
An Implementation of a Semantic, Web-Based Virtual
Machine Laboratory Prototyping Environment

Jaakko Salonen1, Ossi Nykänen1, Pekka Ranta1, Juha Nurmi1,
Matti Helminen2, Markus Rokala2, Tuija Palonen2, Vänni Alarotu2, Kari

Koskinen2, and Seppo Pohjolainen1

1 Tampere University of Technology, Hypermedia Laboratory, 33101 Tampere, Finland
{jaakko.salonen, ossi.nykanen, pekka.a.ranta, juha.t.nurmi, seppo.pohjolainen}@tut.fi

2 Tampere University of Technology, Department of Intelligent Hydraulics and Automation,
33101 Tampere, Finland

{matti.helminen, markus.rokala, tuija.palonen, vanni.alarotu, kari.koskinen}@tut.fi

Abstract. Creation of virtual machine laboratories – simulated planning and
learning environments demonstrating function and structure of working
machines – often involve a lot of manual labor. A notable source of the labor is
the programming required due to changes in structural and functional models of
a system. As a result, rapid prototyping of a virtual machine laboratory
becomes difficult, if not impossible. We argue that by using a combination of
semantic modeling and prototyping with a web-based system, more rapid
development of virtual machine laboratories can be achieved. In this paper, we
present the design and implementation of a semantic, web-based virtual
machine laboratory prototyping environment. Application of the environment to
a case example is also described and discussed.

Keywords: Semantic Web, Resource Description Framework, Web Ontology
Language, Prototyping, Virtual Laboratory

1 Introduction

Virtual machine laboratories (compare [1]) are simulated planning and learning
environments demonstrating function and structure of working machines. The
creation of such environments has traditionally involved a lot of manual labor. In
essence, a developer needs to understand how the machine has been designed and
what kinds of planning information and formats are used. In this task, information
from various design documents such as CAD drawings and models need to be
obtained and integrated. Especially in the context of working machines, it is often
desirable to use mathematical modeling based real-time simulations for added
interactivity and realistic behavior of the machine, adding a next level of challenge to
the creation process.

Since these design documents are primarily created for purposes of the machine's
implementation, they often provide less semantic information than what is required to
create functional prototypes in the form of virtual machine laboratories. Especially

semantic information connecting various design domains – such hydraulic and
mechanical designs – is often informally or implicitly documented, since such pieces
of information are more rarely needed for purposes of manufacturing.

Another aspect of this problem is that many perspectives of the data required for
this task are largely missing in the designs. For instance, detailed system parameters
required for simulation model generation are often missing. Similarly, while the
functional model of the system is often implicitly understood by its designers, it may
not be explicitly documented. As a consequence, the information required for the
virtual prototypes, may need to be manually re-written by a virtual machine
laboratory developer. In the worst case, the developer may need to re-engineer or re-
design some parts of the system. As such, this process is potentially laborious,
lengthy, rigid as well as prone to errors.

In Semogen research project (Phase I during 2010-2011), we have taken an
alternative approach to the virtual machine laboratory generation in seek of a more
rapid development model. Since most of the problems could be avoided by making
sure the design data produced by the primary design activities is complete, we have
defined a semantic process for tracking data requirements and the related information
objects [2]. Instead of re-engineering and re-designing, we have focused on
improving the machine-readability, i.e. the semantic quality of the primary design
documents, by using semantic web technologies.

On a general level, this approach is not itself a novel idea; semantic web
technologies have readily been applied to other and related domains. For instance in
neuromedicine, an ontology for semantic web applications has been readily defined
[3]. Benefits for applying various knowledge representation languages to systems and
software engineering practices has also been outlined [4]. Very related to our work is
a recent effort of product modeling using semantic web technologies [5], as well as a
work towards describing linked datasets with an RDF Schema based vocabulary [6].

Also within our domain of application, the need for rapid prototyping and more
semantic design data has been also recognized in other ventures. In Simantics project,
an open cross-domain modeling and simulation platform was implemented [7]. With
an Eclipse Platform -based infrastructure, various simulation and visualization plug-
ins were integrated together, resulting in a toolkit for ontology based modeling and
simulation. In an another project, TIKOSU, a data model, workflow and a prototype
of database-based system was designed [8].

As according to the current machine and virtual laboratory design process, various
aspects of the system are designed with a multitude of modeling applications and
formats, both of which are often proprietary. Instead of changing these applications,
our semantic process provides a model according to which information objects
encoded to design documents can be tracked [2].

