
Hindawi Publishing Corporation
International Journal of Navigation and Observation
Volume 2010, Article ID 869127, 10 pages
doi:10.1155/2010/869127

Research Article

Accuracy Improvement by Boundary Conditions for
Inertial Navigation

Tuukka Nieminen, Jari Kangas, Saku Suuriniemi, and Lauri Kettunen

Tampere University of Technology, Department of Electronics, Unit of Electromagnetics, P.O. Box 692, 33101 Tampere, Finland

Correspondence should be addressed to Tuukka Nieminen, tuukka.nieminen@tut.fi

Received 16 September 2009; Revised 8 January 2010; Accepted 12 May 2010

Academic Editor: Paul Cross

Copyright © 2010 Tuukka Nieminen et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The term inertial navigation is often automatically associated with the term initial value problem. However, there are many
applications where it is possible to end up with a boundary value problem (BVP) as well. We show that in case of a BVP, the finite
element method that incorporates boundary conditions can be efficiently used to compute position and velocity estimates not prone
to accumulation of errors. For further accuracy enhancements, a method of combining inertial measurements with additional
constraints is proposed. This way, we can model sensor errors, known to limit the accuracy of the system. The capabilities of the
proposed methods are demonstrated with real-life examples.

1. Introduction

Typically, inertial measurements are made to have estimates
of current position and velocity in real time. The set
of equations used to compute the position and velocity
estimates out of the actual measurements depends greatly on
the application in hand. Equations for a general navigation
application are presented, for example, in [1] and [2–5]. In
this study, however, we shall concentrate on the growing
market of consumer applications employing inertial sensors
within a suitable price (and quality) range. Thus, we can
simplify the equations needed to compute the position and
velocity estimates. This is so, because in this case the errors
are more likely to be determined by the limited accuracy of
the sensors rather than the accuracy of the used equations.

In terms of the simplified equations, we basically need
to solve the following problem: given a(t) : R → R3, find
r(t) : R → R3 such that r satisfies

r̈(t) = a(t). (1)

In (1), “¨” represents the second time derivative, r(t) is
the position of the object in a suitable coordinate frame,
a(t) represents the acceleration of the object in the same
coordinate frame, and t is time. The velocity of the object
(ṙ), given in the same coordinate frame as a(t) and r(t), is

denoted as v(t). Notice that the form (1) follows from the
more general navigation situation by neglecting the rotation
and “curvature” of the Earth.

Now, from the theory of ordinary differential equations
(ODEs), we know that we need exactly two independent
constraints to unambiguously solve a 2nd order ODE (1).
Particularly, if these two independent constraints are both
given at time t = T0, we have an initial value problem (IVP)
[6]: given a(t), v(T0), and r(T0), find r(t) such that

r̈(t) = a(t),

v(T0) = v0,

r(T0) = r0

(2)

hold. Problems that are not IVPs based on the above
definition are called boundary value problems (BVPs). A
special case of a BVP, convenient to our purposes, is stated
as follows: given a(t), one of the constraints

v(T0) = v0 or r(T0) = r0, (3)

and one of the constraints

v(T1) = v1 or r(T1) = r1, (4)

2 International Journal of Navigation and Observation

find r(t) for T0 ≤ t ≤ T1 such that it satisfies

r̈(t) = a(t),

v(T0) = v0, or r(T0) = r0

v(T1) = v1 or r(T1) = r1.

, (5)

We know for a fact that a problem of the form (5) has a
unique solution whenever the position is fixed at least at one
boundary: This knowledge comes from the fact that (7) is a
one-dimensional case of a certain class of partial differential
equations called Poisson problems, properties of which are
well known [7].

Notice that there is a natural reason why problems (2)
and (5) are distinguished. Namely, the solution methods
for IVPs and BVPs differ substantially from each other
[6, 8]. This is also where this paper differs from numerous
research articles considering inertial navigation: previously,
the problems have been given in the form (2), whereas we
consider problems of the form (5).

The key assumption of our approach is the following:
inertial measurements related to a certain time period, includ-
ing a set of boundary values and possibly some additional
constraints, are all available when processed. The length of the
time period (i.e., domain) [T0,T1] in (5) can be anything
from fractions of a second to some minutes. There are
different ways we may end up with a BVP of the form
(5): firstly, the underlying problem may naturally be a BVP.
Secondly, we may have an IVP, which we can pose as a BVP.
This, of course, requires that we also know something about
the result at the end of the interesting event and that we
can afford to wait for the results until the end of the event.
In the first case, we generally do not have any additional
constraints we could use, but in the second case we end up
with a BVP and at least one additional constraint. We will
discuss examples of both cases in the next section.

The case where we only know the velocity at both ends
is, however, special and deserves some attention. According
to the discussion above, we do not have a unique solution
for this kind of a BVP although it fits the definition of our
model BVP (5). It is neither a valid IVP according to (2). As
it turns out, it is possible to solve also this without loss of
generality. This is based on the fact that we can always fix the
position at one boundary without changing the “shape” of
the solution. Then, we will come up with a well-defined BVP
with an additional constraint.

