
made with various devices and sensor
matrices and thus the sets of property
maps obtained typically have neither the
same size nor the same resolution. To take
full advantage of the 2D measurements
acquired from the same area of a paper
sheet, methods for image registration and
alignment are required in order to overlay
the measured images so that the pixels
with the same physical coordinates in the
different images, corresponding to the
same part of the sample, can be com-
pared. This is a pre-requisite for reliable
joint analysis of the maps. The idea of
aligned image analysis has been used in
paper physics recently by, e.g. Sung et al.
(4) who computed maps of apparent den-
sity of paper from aligned 2D measure-
ments of thickness and formation. A wide
range of material characterization and
analysis applications could possibly bene-
fit from aligned multi-channel maps that
typically contain a large number of inde-
pendently measured data points, as this
would set up a firm basis for statistical
analysis of the measured properties.
Analyzing the microstructure of paper
through the aligned measurement maps is
further motivated by the fact that the
physical characteristics of paper are asso-
ciated with printability and with the qual-
ity of the final printed product (5-7).
Previous studies utilizing aligned images
have shown this using correlation and
regression analysis (8-10). There is no
questioning of the significance of these
results, but it can be expected that tradi-
tional statistical analysis methods, such as
regression analysis, do not provide full
information about the dependencies
between measured print quality and the
structural parameters because the depen-
dencies are statistical and non-Gaussian.
Regression provides the expected value of
the target variable given the values of the
explanatory variables but neglects predic-
tion uncertainty that tends to be large due
to the effects of the printing process and
unmeasured properties of paper. The key
idea in the current work is to approach the
dependencies through the full joint proba-
bility densities of the measured proper-
ties, as these provide not only regression

but full parametric descriptions of the sta-
tistical relationships. The long-term goal
in this research is to gain understanding
and to generate models of the relation-
ships between the statistical properties of
print quality and the measurable physical
structure of unprinted paper so that paper
quality can be effectively monitored.

The intense development of image
acquisition and analysis techniques has
led to a wide variety of registration and
alignment tools in application areas such
as remote sensing, image fusion, stereo
vision, super-resolution, close-range pho-
togrammetry, and medical imaging (11).
Various image registration methods have
been reported to assist in automatic image
registration, e.g. (12,13), however none of
the methods published so far have been
readily applicable to the automatic regis-
tration of randomly textured image data
sets (such as the 2D small-scale maps of
paper structure) that contain no special
registration marks. The authors have pre-
viously developed a new method for that
purpose and verified its usability by sev-
eral registration experiments with multi-
modal 2D measurement data (14).

A methodology for the multivariate
statistical analysis of aligned 2D property
maps of paper measured before and after
printing is proposed. A block diagram of
the analysis procedure is presented in
Figure 1. After aligning the measured
small-scale maps accurately it is possible
to compare the measured properties point-
by-point and gain fundamental informa-
tion about the physical mechanisms deter-
mining the quality of paper and print. It
can be expected that, however accurate
the measurements, there are no determin-
istic point-to-point relationships between
print quality and the structural properties.
Instead, the relationships are probabilistic
and thus they are appropriately described
with the full joint probability distributions
of the measured properties (15). The joint
distributions are typically clearly different
from multivariate Gaussian and thus can-
not be summarized with one expectation
vector and covariance matrix. On the
other hand, distribution models that
assume the third, fourth or higher
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SUMMARY

The relationship between printability and
paper structure based on registration,
alignment and analysis of 2D property
maps of unprinted and printed paper has
been studied. Surface topography, optical
formation and intensity of the print were all
measured and the point-by-point proba-
bilistic interdependencies of these proper-
ties statistically characterised. The 2D
measurements of the paper properties
and the print quality were aligned with a
point-mapping based registration proce-
dure. This alignment provides a large
amount of multivariate pointwise data and
thus permits reliable estimates of the joint
probability density functions (pdfs) that are
efficiently parameterized through
Gaussian mixtures. Assuming the interde-
pendency to be only probabilistic and non-
Gaussian, it is possible to derive full con-
ditional pdfs instead of regression models
and to investigate how the shape of the
conditional pdfs – e.g. tails – depends on
the conditioning variable. These pdfs were
used to form anomaly maps that locate
defects (for example, print defects) and
their causes. The methods and the useful-
ness of the analyses were demonstrated
with results on newsprint samples.