Our approach to extracting information from the design documents is based on the
concept of adapters. For each individual modeling format and/or tool, a specific
adapter software is written. This adapter accesses the raw design data and outputs a
machine-readable presentation of this information. The information is then integrated
together into a semantic model that comprehensively defines the modeled machine.
Based on this integrated semantic model, various aspects of the virtual machine
laboratory can then be generated.

Generating a virtual machine laboratory with our reference technology required us
to generate application-specific configuration documents from the semantic model
[9]. In an ideal case, a virtual machine laboratory generation could be approached as a
configuration management problem. However, in practice creating a functioning
prototype has previously required us to make changes to the underlying software
itself. For instance, introducing a new attribute type to a component requires
programming. As a result, even with perfected source data, the automated virtual
machine laboratory generation could not be realized in many cases.

In order to support more rapid prototyping, a new environment was designed. The
fundamental idea was to allow a developer to generate a more light-weight virtual
machine laboratory, directly from a semantic model. Technologies were chosen so
that they would support easily adding new features to the system with no
programming labor whenever possible.

In this article, we present the design and implementation of this light-weight,
virtual machine laboratory prototyping environment. The article is organized as
follows: In chapter 2, use cases and user requirements for the environment are
presented. Additionally a case example used during prototype creation is presented. In
chapter 3 the design and the implementation of our prototyping environment is
presented. In chapter 4 we present and discuss the results of applying our prototyping
environment to the case example. Finally, in chapter 5, we conclude our work.

2 Use Cases, User Requirements and a Case Example

2.1 Use Cases and User Requirements

By definition, we consider virtual machine laboratory (VML) to be any
environment that can be used to demonstrate a function and structure of a working
machine. Different kinds of VMLs may be built for different purposes. Especially
three use cases have been identified:

• Design support. VMLs to support designers (hydraulics, mechanics, etc.)
and collaboration between design areas of the system, by providing a real-
time simulation based functional prototype.

• Educational use. VMLs for educational purposes are used for providing
understanding of the phenomena and function chains of mechatronic
machine systems. In additional, educational VMLs may need to consider
integration to virtual learning environments as well as assignment of various
learning tasks.

• User guide. VMLs that provide interactive maintenance and spare parts
guides

While details of the systems may change depending on its use case, they come to
share many features. Several of our latest VMLs, including a harvester simulator for
educational purposes have been developed using our M1 technology [9]. As such, we
consider these prototypes and this technology as our reference and as a source for our

user requirements. However, regardless of the use case in question, similar features
are often requested.

Support for rapid prototyping. The ability to make changes to the underlying
design and quickly apply these changes to the related virtual environment.

Dynamic real-time simulation. Running real-time simulation of the system (or
specific part of the system) in action, including interacting with the model (using
controls).

Web browser based user interface. Using the system running either locally or
remotely with a web browser (device independence, effortless launch and use with
software as a service).

Semantic search. Locating resources, especially components based on given
search criteria (for instance: “find components with a specific material” or “find all
components of a given size range”).

Ability to use data with potentially complex and evolving schemata. Since data
from multiple design domains needs to be integrated, the underlying schema for a
VML is potentially very complex. Additionally, since new design domains may be
introduced, we should be able to handle some schema evolution with minimal
additional work.

Support for dynamic 2D and 3D visualizations. The laboratory should be able to
represent designs as 2- and 3-dimensional visualizations. In addition, dynamic
simulation data is often desired for visualizing function in the designs.

Functional and integrated views. Views that representing how various design
domains integrate together, for instance to form a chain of actions, are often
requested. As machine designs are potentially very complex, provide functional
representations a valuable abstraction.

Measurements. Ability to measure and analyze both static (size, width, height,
diameter) and dynamic (position, velocity, pressure) properties of a system and its
components. Especially for measuring dynamic properties, measurement tools
recording history of changes is potentially very useful.

Support for controllers and hardware-in-the-loop. In order to interact with the
dynamic system model, at least some controller support is required. Minimally
controller devices can be simulated with a graphical interface. Optionally various
peripheral devices such as joysticks can be used to emulate controllers. For the
scenarios requiring genuine hardware, the system should be able to provide support
for hardware-in-the-loop (with other parts of the system being simulated).