The overall scope of this paper is to show how to treat
inertial navigation problems that are naturally (or know-
ingly) posed as a BVP of the form (5). Attitude computations
are not considered, and where necessary, attitude is assumed
to be available. The form of problem (5) allows us to consider
it as a set of three one-dimensional (1D) problems, rather
than one three-dimensional (3D) problem. Notice that two
boundary values per a dimension are required to obtain a
unique solution. On the other hand, there is no need for the
boundary values for different dimensions to be of the same
type.

This paper is organized as follows: in Section 2, pre-
liminaries are discussed. In Sections 3 and 4, we will show

how to exploit 1D finite element method (FEM) to solve the
underlying BVP with various possible choices of boundary
conditions. At this stage, we assume that no additional
constraints are given and that the measurements are exact. In
Section 5, we face the reality with faulty measurements and
exploit linear additional constraints to enhance the accuracy
of the results. The underlying BVP is treated as exact, but
the measurements are corrected using a linear sensor error
model. As a result, we get two systems of linear equations:
an exact one for the BVP and possibly an overdetermined
one for the parameters of the sensor error model. We will
solve these together to yield the corrected results. Finally, two
real-life examples are discussed in Sections 6 and 7 before the
conclusions in Section 8.

2. Preliminaries

Let us first motivate the chosen approach by means of
examples: an application suitable to our approach is ski
jumping, which has been the prime motivation of this study
[9]. As an inertial navigation problem, it includes the use
of consumer grade sensors with knowledge of the boundary
values (in this case, position at both ends of the event). See
Section 7 for further details.

It turns out that especially sports applications tend to have
properties that are well suited to the considered approach:
the included actions are often periodic, in such a way that the
certain short-term action (e.g., a single step) repeats several
times or some longer-term action a few times (e.g., a single
lap or a single jump as discussed earlier) during a certain
event. In these kinds of applications, it is natural to encounter
problems of the form (5) rather than (2): for example, in long
jump (considering only the jump part), at time T0 (“take
off”), the velocity of the shoe is known but position is not
and at time T1 (“landing”), the position of the shoe when it
hits the surface of the sand can be accurately measured but
the velocity is unknown.

For a more general view, even a GPS-assisted inertial
navigation system can be considered as a series of separate
navigation periods with given boundary values rather than a
single event with additional constraints given at certain time
instances. This is an example of an IVP, which can be posed
as a BVP.

2.1. Some Remarks. There are two main classes of numerical
methods for BVP’s. One class includes so-called shooting
methods and the other class methods of weighted residuals
such as FEM [8, 10]. We concentrate on the latter because
of its property to minimize an error norm over the whole
integration interval rather than minimizing only the local
error [7]. Another tempting property is that it concerns the
position directly, giving us a possibility to more easily handle
various types of additional constraints we will encounter
later on.

In many applications, inertial measurements are not the
only source of information. In practice, however, the number
or the type of these additional constraints—combined with
the different kinds of a solution method—does not suggest

International Journal of Navigation and Observation 3

the use of the traditional filtering (see Section 5 for details).
For these situations, we will introduce a computationally
cheap and easily exploitable method to enhance the accuracy
of the position and velocity estimates. The proposed method
is based on sensor error modeling and is characterized by the
following assumptions.

(i) Sensor errors are modeled as constant errors. While
the behavior of a certain sensor error is in real life a
stochastic process, one is usually able to fairly model
it at least momentarily as a constant error. A suitable
mathematical tool to characterize this is the Allan
variance [11].

(ii) Considering consumer grade sensors, causes of the
most significant errors are usually known (e.g., bias
and scale factor error, both changing from turn-on to
turn-on [2]).

(iii) In particular, the sensor noise is not modeled. This
is a conscious modeling decision to prevent unneces-
sary “smoothing” of data.

(iv) Additional constraints are treated as “exact”. That
is, the overall error in the additional constraints is
assumed to be smaller than the error caused by the
simplification of the navigation equations.

When additional constraints are available, problems
resembling the ones considered here have previously been
resolved using the means of fixed interval smoothing (or
“Kalman smoother”, if the type of the filter is fixed) [12–
15]. Considering inertial navigation, the most used methods
of solving the problems are the two-filter smoother [16]
and Rauch-Tung-Striebel smoother [17], used for example in
[15, 18–20]. In both cases, the problem itself is posed as an
IVP and the basic idea is to run the filter in the forward
direction as a “predictor” in phase one and then to run the
filter in the backward direction while combining these two
results to yield the corrected result in phase two. Between the
proposed method and the fixed interval smoothing method,
the fundamental difference is that in the proposed method
the dynamics model is based on the BVP formulation and
in the previous approaches, on the IVP formulation with
additional smoothing.

Comparing the fixed interval smoothing technique to the
proposed method, in addition to the previously mentioned
points, the most significant differences are as follows.

(i) As fixed interval smoothing is run in both directions,
the filter needs two process models, which can be
problematic [21]. As the proposed method is based
on the BVP formulation, it does not make a distinc-
tion between forward and backward directions.

(ii) In the filtering approach, each additional constraint
is assumed to be attached to a single time instance
[2], while the proposed method does not make such
a restriction (see Section 5 for details).

(iii) Fixed interval smoothing is a two-phase method
requiring numerous computations per time step

[2, 15], whereas the proposed approach is a single-
phase method with only few computations per an
unknown.