KEYWORDS
Image registration, multivariate statis-
tical analysis, paper properties, print-
ability, joint probability distributions

INTRODUCTION

Small-scale 2D measurements of paper
produce considerable amount of useful
information about the physical parame-
ters of the fibre network and paper surface
properties (1-3). The measurements are



moments fixed would be only numerical-
ly solvable. An alternative description of
the distributions with histograms or
Gaussian mixture models (GMM) (16)
can be adopted. The GMM approach is
particularly attractive for two main rea-
sons. Firstly, GMM can condense the
huge amount of data into a fairly small set
of parameters. Secondly, this parametric
representation generally enables the ana-
lytical calculation of conditional proba-
bility density functions (pdfs) of individ-
ual quality properties. It should be noted
however, that in some cases the very fine
details in the tails of the pdfs can be effec-
tively analyzed only with histograms, as
is shown later. The large number of inde-
pendently measured data points in the
multivariate images provides a strong
basis for pdf estimation and statistical
inference. It is possible to examine the
shape of the distributions and use the joint
pdf models to derive anomaly maps of the
measured properties. Anomaly maps
reveal the points and areas that deviate
most strongly from the typical statistical
behavior, thus providing essential infor-
mation of, for example, print defects and
their origins.

The authors have previously examined
the correspondence of different paper sur-
face topography measurement devices
(14) through multivariate image analysis.
The research described here goes further
in the analysis of paper structure and
reports experiments with 2D measure-
ments of surface topography, optical for-
mation and print quality. Similar research
has been conducted before but with only 1
mm resolution (17). The resolution in the
property maps analysed here is 0.01 mm.
The example cases present the analysis of

newsprint samples that have been printed
with a sheet-fed offset press.

The body of the paper is organized as
follows. First a description of the new
automatic image registration method is
given and its requirements and accuracy
discussed. The property maps measured
from the samples both before and after
printing are then introduced. The multi-
variate statistical analysis method
employing joint probability densities and
the application of the tools to the aligned
maps is then described. Finally, results
from the analysis are presented and the
information provided by these analytical
methods discussed.

ALIGNMENT OF MEASURED
MAPS
The registration and alignment of two
images, one a reference and the other
referred to as input, describes the process
whereby the input image is spatially
transformed to overlay it with the refer-
ence image. The image registration proce-
dure consists of two phases. They are both
based on point mapping which is the pri-
mary approach used to register images
with random textures (11). The similarity
of the images is measured by normalized
cross-correlation (15). Furthermore, it is
assumed that a global affine transforma-
tion (18) is sufficient to bring the corre-
sponding coordinates of the reference and
input images together. This assumption is
simply based on earlier experience with
misregistration between the measured
property maps. The major causes of mis-
registration in the 2D measurements are
known to be due to different resolution of
the measurements and minor error in ori-
entation between the sample and the mea-
suring device. It is also possible that there
is a slight obliqueness, for example due to
optical imperfections. Affine transforma-
tion can model and correct all these
effects with six parameters.

The registration is in two phases for
accuracy, computational efficiency, and
robustness. A coarse approximation for
plain translation is first identified and
then refined iteratively. The first phase
begins by placing a set of nine control
points close to the center of the reference
map, as illustrated in Figure 2. Small
areas around the control points are select-
ed and similar areas are searched from the
input image to locate the matching points.
At each control point, the estimate of the
translation between the images is deter-
mined by the position of the maximum of
the 2D cross-correlation function. Since

not all the control points require exactly
the same translation between the refer-
ence and input images, the weighted
median value of the nine translation esti-
mates, in both horizontal and vertical
directions is chosen as the first phase esti-
mate. Choosing median rather than mean
is for robustness.

The second registration phase general-
izes the transformation estimate from
plain translation to affine transformation.
It is an iterative process that gradually
refines the transformation estimate. At
each iteration step, a set of new control
points is automatically positioned on the
reference image, and the locations of these
points in the input image are predicted
with the transformation estimate from the
previous iteration step. The exact loca-
tions of the matching points are again cho-
sen at the maxima of the 2D cross-correla-
tion function. Since an estimate of the
required transformation exists, the search
area size in the similarity maximization is
considerably smaller than in the first
stage. This makes the point search compu-
tationally efficient. The locations of the
matching points are determined at sub-
pixel accuracy by fitting a second order
2D polynomial around the maximum of
the cross-correlation function. At the end
of each iteration step, the matching control
points found so far are used to form a new
transformation estimate. A global affine
transformation is fitted between the
matching control points using a weighted
least squares approach so that the effect of
abnormal control point pairs is minimized.