Simulation controls. While continuously playing real-time simulation is sufficient
for many uses, it may be useful to be able to control the simulations. For this task,
simulation controls including changing simulation speed as well as recording and
playing back are potentially useful features.

Our reference technology, M1, already provides many of these features. However,
it notably meets only partially the following requirements: 1) support for rapid
prototyping, 2) semantic search, 3) web browser based user interface (currently only
partial), 4) ability to use data with potentially complex and evolving schemata, 5)
support functional and integrated views. Since developing a full-scale alternative to
our current technology would require a lot work, it would make sense to aiming at
creating a prototype specifically addressing these lacking features.

Case Example

In order to create a case example, we received real design information and expertise
from the industry partners of the Semogen project.

In an attempt to understand and formalize how working machines are designed, we
have analyzed the design process. As a result of this work, we have defined a model
and methods for analyzing and designing semantic processes and manipulating design
information through validation, transformations, and generation applications [10].

As according to this semantic process model, we have identified individual design
activities and information requirements as dependencies between given activities.
Each of the design activities may produce design data using a designing application
often specific for the given design activity. Design applications may use any data
formats as containers for the design information.

In an optimal solution, these data formats are based on open and standard
specifications for which processing tools are readily available. Especially extensible
markup language (XML) based formats are therefore favorable. As a second to best
option, the designing application's export capabilities can be used to export the design
data. As a last resort, the designing application's application programming interface
(API) capabilities can be utilized in order to create an export format to capture design
information.

A subset of the design data and process was chosen as a case example. As a scope
of the example, we chose to study a single functionality (“boom lift”) within the
studied machine. By doing so enabled us to include a heterogeneous and a covering
sample of various design activities and materials that potentially are linked by the
case functionality in the level of design information. A listing of design activities,
their outputs and designing applications used in the case example are provided in
table 1.

Table 1. Design activities in the case example.

Activity Output(s) Designing application(s)

Conceptual design Conceptual and requirements design
documentation.

PDF and Word
documents

Hydraulic design Hydraulic circuit diagrams (2D) Vertex HD

Mechanical design Mechanical models (3D) Vertex G4, SolidWorks

Controller area network (CAN) design Network and object models Vector ProCANopen

Simulation design Simulation models Simulink

Also within the scope of the case example is some supplementary material. This
includes some spare parts documentation and component information data sheets in
Portable Document Format (PDF). It must be also noted that simulation models were
not directly received from industrial partners, but instead were designed in-house.

3 Environment Design and Implementation

In this section, we will describe the design and implementation of our prototyping
environment. Firstly, the semantic process and model are described. Secondly, we
will describe details of implementation of the associated semantic viewer application.

3.1 Semantic Process

As described, our approach is based on empowering designers to use the tools they
are familiar with. In order to support generation of machine-readable, semantic data,
we formalize design activities into a semantic process that produces a semantic model
that captures created design information.

In a high level overview, the design activities are formalized into a process. The
design activities in our case example includes: concept design, hydraulic design,
mechanical design, CANopen design, simulation design and system design. As an
example of this process, let us consider the hydraulic design activity from our case
example (Fig. 1).

Fig. 1. Semantic process implementation example

Hydraulic diagrams were designed using a domain-specific application, Vertex
HD. Following the design similar to data processing and visualization pipelines [11],
we can now process the design data in various ways. In the first step (A1), the
diagrams are then exported to an easily accessible format (SVG; Scalable Vector
Graphics). Use of SVG enables us to further process the data with standard XML
tools.

In the second step (B1), semantic data from the hydraulics SVG can then be
extracted. In our case example we realized this by creating a custom XSL
transformation. With the transformation, the semantic data encoded into the SVG file
was captured and modeled in RDF [12] with a canonical XML serialization [13]. Use
of a canonical serialization enabled us to process and validate the data with standard
XML tools. For instance, rudimentary input data validators could be written with
Schematron (http://www.schematron.com/). Note that as an input to this step, any
SVG file containing required information may be used. Thus, other design
applications producing conforming SVG can used in the making of hydraulics
designs as well.

Similar to hydraulic design, other design activities may also produce input data
(steps B2, …, Bn). The semantic model of a target system can then be simply formed

by collecting together the RDF documents generated by the pipeline. RDF data model
enables us to trivially aggregate these documents together to form a cross design-
domain semantic model of the target system. By convention, we have chosen to store
this aggregated instance data in a single document (system.rdf). For convenience,
the definition of a related, domain ontology is passed along as well (schema.rdf).