Due to the significant differences in these two approach-
es, we will in this context concentrate on the proposed
method. Obviously, there are situations where the two
methods could both be used. Comparison of the methods
in such a situation is interesting, although not addressed in
this paper.

Finally, recall that problem (5) can be considered as a
set of three 1D problems. Thus, let us focus on the 1D
case for a while. Details of the more prevalent 3D case are
considered later on. Notice that because of this, the symbols
will be changed a bit: r0, v0 ∈ R whereas r0, v0 ∈ R3 and
so on. In the following treatment, it is assumed that the
accelerometer samples represent an instantaneous value of
the specific force. In other words, it is assumed that the sensor
output is not processed in any way before the “navigation
computer.”

3. Solution of a BVP

The main goal of this section is to form a linear system of
equations of the form Ax = b for the position estimates x.
These are now expressed as a vector containing the position
at each discrete time instant (referred to as xi), where the
vector b is a function of a(t). In the following treatment, the
total number of the samples is N , ti ∈ [T0,T1] is the value of
time instant i ∈ Z (1 ≤ i ≤ N), and hi = ti+1 − ti.

Now, let us rephrase problem (5) as a variational
equation

∫ T1

T0

r̈u dt =
∫ T1

T0

audt ∀u ∈ U , (6)

where U is a Hilbert space [7]. Second derivative of r can be
eliminated by integrating the left-hand side of (6) by parts,
which yields

∫ T1

T0

r̈u dt =
/ T1

T0

ṙu−
∫ T1

T0

ṙu̇ dt =
∫ T1

T0

audt ∀u ∈ U ,

(7)

where the notation “
/

” stands for substitution. By evaluating

the substitution term and rearranging (7), we get

∫ T1

T0

ṙu̇dt = −
∫ T1

T0

audt + ṙ(T1)u(T1)

− ṙ(T0)u(T0) ∀u ∈ U.

(8)

While (8) is otherwise in a convenient form for our
purposes, it is not well suited for practical computations,
because U is an infinite-dimensional space. Thus, let us
approximate U with a finite-dimensional space spanned by

4 International Journal of Navigation and Observation

t1 t2 ti−1

hi−1 hi
ti

hi+1

ti+1 ti+2 tN−1 tN

· · · · · ·

φ1 φi φi+1 φN

t

1

φ

Figure 1: Lowest order basis functions φi.

piecewise affine basis functions (“affine function = linear
function + a constant”)

φi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t < ti−1,

(t − ti−1)
hi−1

, ti−1 ≤ t < ti,

1− (t − ti)
hi

, ti ≤ t < ti+1,

0, t ≥ ti+1,

(9)

often referred to as the “hat” functions. Functions (9) for few
values of i are shown in Figure 1. Also, let us use the same
basis functions φ to discretize u and r. This choice is often
referred to as the Galerkin method [7]. Note that it is also
possible to choose basis functions φi different from the lowest
order approximation used here, when considered necessary.

Given the basis functions φi, notice that the position r
can be approximated as a piecewise affine function

r ≈
N∑
i=1

xiφi. (10)

From (8), we see that the derivatives of the basis functions
(9) are also needed. It holds that

φ̇i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t < ti−1,

1
hi−1

, ti−1 < t < ti,

− 1
hi

, ti < t < ti+1 ,

0, t > ti+1.

(11)

From Figure 2, one can verify that function φ̇i is a piecewise
constant function, discontinuous at points ti−1, ti, and ti+1.
From (8) we see that we need to integrate a similar term with
discontinuities at the nodes over the domain. In other words,
these discontinuities do not matter, which is a well-known
fact from integral theory.

In total, we are now in the position to discretize equation
(8), which yields

N∑
i=1

xi

∫ T1

T0

φ̇iφ̇ j dt = −
∫ T1

T0

aφj dt + ṙ(T1)φj(T1)

− ṙ(T0)φj(T0) ∀ j = 1, 2, . . . ,N.

(12)

−1/hi+1

−1/hi

1/hi

1/hi−1

φ̇

ti−1

ti+2
t

Figure 2: Time derivative of the lowest order basis functions φi
(dashed line) and φi+1 (dotted line).

Now that we have discretized the problem, we are getting
closer to the equation Ax = b stated as our goal. In fact,
(12) is a system of linear equations. Thus, let us start by
assembling the matrix A. Knowing that the index i in (12)
refers to a certain column and j to a certain row, the elements
of A are given as

A
[
i, j
] =

∫ T1

T0

φ̇iφ̇ j dt ∀i, j = 1, 2, . . . ,N , (13)

which are easy to compute by substitution of (11) into (13).
In practice, A is going to have only few nonzero elements
all of them at the diagonal, subdiagonal, and superdiagonal
(assuming the “obvious” indexing). For equally spaced nodes
with step size h, for example, we have elements 2/h at the
diagonal and −1/h at the sub-and superdiagonal.