The control points selected during the
iteration gradually cover the image all the
way to the corners of the reference image,
thus improving the overall registration
accuracy. When the grid of control points
finally covers the joint area of the refer-
ence and input images, the iterative pro-
cedure is terminated and the final affine
transformation is fitted between the
matching control points. This automatic
registration procedure has been tested
with many 2D quality maps of both paper
and board and affine transformations
were found to be appropriate in all cases
and the alignment method was accurate
and robust. The transformation fitting
error is normally less than 0.3 pixels.
Obviously, when the two maps to be
aligned do not have common forms of
variation, the method fails.

The final part of the registration is
image alignment in which the estimated
transformation is applied to the coordi-
nates of the input image. Pixel values are
then interpolated to the new non-integer

Fig. 1 Multivariate analysis procedure.



coordinates. It is therefore important that
the spatial resolution of the input image is
high enough to enable the interpolation to
the reference image resolution.

MEASUREMENT DATA
Newsprint paper samples that were print-
ed with sheet-fed offset in a pilot press
were examined. The printing layout con-
tained various halftone and compact
colour areas of which five were selected as
test areas to be measured. The size of each
test area was 22 by 15 mm. Exactly the
same paper properties were measured
from the test areas before and after print-
ing. Firstly, optical formation/transmit-
tance was measured with a scanner with
illumination from the reverse side of the
sheet. Secondly, the samples were scanned
with reflective light so that images of
paper brightness and print quality were
obtained before and after printing, respec-
tively. Thirdly, surface topography was

measured with a photometric stereo
device that recovers the topography map
from digital photographic images taken
with different illumination directions (2).
This device also provides photographic
images of paper brightness and print qual-
ity, to be compared with the corresponding
images acquired by scanner. The pixel size
in all the measurements is approximately
10 µm in x and y directions.

Scanners and cameras were used to
record the intensity values of red, green
and blue light in separate channels. In
case of unprinted white paper the colour
channels contain almost equal planar vari-
ation. With printed samples the printing
colour affects the variation captured by
each channel. For instance cyan colour
reflects blue and green light but blocks
red wave lengths. Therefore the red chan-
nel best reveals the variation in print qual-
ity on cyan areas, whereas the blue and
green channels mostly carry information
about the paper, especially in transparent

scanning. Understanding and combining
the information on the colour channels is
essential in the multivariate analysis of
the aligned maps, but also in image regis-
tration because the reference and input
images should contain maximally com-
mon forms of variation to provide accu-
rate registration results.

The image registration procedure
described previously has proven to be
capable of successfully registering this
diverse set of 2D measurements acquired
from halftone and compact colour areas.
The registration results even revealed the
slight geometric distortions in the camera
images caused by the optics. It is possible
to implement camera calibration to maxi-
mize the usable measurement area, but for
the current measurements, only the parts
of the images with less than a half pixel
dislocation were selected for the analysis.
Even though this reduced the analyzed
area from the original size of 22 by 15
mm, extensive amounts of multivariate
image data were obtained; on each test
area the number of observations was
always more than two million. So far sta-
tistical analysis has been restricted to the
2D measurements collected from two dif-
ferent types of compact cyan areas that
will be described later in more detail.

In addition to camera calibration, these
registration and alignment methods rapid-
ly revealed a subtle twitching of the read
head of the scanner that was not dis-
cernible by naked eye during the mea-
surement. They also revealed that the tar-
get often was slightly out of focus in the
scanner measurements. Due to these
imperfections, optical formation measure-
ments were not analyzed further. To
replace the suboptimal scanner measure-
ment in the future, a camera-based device
for the measurement of optical formation
has already been constructed, that is
expected to give sharper images and bet-
ter dynamics in particular with the
unprinted paper that has been problemat-
ic for the scanner.