Once the semantic model is generated as a result from running the data processing
pipeline, it can be used to generate various portions of a VML. One important use
case for the semantic model is generation of simulation models and their templates
(step C1). Simulation models are required in order to provide VMLs with real-time
simulations that enable various dynamic visualizations. While details of simulation
model generation are outside the scope of this paper, they are discussed in our other
works ([10], [2]).

3.2 Semantic Model and Ontology

The semantic model forms the core of our prototyping environment. The semantic
model integrates together design information from various activities. Very
importantly, it provides us a standardized mechanism for not only creating machine-
readable representations of design data inside the design domains, but also to connect
these domains together. We strive at creating a comprehensive semantic model that
could be used to generate any aspects of a VML as well as provide basis of
integrating design data from many of the disciplines participant machine design. With
a schema, we can also provide validation and integrity checks to the data.

Initially, the semantic model was created as an ad hoc aggregation of various RDF
files from design data adapters. A semi-formal schema was written with SKOS
(Simple Knowledge Organization System; [14]). This approach was sufficient for
environment bootstrapping as well as for some rudimentary use cases such as using
SKOS broader concept to interconnect design domains.

In order to effectively manage instance data, features of RDF Schema [15] were
used. We added rdfs:Class, rdfs:subClassOf, rdf:Property, rdfs:domain
and rdfs:range assertions to create classes and their hierarchies as well as
properties associated to classes. Adding these assertions was important to provide the
semantic model with rudimentary schema-based validation capabilities, including
checking for valid properties and valid property values.

Our desire was to provide engineers with a graphical user interface for schema
development. While modeling-wise RDFS would have provided us with most of the
features required for schema writing, we could not find suitable tools for easily
managing an RDFS-based schema. The most suitable software for this purpose was
Protégé-OWL ontology editor (http://protege.stanford.edu/). Thus for mostly practical
reasons, the original schema file was maintained in Web Ontology Language (OWL)
format [16].

3.3 Environment

In terms of a practical implementation, we used a set of tools on Eclipse Platform [17]
along with some specific conventions.

In order to simulate a “real-world” engineering process, our multidisciplinary team
of researchers used the platform for collaboration through Subversion
(http://subversion.tigris.org/). Since we run our environment as “stand-alone”, a
version control system was necessary to simulate rudimentary product data
management (PDM) system functionality (See e.g. [18]).

A new Eclipse project was used to represent an individual VML prototype.
Individual design activities were modeled as folders. For each of the activities we
further defined (information) requirements, and resources. The resources managed
outside the prototyping environment (original CAD drawings) were labeled as
external, while resources generated due to data processing were separated under a
folder labeled as generated.

We implemented data processing pipelines using Apache Ant
(http://ant.apache.org/). Each individual processing step was designed as a new target
in Ant. By specifying dependencies between these targets, a pipeline of activities
could then be executed in the environment. In addition to XSL transformations that
Eclipse supports out-of-the-box, we also configured the environment to enable
adapter development with Python (http://www.python.org/).

The rest of the project was organized to following subsections (folders): 1) various
tools and adapters required by the pipeline, 2) design application-specific libraries, 3)
schema specification. We separated these items from the design activities since they
all can be potentially shared between multiple projects.

3.4 Semantic Viewer Application

As a core component of the prototyping environment we implemented a semantic
viewer application (“Semogen Player”). Key idea in the viewer application was to
make it possible to directly use the semantic model, with no further data processing
required for viewing and running a specified machine model.

After reviewing some suitable technologies, a stack consisting of open source
components written in Python was chosen. The application architecture was based on
the common Model-view-Controller pattern.

Web server was implemented with Tornado (http://www.tornadoweb.org/). A key
requirement that lead us to choose Tornado was the need for real-time simulation
support. Sufficiently low-latency (10-100 ms) for the simulation interface could be
achieved with WebSocket protocol [19], a technology which Tornado was found to
readily support.

As for model, we decided to use RDFLib 3 (http://code.google.com/p/rdflib/) along
with SuRF (http://code.google.com/p/surfrdf/). With SuRF, RDF triples can be
accessed as resources representing classes, properties and their instances. The library
also provides various methods for locating and accessing these resources, including a
SPARQL [20] interface. SuRF also enables us to support several different RDF
triplestores including Sesame 2 (http://www.openrdf.org/) which may need to be used

in larger data models. Thus, while we now chose to use RDFLib for practical reasons,
other more efficient datastores could be used as well.