Our next task is to compute the vector b. As seen from
(12), the task is to integrate term aφj over the interval
[T0,T1]. To do this, we fit a piecewise affine function to a(t)
between every node as seen in Figure 3 with dashed line,
which yields

∫ t j+1

t j−1

aφj dt = hj−1

6

[
a
(
t j−1

)
+ 2a

(
t j
)]

+
hj
6

[
2a
(
t j
)

+ a
(
t j+1

)] (14)

for every j ∈ [2,N − 1]. For nodes j = 1 and j = N , we get

∫ t2
t1
aφj dt = h1

6
[2a(t0) + a(t1)],

∫ tN
tN−1

aφj dt = hN−1

6
[a(tN−1) + 2a(tN)],

(15)

respectively.
Finally, let us consider how to apply the different types

of boundary values into (12). At first, notice that terms
φj(T1) and φj(T0) seen in (12) will be nonzero (evaluating
to value one) only for the values j = 1 and j = N ,
respectively. If ṙ(T0) = v0 or ṙ(T1) = v1 of (5) is given,
the respective boundary condition is called a Neumann
boundary condition [7]. These can be applied directly by
adding the given values into b.

International Journal of Navigation and Observation 5

t1 ti−2 ti−1

hi−1

ti

hi
ti+1 ti+2 tN

· · · · · ·

φi

a(ti−1)

a(ti+1)

a(ti)

t

Figure 3: Basis function φi along with the corresponding accelera-
tion values.

The other possibility for the boundary values is to have
r(T0) = r0 or r(T1) = r1 fixed thus having a Dirichlet
boundary condition [7]. As the value at the corresponding
boundary is already known, it does not need to be solved.
Thus, we can move all terms depending on it to b reducing
the number of unknown terms by one. For the reduced
system, the corresponding term of the last two terms of
(12) will be zero, as mentioned above. Recall that it is also
possible to have a Dirichlet condition on one boundary and
a Neumann condition on the other boundary.

We have now means to assembly an equation of the form

Ax = b (16)

for the (1D) position of the object. Depending on the type of
the applied boundary conditions, the number of unknowns
n is equal to N −1 or N −2. Matrix A ∈ Rn×n is known to be
symmetric and positive definite [22]. With the chosen basis
functions, A is also a tridiagonal matrix. In practice, these
properties guarantee that (16) can be solved with linear time
complexity [8]. In other words, when doubling the amount
of unknowns N , the time needed to solve the system is also
doubled (approximately), which is certainly not true for a
general system of linear equations.

From the position data x, it is now a straightforward
task to compute the velocity using a suitable numerical
differentiation formula. Since the position data is relatively
smooth due to the “double integration” process, we have not
experienced any problems in computing the derivative with
an adequate accuracy.

4. Generalization to 3D

In this section, we will generalize the method described in
the previous section to the 3D case. For this, we introduce a
coordinate transformation matrix C(t) used to transform the
specific force measurements fb(t) into the accelerations an(t)
represented in a suitable navigation frame as follows:

an(t) = C(t)ab(t). (17)

An element-wise representation of C(t) is

C(t) =

⎡
⎢⎢⎢⎣
c11(t) c12(t) c13(t)

c21(t) c22(t) c23(t)

c32(t) c32(t) c33(t)

⎤
⎥⎥⎥⎦. (18)

In this paper, we will assume that an estimate of C(t) for
each time instant is available. Note that C(t) depends only
on the attitude, which is independent of the position and
velocity, when the assumptions considered in the first section
are valid [2]. Furthermore, let vector gn be the acceleration
due to the gravity represented in the navigation frame. With
these notions, the specific force measurements f made by the
accelerometers can be “converted” into accelerations as

an
1 = c11 f

b
1 + c12 f

b
2 + c13 f

b
3 + gn

1 ,

an
2 = c21 f

b
1 + c22 f

b
2 + c23 f

b
3 + gn

2

an
3 = c31 f

b
1 + c32 f

b
2 + c33 f

b
3 + gn

3 ,

, (19)

where the time dependencies have not been explicitly stated.
Now, following from (19) and the right-hand side of

(12), we have an equation

bi
[
j
] = −

∫ T1

T0

an
i φ j dt

= −
∫ T1

T0

[
ci1 f

b
1 + ci2 f

b
2 + ci3 f

b
3 + gn

i

]
φj dt

(20)

for the j th component of vector bi ∀ i = [1, 2, 3]. Thus,
the linear equation for the 3D position is

⎡
⎢⎢⎢⎣

A1 0 0

0 A2 0

0 0 A3

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1

b2

b3

⎤
⎥⎥⎥⎦. (21)

As discussed in the previous section, matrix Ai is a tridi-
agonal matrix. Then, also the system matrix of (21) is not
only tridiagonal, but a block diagonal matrix. For instance,
if boundary conditions are fixed in the same way for all
dimensions, it follows that A1 = A2 = A3 holds.

With the equations derived in this section, it is possible
to solve the 3D BVP using the presented FEM method. The
solution of this more general problem can also be found with
linear time complexity, as in the 1D case.

5. Using a Number of Additional Constraints to
Model Sensor Errors

So far we have constructed a method to compute position
and velocity data with certain boundary conditions. We will
now propose a way to exploit a number of additional con-
straints concerning the velocity or the position information
to estimate sensor errors. For this, let us now precisely define
the term “additional constraint”: an additional constraint is a
linear equation that bounds the position or the velocity of the
object at an arbitrary number of time instances ti ∈ [T0,T1].