MULTIVARIATE STATISTICAL
ANALYSIS THROUGH JOINT
PROBABILITY DISTRIBU-
TIONS
In what follows, random variables are
denoted with upper case letters and the
values they take with corresponding
lower case letters.
The general form of the joint probability
density function of random variables
(vectors) X and Y is (15)

Fig. 2 Estimation of translation at the first phase of
image registration. Reference image with search
points (top) and input image with found points
(bottom). The true translation is [2.0 1.3] mm ([x y]).
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[1]

where P denotes probability.
Correspondingly, the conditional pdf of
random variable y given x is (15)

[2]

The regression of Y describes the expect-
ed value of this conditional density, thus it
is a function of x (15):

[3]

If the joint probability density of X and Y
is a multivariate Gaussian distribution,
and if X and Y are correlated, the regres-
sion of Y is a linear function of x.
However, the joint probability densities of
the property maps measured from paper
are not Gaussian. This can be easily veri-
fied by the information-theoretic
Kullback-Leibler distance, or relative
entropy (19). This measures the distance
between two probability distributions,
f1(x) and f2(x):

[4]

The Kullback-Leibler (KL) distance, D,
is always non-negative and zero only if
and only if f1(x) = f2(x). If f2(x) is chosen
as the Gaussian distribution estimate
based on the data, then f2(x) is parame-
terized by one mean vector and one
covariance matrix calculated from the
data. Then choosing f1(x) as the his-
togram estimate or the GMM estimate of
the pdf, permits the assessment of the
appropriateness of Gaussian approxima-
tion to the pdf. The larger the KL dis-
tances, the more the distribution (f1(x))
deviates from a Gaussian distribution.
The Kullback-Leibler distances comput-
ed from the experimental data are report-
ed in the following section.

Another statistical measure found use-
ful in this work is the skewness of the con-
ditional pdfs. The traditional measure of
skewness is based on the third moment of
the probability density. A skewness para-
meter based on the more robust order sta-
tistics has been used here for comparison.
The values of percentiles, b2.5, b50 and
b97.5, which are standard tabulated values
in statistical literature (e.g. (15)), have
been applied. In this case, percentiles were
computed numerically from the estimated
distributions as inverse values of the
cumulative distribution function. The 50 %

percentile, b50, is the median value. The
skewness parameter used in this work
depends on the relation of the 2.5 %, 50 %
and 97.5 % percentiles as follows:

[5]

According to this definition, the distri-
bution is symmetric when skewness
equals one. As shown in the following
section, the probability distributions com-
puted from the property maps measured
from paper are typically strongly skewed.

As the joint distributions are not
Gaussian, there are more appropriate
methods to analyze the dependencies than
linear regression. Principal component
analysis (PCA) (20) and independent com-
ponent analysis (ICA) (21) can give an
insight into the sources of variation in the
data by revealing statistically significant
dimensions in the multivariate data space.
However, the most complete description of
the statistical dependencies between the
measured variables is provided by the joint
probability density functions.

There are two ways to proceed with the
non-Gaussian joint pdfs: by describing
the interrelationship of the variables by
their joint histogram, or by choosing a
parametric model for the joint pdf and
identifying the model parameters. In the
latter case, the Gaussian mixture model
(GMM) (16) is a very attractive choice
due to its simple and efficient formula-
tion. GMM approximates the probability
density function of a d-dimensional ran-
dom variable X as a weighted sum of N
Gaussian distributions:

[6]

Each Gaussian component is parameterized
by its mean, µµi, and covariance matrix, Ci.
The weights, ci, of the Gaussians compo-
nents are called the priors. With sufficient-
ly high number of component distributions,
GMM is capable of describing practically
any continuous distribution (22). The para-
meters of GMM model are typically esti-
mated by the expectation maximization
(EM) algorithm (23).

The joint pdf estimation – either
through histogram, GMM or any other
method – provides several possibilities
for further analysis. Firstly, nonlinear
regression can be computed from the joint
density by applying Equation 3. Secondly,
the different levels of probability in the

joint pdf can be examined to form anom-
aly maps. They reveal the points and areas
of the multivariate image that most
extremely deviate from the typical statis-
tical behavior of the data. The condition
for an observation vector x at location i to
be abnormal to degree p is given as

[7]

where f(x) is the probability density func-
tion of x and the relationship between C
and p is determined through

[8]

In practice, the abnormality degree, p
(e.g. 2.5 %), is first chosen. A suitable
upper limit, C, is then determined for the
probability density so that the integral in
Equation 8 equals p. The anomaly map is
obtained by making a mask where loca-
tions i that satisfy the condition 7 are
given a value one whereas all other loca-
tions of the mask assume value zero.

Thirdly, the tails of the conditional
probability densities can be examined to
detect exceptional values on the (print
quality) maps. As anomaly maps are
based on joint pdfs and tail analysis on
conditional pdfs, not all of these latter
exceptional values are in the anomaly
maps. Finally, the tail areas and the points
indicated by the anomaly maps can be
overlaid with the original 2D measure-
ment maps. Now it is easy to visualize the
points and local areas that show excep-
tional behavior. The possible concentra-
tion of the anomalies on the measured
maps indicates disturbances in the process
that produced the data.