New functionality of the system was encapsulated in several Python modules.
Framework-like features of the system were placed as part of Semolab model. These
features included semantic model bindings, real-time simulation interface as well as
application model and various utilities. The main module (semoplayer) was used for
providing controllers to various views of the system. For view generation, we used
Tornado's built-in template engines (HTML with embedded Python code blocks).

User interface components were designed with JavaScript. For interactivity and
Ajax handling, jQuery (http://jquery.com/) was used. In order to create a more
desktop-like user interface, we used jQuery UI (http://jqueryui.com/) and jQuery
UI.Layout Plug-in (http://layout.jquery-dev.net/) as well as several other jQuery
plugins. For 2D diagrams, SVG was used. 3D views were implemented using
X3DOM (http://www.x3dom.org/).

4 Virtual Machine Laboratory Prototype

Based on the source design materials we received, the defined prototyping
environment was used for adapting the source materials to the semantic model. As a
result, various virtual machine laboratory views were generated from the design data.
In this section we will describe how the semantic modeling and data processing was
performed for various design materials, as well as how these materials were
connected together. As examples of the design domains, we have included hydraulics
and CANopen network designs. The described approach is similarly applied to other
design domains such as mechanics, but for brevity are not covered in this paper.

4.1 Hydraulics

For the case example, a simplified hydraulic diagram of the boom lift functionality
was drawn with Vertex HD. The diagram was carefully designed for machine-
readability (Fig. 2) as follow: 1) for each hydraulic component, a title as well as
model name was specified, 2) hydraulic ports were associated with individual
components, 3) hydraulic pipes were connected semantically into various ports in the
components.

Unique identifiers for hydraulic resources (components, ports and hydraulic pipes)
were readily available in the exported design data. Only local uniqueness (per
diagram) of the identifiers was guaranteed. In order to generate globally unique
identifiers, a document specific prefix (X) was generated by combining a predefined
project URI with the filename. Thus, for instance the full URI of the cylinder
presented in figure 2, would resolve to http://project-url/file/#comp-3_21.
In addition to URIs, the resources were identified with Dublin Core identifiers [21]
containing local ID in textual format.

 Fig. 2. Excerpt from hydraulic diagram and extracted RDF content

In terms of references, we also encoded model names of various hydraulic
components into the design data. Any URI can be specified as a reference to a model
name. The component model identifier specified in the source data resolves to two
assertions in RDF 1) as an rdf:type assertion as well 2) as a semogen:model
assertion. While model properties could be obtained via the type assertion, the latter
was found more practical, since – due to type inference – a component may contain
multiple type definitions, from which usually only one refers to a component's model.

 Fig. 3. Semogen Player user interface for hydraulic diagram with semantic search

Based on the exported SVG diagram and extracted RDF data, the data could be
then viewed in our viewer application (Fig. 3). The viewer readily detects hydraulic
diagrams from the input data (top-right corner). A semantic view (left side) can be

used to list all components and pipes as well as their properties. Finally an interactive
hydraulic diagram can be presented (right side). A component can be selected by
hovering over it with a mouse providing visual linking between the search and the
diagram visualization. In addition, any component can be clicked to display all the
available RDF data for it.

4.2 CANopen Design

CAN design for the boom (lift) functionality consists of three different CAN buses.
These buses were planned using ProCANopen software [22]. Each bus design
includes all CAN nodes and their signal routing [23, 24]. This information was then
converted from software's native output format (DCF) to an RDF model (Fig. 4). The
designed RDF model includes buses, nodes, object and signals.

 Fig. 4. A network in ProCANopen user interface annotated with related RDF data

In terms of identifiers, original design readily had unique identifiers for CAN
buses. Further, each CAN node could be identified by its NodeID
(semogen:nodeid) similarly made available in the original design. As a NodeID was
only locally unique, a project specific prefix (X) was combined with busID and
nodeID to create globally unique node identifier.As of nodes, each of them included
object dictionaries, storing related data objects [23]. These objects are identified by a
hexadecimal index number. CAN signals carries these object values to other nodes
[23, 24]. So we generated these signals to RDF model and linked them to
corresponding CAN objects.

The resulting RDF model was used to generate an SVG-based view of the CAN
bus design (Fig. 5). Each component (node and bus) in the SVG contained an element
which refers to the RDF model, so the user interface can be used to fetch more
information and link to an RDF model on any component in the SVG diagram.