6 International Journal of Navigation and Observation

At simplest, the previous definition could simply mean that
v1(ti) is fixed. On the other hand, a less intuitive equation∑N

i=1[r1(ti) + r2(ti)] = z1 is also a valid constraint. This way,
we can for example exploit constraints like xi = xj for any i
and j without saying anything about the absolute position
at these points. It could be hard to exploit these kind of
constraints properly in traditional filtering problems.

In this section, we will use constraints systematically to
enhance accuracy. To make the concepts presented in this
section clear, let us first present the equations for the 1D case.

5.1. Treating Additional Constraints. Let us first assume
that A ∈ RN×N holds. That is, given a Dirichlet bound-
ary condition, we add an auxiliary equation to the system
instead of removing the corresponding boundary value from
the system. This is a necessary procedure when exploiting
additional constraints.

In general, all linear constraints can be represented in the
form

Dx = e, (22)

where D ∈ Rp×N and e ∈ Rp hold, where p is the number
of the constraint equations. For a practical example closely
related to the example 1, consider that (5) is solved with
Dirichlet boundary values. If the Neumann boundary values
are also known and the samples are equally spaced, one can
construct (22) as

D =

⎡
⎢⎢⎣
− 3

2h
2
h
− 1

2h
0 · · · 0 0 0 0

0 0 0 0 · · · 0
1

2h
−2
h

3
2h

⎤
⎥⎥⎦ (23)

e =
⎡
⎣v0

v1

⎤
⎦. (24)

Matrix D is formed using a three-point differentiation
method based on polynomial interpolation [10] to deter-
mine Neumann boundary values from the displacement
data.

These constraints could be exploited just by computing
the linear least squares problem constructed by adding these
additional equations to (16). Usually, however, it is favorable
to use the additional constraints to model sensor errors, at
least when one has any knowledge of the types of the errors
included in the measurements. For more information on
the assumptions related to the sensor error modeling, recall
Section 2.1. In this text, we will present a linear sensor error
model.

5.2. Sensor Error Model. In typical situations, bias offset
(i.e., the sensor shows nonzero output when no forces are
acting upon it) and scaling factor are the two terms which
have to beknown very accurately in order to have any
realistic position or velocity estimate as a solution. Because
of the run-to-run variations of these errors, they cannot be
assumed to be constant between two separate events. Thus,

they should be treated as unknowns. Other typical errors are
caused by misalignment of the axes, changing temperature
and drifting bias.

As a practical example used in the example 1 later in
Section 6, let us model the sensor errors as follows:

f̂ (t) = s f (t) + b, (25)

where f̂ (t) is the corrected specific force measurement, s is
some constant scaling factor, and b is some constant bias
term correcting the erroneous measurement. By replacing
the measured f (t) treated in the previous section with the

corrected acceleration f̂ (t), it is easy to form an equation of
the form

b = Fl (26)

for vector b seen in (16). Matrix F is in this case an N ×
2 matrix, whose elements are formed by computing the
integrals − ∫ T1

T0
aφj and − ∫ T1

T0
φj from (12). Vector l is simply

[s b]T .
Let us now replace the right-hand side of (16) with

b0 + b = b0 + Fl, (27)

where b0 depends only on the given boundary conditions
(which are treated as exact) and corresponding boundary
values. This distinction is necessary, since one should
not modify the given boundary values by applying error
modeling on them.

In general, a problem of linear constraints used to model
linear sensor errors can be stated as

⎧⎨
⎩

Ax = b0 + Fl,

Dx = e,
(28)

where F ∈ RN×q, l ∈ Rq hold, and q is the number of
modeled sensor error terms.

Now, since A is known to be invertible, one gets an
equation

DA−1Fl = e−DA−1b0 (29)

for l. Note that the matrix DA−1F has dimension p × q, that
is, it is typically a very small matrix compared to A. With l
known, it is easy to solve for x.

In the case where p > q (more constraints than
model parameters), one can also take reliability of different
measurements into account by solving a weighted least
squares problem (WLS) [22]. In general, (29) has a unique
solution l only when p = q holds and the row rank of D
is full. Typically, making sure that p ≥ q and that the row
rank of D is at least q, (29) has either a unique or a least
squares solution for l. In each case, the upper equation of
(28) is treated as an exact equation.

5.3. Additional Constraints in 3D. Let us now consider
the use of additional constraints in a 3D case. Using the

International Journal of Navigation and Observation 7

notions form the previous section and (22) as an example,
constraints can be represented as

D

⎡
⎢⎢⎢⎣

x1

x2

x3

⎤
⎥⎥⎥⎦ = e. (30)

In addition to the sensor errors discussed in the 1D
example, it is now also possible to model errors like attitude
errors, unknown value of the acceleration due to the gravity,
and cross-correlation of different sensors. A particularly
useful method is to treat the acceleration due to the gravity
as an unknown three-dimensional vector, which is then
subtracted from the specific force measurements given in the
global coordinates. This reduces the systems sensitivity to
initial attitude errors.