RESULTS OF MULTIVARIATE
STATISTICAL ANALYSIS
The objective of this work is to find and
describe the probabilistic dependencies
between print quality and the physical
structure of unprinted paper. The results
presented here concentrate on the joint
probability distributions of surface topog-
raphy and print quality on two different
types of test areas. The print quality is
described by the photographic image of
the test area, taken after printing. The
common size of the analyzed 2D maps on
each test area (after discarding the geo-
metrically distorted parts) is typically
around 20 by 13 mm but a smaller area has
been chosen here to show more details.
The illustrations present a 5 by 5 mm
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selection of a test area that was printed
with compact cyan so that only the cyan
printing roll pressed the test area. There
was neither water application nor back-
trap conditions present on this test area.
The other type of test area examined in
this work was printed with compact cyan
in normal 4-colour offset conditions with
water and back-trap. Eight newsprint
paper sheets were examined, each sheet
containing one test area of each type of
cyan printing. 

In the analysis, both joint histograms
and GMM-based pdfs are used to describe
the data. By comparing the GMM-based
distribution models with histograms it is
possible to ensure that all the essential
details of the data have been taken into
account in GMM. As GMM can describe
very complicated distributions with a
moderate number of parameters, it is the
main tool used in the analysis.
Furthermore, GMM enables the analytical
calculation of conditional probability
densities and statistical parameters such
as cumulants and moments.

An example is given of the analysis of

two 2D maps, surface topography and pho-
tographic reflectance image of print quali-
ty, measured from exactly the same area.
The aligned maps are shown in Figure 3.
There are light spots in the reflectance
(print quality) map due to low local densi-
ty or missing printing ink. These spots
cause the scattering on the upper edge of
the joint histogram shown in Figure 4. The
three-dimensional histogram is shown
from above and the heights of the bins are
presented by the different colours. In
Figure 4 it is notable that the joint pdf is
skewed towards the higher values of
reflectance. A closer look at the skewness
and the shape of the tails of the condition-
al distributions is presented in Figure 5. It
shows selected vertical ‘slices’ of the joint
pdf estimated by both the histogram
(slightly smoothed with a sliding Gaussian
kernel) and a 10-component GMM. In
Figure 5 the conditional pdfs are presented
on logarithmic scale to emphasize the tails
of the conditional distributions.

The regression of print quality accord-
ing to Equation 3, using the maps in
Figure 3, is non-linear due to the non-

Gaussian shape of the joint pdf. The
regression curves as conditional expected
values and their uncertainties are present-
ed in Figure 6 for both the GMM and his-
togram approach. Notable increase in the
reflectance value is expected as the pits in
the paper surface get deeper. Instead of a
least-squares linear fit over the total data
set, the nonlinear regression is computed
at each value of surface height from the
conditional pdf of reflectance. GMM pro-
vides a particularly easy access to the
regression estimate that can be calculated
analytically from the model parameters.
Furthermore, the unstable behavior of
regression estimate at the edges of the
data value range, resulting from the rela-
tively low number of observations, is
avoided in the GMM approach. However,
it should be noted that 99 % of the surface
height values in this case lie between -11
µm and +10 µm. As there are hardly any
data points beyond this range, the regres-
sion estimates as well as the Kullback-
Leibler distances and skewness values
presented in the following are unreliable
at the extreme values of surface height.

Figure 7 presents the Kullback-Leibler
(KL) distances between the GMM-based
conditional pdfs of print quality and the
corresponding single Gaussian models.
Throughout the surface height range, the
KL distance is higher than zero, which
was expected from the non-Gaussian
shape of the conditional pdfs. It can also
be seen that the KL distance decreases as
the surface height values increase until
the height value reaches 10 µm. Beyond
this height the results are unreliable due to
the low number of observations. The
decrease in KL distance corresponds to

Fig 4 Joint histogram of surface topography and print
quality measurements. The vertical dashed lines
indicate the sampling points of the conditional
pdfs shown in Figure 5.
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Fig. 3 Surface topography (top) and aligned photographic
reflectance image of print quality (bottom) on a 5
by 5 mm area.
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the narrowing of the joint histogram in
Figure 4 towards a more Gaussian shape.
A similar shape to that of the KL curve
can be seen in Figure 8 that presents the
skewness of the conditional pdfs of print

quality computed according to Equation
5. The visual analysis of all the 16 cyan
test areas (eight with normal printing con-
ditions and eight without back-trap) has
suggested that the skewness parameters

and KL distances are related to the
amount of print defects. Based on visual
inspection, the areas printed without
back-trap typically contain clearly visible
print defects whereas the normal cyan