 Fig. 5. CAN network visualization with component (node) selection

The RDF data was also used in generation of simulation model. Generator creates
Simulink model with CAN nodes and buses. In the future, objects and signals can be
used to parametrize these simulated nodes as well.

4.3 Connecting the Design Domains

While designs with various domains are typically created as “self-contained”, there
are several reasons why cross-references connecting the design domains may be
needed. Firstly, an individual physical component such as cylinder may appear in
multiple designs, potentially in different roles. Secondly, we may need to describe
function chains – processes that describe how the various parts of the design work
together to implement a functional – for which connections between various designs
need to be provided. Finally, even additional cross-references may need to be
provided especially for the generation of an integration simulation model.

In some of the current industry practices, engineers use arbitrary mapping tables,
for instance implemented as Excel tables (or lists) of references. In the simplest case,
these tables contain rows that provide mappings between domain-local identifiers as
well as optionally define a global identifier. Additionally the mapping table may
encode design information that either is not defined elsewhere or is scattered or
otherwise hard to locate from the other design materials.

In order to provide similar mappings within our semantic model, a more
formalized approach was needed: the cross-references need to be defined by using full
identifiers (URIs). For a rudimentary approach to this mapping, we added an RDF file
containing mapping assertions (mappings.rdf).

As an example, let us consider mapping various roles of a physical component, a
hydraulic cylinder present in examples of sections 4.1 and 4.2. The cylinder appears
both in hydraulic design diagram (&X;comp-3_21) as well as in CANopen design
(&X;node-1-in-bus-1) resulting in two different URIs describing the same

component. If a mapping assertion between these identifiers is to be defined as an
RDF triple, its predicate depends on which relationship it describes. For instance,
mapping from hydraulic component (role) into a CAN component (role), can be
defined with specific predicate (semogen:hasACANRole).

Functions, abbreviations and other meta data that may be embedded into mapping
tables can instead be described as new resources inside the mappings file. For
instance, each new functionality of the machine can be created as an instance of
semogen:function for which additional attributes can be defined. For each
function, references to various components depending on their roles (for example
semogen:isControlledBy) can be added as well.

4.4 Discussion

Rather than creating the data model by firstly designing a normalized schema, we
created the environment from features rising from actual design documents and
processes. In this design, an interactive process model was employed. During this
process, various adapters, semantic models as well as features of the viewer
application were iteratively developed.

In terms of VML features, our environment is already able to provide the
rudimentary aspects of the required features. Firstly, it has proven to support rapid
prototyping with the ability to use data with potentially complex and evolving
schemata as somewhat demonstrated with the implementation examples. Secondly,
the environment provides limited support for semantic search, as well as functional
and integrated views to the data (mapping table view). Thirdly, while not
demonstrated in this paper, rudimentary support for real-time simulations as well as
measurement views have been implemented in the viewer, covering all of the most
requested features for a virtual machine laboratory.

In terms of scaling our approach to full machine models and genuine engineering
environments, some further work needs to be done. Especially data integration
between various domains is seen as a challenge. In principle use of globally unique
identifiers allows us to create cross-references between any designs. In practice,
manual creation of cross-references is potentially cumbersome and thus impractical,
requiring us to look into more automated solutions for scalability. For instance by
providing a graphical user interface for the mapping generation, technical details of
the RDF data model could be hidden from the system's designer. In addition, to
reduce the manual work required for the mappings, the designer could be allowed to
provide some general purpose rules for the mappings (for instance: “map together all
hydraulic and CAN components that have identical titles”).

Another problem with our approach is that in order to integrate new design
domains, new adapter needs to be written per new input data format. However, since
our data model is based on use of standard RDF, a sophisticated designing application
could overcome this problem by readily providing RDF export capabilities, thus
leaving only the challenge integrating of the various data models.

Some important lessons were learned during the implementation process. Firstly, it
seems that technically semantic web modeling and implementation tools are readily
usable and mostly mature. What came as a partial surprise is the lack of well-defined,

open vocabularies, schemata and ontologies for the modeling domains in question.
For a wider application of semantic modeling, these definitions would be clearly
needed. Finally, while some best practices and design patterns for semantic modeling
especially in the domain of product modeling, have been defined [5], they are needed
in a more wider deployment.

