation  of  virtual  machine 
laboratories for  design,  more agile  research and development  could be potentially 
realized. Especially a simulation-driven virtual prototyping process could lead to a 
new level of efficiency in machine design processes.
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