Fig. 5 Histogram-based (gray bars) and GMM-based (dashed black line) conditional pdfs of print quality at the values of sur-
face height shown in Figure 4. The vertical lines indicate 2.5 %, 50 % and 97.5 % percentiles computed from GMM.
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print quality, computed through GMM.
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areas have only very small and few light
spots, if any. The print defects skew the
joint histogram towards the high values of
reflectance and thus increase the skewness
measure and Kullback-Leibler distance.
To summarize the behavior of these para-
meters in the different printing settings,
the shape of the conditional pdf of print
quality, subject to the condition that the
surface height value is below zero, was
examined. This limits the inspection to the
areas where valleys or pits in the surface
may have caused print defects. The skew-
ness parameter and KL distance have been
computed from the conditional pdf of
print quality of each of the 16 test areas.
The results are illustrated in Figure 9.
When the eight non-back-trap cyan areas
are compared to the eight normal cyan
areas, the average KL distance increases

approximately 50 % and the average
skewness more than doubles.

Anomaly maps can be derived from
the joint pdf by thresholding according to
a chosen level of probability. Figure 10
presents an anomaly map that reveals
those points from the surface topography
and print quality maps of Figure 3 that
occur with less than 2.5 % probability
according to their joint probability distri-
bution. As the likelihood of these obser-
vations is very small, they cannot be
expected to be explained by the regres-
sion model. For comparison, Figure 11
shows a mask that detects exceptional
points in the print quality map based on
the low probability tail areas of the condi-
tional pdfs. While the mask in Figure 11
efficiently detects the points where the
reflectance measured from the print is

exceptionally high, the mask in Figure 10
introduces the effect of the combined
exceptionality of surface height value and
print quality. The comparison of these
masks provides information about the role
of surface topography in the occurrence
of print defects. 

DISCUSSION

This study has been limited to printing
newsprint paper with sheet-fed offset
even though this is not commercially rel-
evant. Newsprint was chosen for the
experiments because a relatively clear
view of the effect of surface topography
on print quality was wanted, without the
additional complexity caused by coating.
Sheet-fed offset was chosen because it
was the only production-scale printing

Fig. 8 Skewness of conditional pdfs of print quality,
based on the percentiles computed from GMM. 
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method that enabled controlled measure-
ments before and after printing. 

The unusual printing conditions may
partly explain the large variance of the
skewness and Kullback-Leibler results
seen in Figure 9. This is particularly like-
ly for the non-back-trap test areas where
neither water application nor back-trap
conditions were present. Various factors
other than surface topography, for
instance surface strength, have obviously
affected the print quality in this experi-
ment. It will be possible to further verify
the feasibility of the probabilistic analysis
framework as new printing data sets
become available from, e.g., gravure
printing experiments.

CONCLUSIONS
A two-phase image registration procedure
for robust and accurate automatic registra-
tion and alignment of randomly textured
images has been developed and imple-
mented. Successful sub-pixel alignment of
the 2D measurements has enabled the
probabilistic joint analysis of print quality
and surface topography maps measured
from exactly the same area. The large
amount of multivariate pointwise data in
the aligned property maps provides a
strong basis for statistical inference.

The objective of the work is to find and
describe the dependencies between print
quality and the physical structure of
unprinted paper. These dependencies are
probabilistic rather than deterministic, and
therefore the joint probability distributions
of the measured variables are needed to
reveal the essential information. The joint
pdfs have been described by histograms
and Gaussian mixture models. The skew-
ness and Kullback-Leibler distance para-
meters have been computed from the pdfs,

and the usefulness of these parameters in
the characterization of the probability den-
sities and, finally, print quality has been
illustrated. Anomaly maps have also been
formed from the joint pdfs to reveal the
low probability, high importance, print
defects and to evaluate their origins.

As indicated in this work, multivariate
analysis in terms of joint pdfs is an impor-
tant link between the combined effect of
unprinted paper properties, processing
conditions and the quality of print –
directly measurable as a map of colour
variation. It is expected that these meth-
ods will find wide application in analyz-
ing the structural dependencies of paper
and board quality.
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