We applied our semantic modeling and process approach to the domain of virtual
machine laboratory. As a direction of extension, we see that this process and the tools
could be well generalized for other design and engineering practices as well.
Especially a similar approach could be applied to other production modeling and
engineering domains.

5 Conclusions

In this article, we presented a design and implementation of a virtual machine
laboratory prototyping environment. The key approach in the presented environment
was the use of understanding machine's and its virtual laboratory's design as a
semantic process with defined information objects providing semantic links between
various design activities. In the core of our approach was a semantic model
implemented in RDF, RDFS and OWL as well as a viewer application for a using
conforming data.

In terms of our case example, the given technologies were found as a feasible way
to model the underlying data. We see that this semantic modeling approach provided
us with some fundamental benefits. Firstly, by using a design of adapters and
integrating model, we were able to manage the design data in various domain-specific
designing applications. Secondly, it enabled us to create a global, comprehensive
representation of the all design data with references between various resources
regardless of their design domain. By doing so, we were – in overall – able to
understand and build formalized models of how various engineers understand the
designs. Thirdly, we recognized that by using an RDFS/OWL based data model, we
can fairly easily and quickly adapt the prototype to changes in a data schema. For
instance, introducing new properties or classes can be done trivially, with no
additional programming work required. Finally, we see that the use general-purpose
semantic modeling maximizes data re-usability. For instance, simulation models as
well as various aspects of a virtual machine laboratory, can both be generated from
the same model.

A notable challenge in our approach is the management of the complexity arising
from the heterogeneous process and modeling environment. As virtually any design
tools or activities can be introduced to the semantic process, it can potentially become
very complex. For instance, while implementation and use of various adapters for
integrating data from the tools is often required, can exhaustive use of them result in
unmanageable complexity in software design and maintenance. Similarly the design
process may become overly complex, resulting in inefficiency in form of poorly
manageable structures.

We see that the key in successfully applying this semantic process approach to
machine design, requires identification and understanding of the concerns that cross-

cut through various design activities. These concerns include, but are not limited to
management of global identifiers as well as representation of functional, machine-
level models. Without a systematic, process-oriented approach, the risk is that instead
of integrating design information, we fall back to ad hoc methods of encoding the
design data resulting in scattered, unconnected blocks of design data that hinders the
re-usability of the data and scalability of the methods.

A lesson learned in the context of semantic web technology application is that
while the technologies themselves can be considered mature, some known methods
for efficient semantic modeling would have potentially proven to be valuable. We see
further room for improvement for instance in introducing an efficient method for
managing and integrating local and global identifiers. For industrial deployment of
the approach, having more standard, domain vocabularies would be crucially
important. Also even though best practices and patterns have already been somewhat
extensively recognized and described, we see a room for further studies. Especially
since several parts of the modeling technologies (update language, rule languages) are
still under standardization and development, a potential of benefit exists from having
definitions of more general purpose design patterns.

Individual engineering organizations may not find the motivation for developing
domain vocabularies and ontologies. As such, the whole industry would likely benefit
from utilizing a more open, collaborative process in the development of these artifacts
that are often a requirement for semantic model utilization. In our visions this work
could lead to development of an open entity graph within the industry, similar to
collaborative databases like Freebase (http://www.freebase.com/).

Within the working machine industry, we see that successfully applying integrated
semantic modeling would open up entirely new possibilities for organizing design
work. By introducing a semantic modeling-based generation of virtual machine
laboratories for design, more agile research and development could be potentially
realized. Especially a simulation-driven virtual prototyping process could lead to a
new level of efficiency in machine design processes.

References

1. Grimaldia, D., Rapuanob, S. (2008). Hardware and software to design virtual laboratory
for education in instrumentation and measurement. Measurement, Volume 42, Issue 4,
May 2009, pages 485-493, ISSN 0263-2241.

2. Nykänen, O., Salonen, J., Markkula, M., Ranta, P., Rokala, M., Helminen, M., Alarotu,
V., Nurmi, J., Palonen, T., Koskinen, K., & Pohjolainen, S. (2011). What Do Information
Reuse and Automated Processing Require in Engineering Design? Semantic Process.
Journal of Industrial Engineering and Management. In Review.

3. W3C. (2009). Semantic Web Applications in Neuromedicine (SWAN) Ontology. W3C
Interest Group Note 20 October 2009. <http://www.w3.org/TR/hcls-swan/> (Accessed:
26.8.2011).