As an example, let us now derive the equations for sensor
error of (25) for each axis in addition to the unknown accel-
eration due to the gravity discussed above. Thus, we have a
total of 9 unknown model parameters. As one could expect,
we must take the effects of the coordinate transformation
matrix into account when deriving the necessary equations.
By plugging (25) into (21), we have

bi
[
j
] = −

∫ T1

T0

[
ci1

(
s1 f

b
1 + b1

)
+ ci2

(
s2 f

b
2 + b2

)

− ci3
(
s3 f

b
3 + b3

)
+ gn

i

]
φj dt

= −s1
∫ T1

T0

ci1 f
b

1 φj dt − b1

∫ T1

T0

ci1φj dt

− s2
∫ T1

T0

ci2 f
b

2 φj dt − b2

∫ T1

T0

ci2φj dt

− s3
∫ T1

T0

ci3 f
b

3 φj dt − b3

∫ T1

T0

ci3φj dt

− gn
i

∫ T1

T0

φj dt.

(31)

The several integrals in (31) are scalars for each j ∈
[1, 2, . . . N], easily evaluated with (14) and (15), since no
unknown terms appear inside the integrals. Let us now
gather the results into vectors

pklmn
[
j
] = −

∫ T1

T0

cmkl
(
f b
l

)n
φj dt (32)

for all j ∈ [1, 2, . . . ,N]. With these notions, we get, for
example

pkl11
[
j
] = −

∫ T1

T0

ckl f
b
l φ j dt,

pkl1
[
j
] = −

∫ T1

T0

cklφj dt,

p
[
j
] = −

∫ T1

T0

φj dt,

(33)

ω(t)
ameas

atrue

Figure 4: Measurement setup of example 1.

where only the relevant indices are shown. Thus, we get size

F =

⎡
⎢⎢⎢⎣

p1111 p111 p1211 p121 p1311 p131 p 0 0

p2111 p211 p2211 p221 p2311 p231 0 p 0

p3111 p311 p3211 p321 p3311 p331 0 0 p

⎤
⎥⎥⎥⎦, (34)

l =
[
s1 b1 s2 b2 s3 b3 gn

1 gn
2 gn

3

]T
. (35)

For the nine unknown model parameters we need at least
nine constraints. This can be covered, for example, with the
knowledge of the velocity of the object at three different
points. In total, we have equations identical to (28), with
dimension N replaced by 3N .

6. Example 1

To demonstrate the use of the proposed method, an example
using readily available consumer grade accelerometers [23]
was created. An accelerometer was mounted on a horizon-
tally rotating rate table, whose angular velocity (rotation
rate) can be controlled. The accelerometer was mounted in
such a way that its measurement direction was approximately
the same as the direction of the tangential acceleration caused
by angular acceleration of the rate table, as seen in Figure 4.

The aim of this example was not to get position and
velocity as accurately as possible, but to compare different
solution methods in a situation where one needs to get
reasonable position and velocity estimates regardless of the
fact that the measurement contains significant errors. The
angular velocity of the rate table was set to follow function
illustrated in the Figure 5 a certain number of times. With
this kind of a setup, the true acceleration, velocity, and
displacement of the mounted sensor were known up to the
accuracy of the motor rotating the rate table. The errors
caused by the rate table were observed using the angular rate
output of the motor and found to be negligible compared to
other error sources.

In first test, the rate table was set to repeat exactly the
function represented in Figure 5 ten times, leading to seven
full revolutions (or 10.4 meters) in T = 20 seconds. In the
other test, the function of the same form was scaled in such
a way that 50 repeats lead to total of 62 full revolutions (or
92.3 meters) in T = 100 seconds. The sampling frequency of

8 International Journal of Navigation and Observation

Table 1: Comparison of different methods computing object’s velocity and position. “I“ stands for time-stepping, “II“ for FEM, and “III“
for FEM with sensor error modeling.

Test 1 Test 2

Vel. error [m/s] t1 t2 t3 t1 t2 t3
I 0.07 0.10 0.12 33.24 65.47 97.17

II 0.01 0.04 0.06 −0.67 0.50 1.15

III 0.04 0.05 0.04 0.33 0.54 0.44

Pos. error [m] t1 t2 t3 t1 t2 t3
I 0.10 0.49 1.00 510.96 1992.99 4434.70

II −0.31 −0.29 −0.15 −42.34 −43.42 −16.59

III −0.10 −0.07 −0.05 −6.78 −4.72 −0.61

0

1

2

3

4

5

6

7

8

9

ω
(r

ad
/s

)

0 0.5 1 1.5 2

Time (s)

Figure 5: Angular velocity of the rate table.

the sensor was set to 1000 Hz and an accurate (16 bit) analog
to digital converter was used. Accelerations were measured
using a consumer grade 12 g accelerometer [23].

The raw accelerometer data was mapped to accelerations
with the scale factor given by the manufacturer. From this
acceleration data, position and velocity were computed by a
number of different methods:

(i) “Traditional” IVP (double integration with trapezoid
rule),

(ii) FEM with Dirichlet boundary conditions (BCs),

(iii) FEM with Dirichlet BCs combined with additional
Neumann BCs to supply the error model (25).