4. W3C. (2006). Ontology Driven Architectures and Potential Uses of the Semantic Web in
Systems and Software Engineering. Editor's Draft, 2006/02/11.
<http://www.w3.org/2001/sw/BestPractices/SE/ODA/> (Accessed: 26.8.2011).

5. W3C. (2009). Product Modelling using Semantic Web Technologies. W3C Incubator
Group Report 08 October 2009. <http://www.w3.org/2005/Incubator/w3pm/XGR-w3pm-
20091008/> (Accessed: 28.8.2011).

6. W3C. (2011). Describing Linked Datasets with the VoID Vocabulary. W3C Interest Group
Note 03 March 2011. <http://www.w3.org/TR/void/> (Accessed: 28.8.2011).

7. Simantics. (2010). Simatics Platform - Details about Simatics platform, the software
architecture, and its applications. <http://www.simantics.org/simantics/about-
simantics/simantics-platform> (Accessed: 23.6.2011).

8. VTT. (2011). TIKOSU - Tietokantakeskeinen koneenohjausjärjestelmän suunnittelu ja
toteutus. <http://www.hermia.fi/fima/tutkimus/tikosu/> (Accessed: 23.6.2011).

9. Helminen, M., Palonen, T., Rokala, M., Ranta, P., Mäkelä, T., Koskinen, T. K. Virtual
Machine Laboratory based on M1-technology. Proceedings of the Twelfth Scandinavian
International Conference on Fluid Power, vol. 1, pp. 321-334. May 18-20, 2011, Tampere,
Finland.

10. Markkula, M., Rokala, M., Palonen,T., Alarotu V., Helminen, M., Koskinen, K. T., Ranta,
P., Nykänen, O., Salonen, J. (2011). Utilization of the Hydraulic Engineering Design
Information for Semi-Automatic Simulation Model Generation. Proceedings of the Twelfth
Scandinavian International Conference on Fluid Power, vol. 3, pp. 443-457. May 18-20,
2011, Tampere, Finland.

11. Nykänen, O., Mannio, M., Huhtamäki, J., Salonen, J. (2007). A Socio-technical
Framework for Visualising an Open Knowledge Space. Proceedings of the International
IADIS WWW/Internet 2007 Conference, 5-8 October, Vila Real, Portugal, pp. 137-144.

12. W3C. (2011). Resource Description Framework (RDF). <http://www.w3.org/RDF/>
(Accessed: 23.6.2011)

13. Nykänen, O. (2011). RDF in Canonical XML (RDF/cXML).
<http://wiki.tut.fi/Wille/RDFcXML> (Accessed: 26.8.2011).

14. W3C. (2011). SKOS Simple Knowledge Organization System – Home Page.
<http://www.w3.org/2004/02/skos/> (Accessed: 23.6.2011).

15. W3C. (2004). RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation 10 February 2004,

16. W3C. Web Ontology Language (OWL). <http://www.w3.org/2004/OWL/> (Accessed:
23.6.2011).

17. The Ecllipse Foundation. (2011). Eclipse Platform. <http://www.eclipse.org/platform/>
(Accessed: 23.6.2011)

18. Bilgic, T., Rock, D. (1997). Product Data Management Systems: State-Of-The-Art And
The Future. Proceedings of DETC'97, 1997 ASME Design Engineering Technical
Conferences, September 14-17, 1997, Sacramento, California.

19. W3C. (2011). The Websocket API. Editor's Draft 21 June 2011.
<http://dev.w3.org/html5/websockets/> (Accessed: 23.6.2011)

20. W3C SPARQL. (2008). SPARQL Query Language for RDF. W3C Recommendation 15
January 2008.

21. Dublin Core Metadata Initiative. (2010). DCMI Metadata Terms. DCMI
Recommendation. <http://dublincore.org/documents/dcmi-terms/> (Accessed: 23.6.2011)

22. Vector. (2011). ProCANopen – Project Planning Tool for CANopen Networks.
<http://www.canopen-solutions.com/canopen_procanopen_en.html> (Accessed:
23.6.2011)

23. IXXAT Automation GmbH. (2011). Process data exchange with PDOs (“Process Data
Objects”). <http://www.canopensolutions.com/english/about_canopen/pdo.shtml>
(Accessed: 23.6.2011)

24. Vector. (2011). CANopen Fundamentals – The CANopen Standard.
<http://www.canopen-solutions.com/canopen_fundamentals_en.html> (Accessed:
23.6.2011).