In methods I and II, the bias error of the sensor was
estimated by averaging the output while the sensor was at
rest. This was done in order to make method I (and to
some extent, method II) comparable to the method III by
reduction of the large bias error. This is rarely possible in
general and only method III can be used to reliably detect
any remaining bias (example 2 in Section 7 is an example of
this case). As a reference, the ideal (ideal driving motor) and
the measured accelerations (accelerometer bias removed) of
the first spin are plotted in Figure 6.

Table 1 shows the main results of the tests. In each test,
the computed results were compared to the known value in

−10

−5

0

5

10

A
cc

el
er

at
io

n
(m

/s
2
)

1 1.5 2 2.5 3

Time (s)

Figure 6: Ideal (thick line) and measured acceleration (thin line).

three separate points by computing the difference between
the computed and the real value. Point t1 was located at T/3,
t2 at T/2, and t3 at 2T/3.

As seen in Table 1, method I seems to increase the error
with increasing time, as expected. Method II on the contrary,
thanks to the basic property of the variational technique,
does not increase the error but distributes it over the whole
time period. The difference between these two methods is
clearly seen in the velocity and position errors of the longer
test (test 2), where method II gives much better estimates
than method I. In each test, method III clearly outperforms
methods I and II, which is expected due to the provided two
additional constraints.

Figures 7 and 8 demonstrate the differences between
velocity and position estimates given by methods I and II
during test 1. Estimates given by method III coincide with
the reference plots. Figure 7 shows only the last spin of the
test 1 for better view of the differences.

7. Example 2

This example considers the computation of the velocity and
position of a ski jumper during a single jump. As compared
to the previous example, this is a more realistic and general
inertial navigation problem with six degrees of freedom.

International Journal of Navigation and Observation 9

−0.5

0

0.5

1

1.5

2

2.5

V
el

oc
it

y
(m

/s
)

19 19.5 20 20.5

Time (s)

Figure 7: Velocity estimates given by methods I (thin black line)
and II (thin gray line) compared to the ideal velocity (thick line).

−2

0

2

4

6

8

10

12

D
is

ta
n

ce
(m

)

0 5 10 15 20 25

Time (s)

Figure 8: Position estimates given by methods I (thin black line)
and II (thin gray line) compared to the ideal position (thick solid
line).

Computation of the attitude of the object is based on the data
given by three standard consumer grade gyroscopes [24].
The position and velocity were then measured with three
standard consumer grade accelerometers [23] and computed
with the proposed method with a sensor error model similar
to the one presented in Section 5.3. The needed additional
constraints contained information about

(i) the location of the jumper at five points evenly spread
on the inrun hill (in Figure 9, the part of thick black
line with negative x- and positive y-coordinates)

(ii) the trajectory of the jumper after the landing, which
should coincide with the linearization of the landing
hill (in Figure 9, the part of thick black line with x-
coordinates greater than 100 m).

In Figure 9, two-dimensional trajectories of two jumpers
are plotted along with the known profile of the hill. At first,
the trajectories follow the profile of the hill until the jumpers

−80

−60

−40

−20

0

20

40

y
(m

)

−50 0 50 100

x (m)

Figure 9: Computed two-dimensional trajectories of two indepen-
dent events (thin gray and thin black lines) along with the known
profile of the hill (thick black line).

take off and eventually land at some point of the landing hill.
Drawn circles at both ends of the trajectories demonstrate
the start and the end of the navigation period and the given
Dirichlet boundary conditions. Drawn squares represent the
landing points, in this case quite different for the two events,
agreeing well with the recorded jump lengths. Notice that the
trajectories are computed using two distinct measurement
systems, each containing unique error sources.

Figure 10 shows that the vertical component of the
velocity of the same two jumps is plotted as a function
of horizontal displacement. Notice how the absolute values
of the vertical velocity substantially differ while the small
changes in the velocity are practically identical. One might
first consider the small changes as typical stochastic errors
caused by the inertial navigation system, especially when
dealing with low performance sensors.

Given that two independent measurement systems show
the same variations in the velocity at the same locations, it
is evident that there is actually only a negligible amount of
stochastic errors present. Instead, the small variations are
caused by deterministic sources, namely, in this particular
application the uneven inrun hill.

Unfortunately, the estimates cannot be compared with
a reference trajectory, because such data are not available.
Thus, we cannot give the exact amount of error present in the
position and velocity estimates. We do however claim that the
achieved accuracy is something one does not typically expect
from consumer grade inertial sensors.

8. Conclusion

The work was motivated by applications, where it is natural
to encounter BVPs instead of IVPs. In many cases, it is also
possible to formulate an IVP as a BVP, given that the results
are not required in real time.

Finite element method is utilized to solve inertial navi-
gation problems formulated as BVPs. As a result, we get a
linear system of equations for the position estimates, whose

10 International Journal of Navigation and Observation

−12

−10

−8

−6

−4

v y
(m

/s
)

−70 −60 −50 −40 −30 −20 −10 0

x (m)

Figure 10: Vertical velocity (vy) as a function of horizontal dis-
placement (x) of the two independent measurements.

solution can be found with linear time complexity. It is
demonstrated that solving a BVP rather than an “equivalent”
IVP gives more accurate results.

For further accuracy enhancements, an efficient way of
combining inertial measurements with possible additional
constraints is created. This gives us a possibility to model
constant sensor errors, known to limit the achievable
accuracy of the system. While the error model significantly
enhances the accuracy of the system, it is kept computation-
ally simple and easily adoptable.

In practice, the accuracy improvements allow us to
exploit inertial sensors of certain performance level in more
challenging applications. For this, it is necessary to see that
the concept of inertial navigation does not invariably imply
an IVP, but a BVP as well. Then, the use of FEM will provide
an efficient way to compute position and velocity estimates
not prone to the accumulation of errors.

In larger scale, the current paper serves as an introduc-
tion to the idea of formulating inertial navigation problems
as BVPs. As a consequence, further studies are needed to
address problems to which the presented tools do not provide
an obvious solution. These include, for example, stochastic
errors, reliability of the possible additional constraints (as
compared to the accuracy of the IMU), and coupling of
position and attitude errors.

References

[1] I. Y. Bar-Itzhack, “Navigation computation in terrestrial
strapdown inertial navigation systems,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 13, no. 6, pp. 679–689,
1977.

[2] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation
Technology, Institution of Engineering and Technology, Lon-
don, UK, 2nd edition, 2004.

[3] A. B. Chatfield, Fundamentals of High Accuracy Inertial Nav-
igation, American Institute of Aeronautics and Astronautics,
Reston, Va, USA, 1997.

[4] M. S. Grewal, L. R. Weill, and A. P. Andrews, Global Positioning
Systems, Inertial Navigation, and Integration, John Wiley &
Sons, New York, NY, USA, 2001.

[5] J. A. Farrell and M. Barth, The Global Positioning System &
Inertial Navigation, McGraw–Hill, New York, NY, USA, 1999.

[6] L. F. Shampine, I. Gladwell, and S. Thompson, Solving ODEs
with Matlab, Cambridge University Press, Cambridge, UK,
2003.

[7] S. Larsson and V. Thome, Partial Differential Equations with
Numerical Methods, Springer, New York, NY, USA, 2003.

[8] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-
ling, Numerical Recipes in C (The Art of Scientific Computing),
Cambridge University Press, Cambridge, UK, 2nd edition,
1992.

[9] M. Virmavirta, T. Nieminen, T. Tarhasaari, and L. Kettunen,
“High precision inertial measurement for tracking the trajec-
tories of ski jumpers “Smart Boot Project”,” in Proceedings of
the 13th Congress European College of Sport Science, p. 572,
Estoril, Portugal, July 2008.

[10] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of
Scientific Computing, BROOKS/COLE, Florence, Ky, USA, 3rd
edition, 2002.

[11] N. El-Sheimy, H. Haiying, and N. Xiaoji, “Analysis and mod-
eling of inertial sensors using allan variance,” EEE Transactions
on Instrumentation and Measurement, vol. 57, no. 1, pp. 140–
149, 2008.

[12] A. Gelb, Applied Optimal Estimation, MIT Press, Cambridge,
Mass, USA, 1974.

[13] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with
Applications to Tracking and Navigation, Chapman & Hall /
CRC, London, UK, 2004.

[14] J. L. Crassidis and J. L. Junkins, Optimal Estimation of Dynamic
Systems, Chapman & Hall / CRC, London, UK, 2004.

[15] P. D. Groves, Principles of GNSS, Inertial, and Multisensor
Integrated Navigation Systems, Artech House, Norwood, Mass,
USA, 2008.

[16] D. Fraser and J. Potter, “The optimum linear smoother as
combination of two optimum linear filters,” IEEE Transactions
on Automatic Control, vol. 14, no. 4, pp. 387–390, 1969.

[17] H. E. Rauch, F. Tung, and C. T. Striebel, “Maximum likelihood
estimates of linear dynamic systems,” AIAA Journal, vol. 3, no.
8, pp. 1445–1450, 1965.

[18] K. Gade, “Navlab, a generic simulation and postprocessing
tool for navigation,” European Journal of Navigation, vol. 2, no.
4, pp. 21–59, 2004.

[19] Y. Yang, Z. Jin, W. Tian, and F. Qian, “Application of fixed
interval smoothing to gps/dr integrated navigation system,” in
Proceedings of the IEEE Intelligent Transportation Systems, vol.
2, pp. 1027–1031, October 2003.

[20] A. B. Willumsen and ∅. Hegrenæs, “The joys of smoothing,”
in Proceedings of the IEEE Bremen: Balancing Technology with
Future Needs (OCEANS ’09), pp. 1–7, Bremen, Germany, May
2009.

[21] M. Klaas, M. Briers, N. de Freitas, A. Doucet, S. Maskell, and
D. Lang, “Fast particle smoothing: if i had a million particles,”
in Proceedings of the 23rd International Conference on Machine
Learning (ICML ’06), vol. 148, pp. 481–488, Pittsburgh, Pa,
USA, 2006.

[22] J. W. Demmel, Applied Numerical Linear Algebra, SIAM,
Philadelphia, Pa, USA, 1st edition, 1997.

[23] VTI. VTI SCA620-CHCV1A Datasheet, 2006. Revision 2/2,
Checked on 22.12.2009.

[24] Analog Devices. AD ADXRS300ABG Datasheet, 2004. Revision
B, Checked on 22.12.2009.

